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• QCD at nonzero temperature and density 

• The sign problem at nonzero density 

• Exotic dispersion relations and inhomogeneous phases 

• Experimental signatures 



The Phase Diagram of QCD: Here be dragons

Figure: NSAC Long-Range Plan 2023. 



The Phases of QCD: relevant areas of physics

• Nuclear Physics 

• Particle Physics 

• Astrophysics 

• Many Body Physics 

• Condensed Matter

Figure: NSAC Long-Range Plan 2023. 



The Phases of QCD: research synergy

Experiment

Theory Lattice

Figure: NSAC Long-Range Plan 2023. 



The Phases of QCD: a synergistic research area

Experiment

Theory Lattice



The Phases of QCD: difficult problems in fundamental physics

• Quark confinement 

• Chiral symmetry breaking 

• Quark-hadron duality 

• Non-hermiticity and sign 
problems 

• Exotic dispersion relations 
and inhomogeneous phases

Figure: NSAC Long-Range Plan 2023. 



The sign problem in QCD at : introductionμB ≠ 0

Dν = ∂ν + iAν + μqδ4ν

det (−μ, A) = det (μ, A)*

β=1/TEuclidean
time

Space

eβμW e-βμW+

Covariant derivative is non-Hermitian when  but 
sign problem occurs when gauge field  as well

μq ≠ 0
Aν ≠ 0

The Wilson line, or Polyakov loop, measures the free energy of a static 
quark, and is an order parameter for the deconfinement transition

Functional determinants become complex.

W( ⃗x) = tr 𝒫 exp [i∫
β

0
dxνAν(t, ⃗x)]

The essence of the sign problem: when  
the imaginary part of nontrivially winding 

quark paths are not cancelled by antiquarks

μq ≠ 0

Note: This sign problem may be NP



The sign problem in QCD at : a formal proofμB ≠ 0

Dν = ∂ν + iAν + μqδ4ν

Tr log [−D2 + m2] = − ∫
∞

0

dT
T

e−Tm2 ∫ [dxν] exp [−∫
T

0
dτ ·x2

ν] tr 𝒫 exp [∫ dxν (iAν + δ4νμq)]
Tr log [−D2 + m2] = − ∫

∞

0

dT
T

e−Tm2 ∫ [dxν] exp [−∫
T

0
dτ ·x2

ν] enβμqW [xν]

enβμq tr W[xν] →
1
2 [enβμq W[xν] + e−nβμq W*[xν]] det (−μq, A) = det (μq, A)

*

β=1/TEuclidean
time

Space

eβμW e-βμW+
Sign problem for 

complex representations  
 with SU(N) N ≥ 3

winding number 
of the path 

n =
xν(τ)



Back to basics: a simple non-Hermitian mass mixing model

A novel algorithm for scalar fields related to 
Kramers-Wannier duality for the Ising model can 
be used to simulate this model.  

Disorder lines mark the boundary between 
exponential decay of propagators and 
sinusoidally-modulated exponential decay. The 
appearance of disorder lines and regions of 
sinusoidal modulation follows directly in 
-symmetric theories from the existence of 
conjugate eigenvalue pairs. Spectral positivity is 
violated in both cases.

PT
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Ogilvie and Medina, Lattice 2018, 1811.11112 

LE(ϕ, χ) =
1
2 (∇ϕ)2 +

1
2 (∇χ)2 +

1
2

m2
ϕϕ2 +

1
2

m2
χ χ2 − igϕχ

d=1: transition between 2 real eigenvalues and a complex 
conjugate pair

ℳ = (
m2

ϕ −ig

−ig m2
χ ) ℳ = σ3ℳ*σ3

points are lattice simulation; 
lines are exact result

mass 
matrix



A  mass mixing model with  and  symmetry     ϕ4 Z(2) PT

S(ϕ, χ) = ∑
x

[ 1
2

(∇μϕ)2 + U(ϕ) + hϕ +
1
2

(∇μ χ)2 +
1
2

m2
χ χ2 − igϕχ]

Assuming constant vev’s  and , we 
can solve the tree-level equation to find 
the phase diagram. Stability of any 
solution is determined from the mass 
matrix, which is  symmetric. The 
eigenvalues are either both real or form a 
conjugate pair.

ϕ0 χ0

PT

where U(ϕ) = λ(ϕ2 − v2)2

This is a model of a scalar field  in a 
double well mixing with another particle .

ϕ
χ

ℳ = (
U′ ′ (ϕ0) −ig

−ig m2
χ )

 symmetry for : Z(2) h = 0 (ϕ, χ) → (−ϕ, − χ)
 symmetry:  and PT χ → − χ i → − i

ℳ = σ3ℳ*σ3

Schindler, Schindler and Ogilvie 1906.07288; PRD 102 (2020)



Equivalent forms of the  mass-mixing model                                                ϕ4

• Original complex form with manifest PT symmetry 

       

• Nonlocal real action (“attractive vs. repulsive” forces): Yukawa-frustrated  

       

• Derivative expansion of  

 

• Local real action 

       

S(ϕ, χ) = ∑
x

[ 1
2

(∇μϕ)2 + U(ϕ) + hϕ +
1
2

(∇μ χ)2 +
1
2

m2
χ χ2 − igϕχ]

ϕ4

Seff = ∑
x

[ 1
2

(∂μϕ(x))2 + U(ϕ) + hϕ] +
g2

2 ∑
x,y

ϕ(x)Δ(x − y)ϕ(y)

Seff

Seff ≈ ∑
x

[ 1
2

(∂μϕ(x))2 + U(ϕ) + hϕ] +
g2

2m2
χ ∑

x [ϕ(x)2 −
1

m2
χ

(∂μϕ(x))2 + …]

S̃ = ∑
x

1
2 (∇μϕ(x))

2
+ U(ϕ) + hϕ +

1
2

π2
μ(x) + (∇ ⋅ π − gϕ)2

2m2
χ

Integration over  gives a term 
which acts to restore symmetry

ϕ

Derivative expansion shows 
Lifshitz instability for large g

This local real form can be 
simulated using standard 
methods



Stability of homogeneous phases

Nonlocal real action (“attractive vs. repulsive” forces): Yukawa-frustrated  with  integrated outϕ4 χ

Seff = ∑
x

[ 1
2

(∂μϕ(x))2 + U(ϕ) + hϕ] +
g2

2 ∑
x,y

ϕ(x)Δ(x − y)ϕ(y)

G−1
ϕϕ(q) = q2 + U′ ′ (ϕ0) +

g2

q2 + m2
> 0

1 2 3 4
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G−1
ϕϕ(q)

required for all  for stability of homogeneous 
solution 

q
ϕ0

q

U′ ′ (ϕ0) = − 5 m2 = 1Parameters

  (blue) stable 
  (orange) critical

  (green) unstable
  (red) unstable

g = 4
g = 3
g = 2.5
g = 2

Inverse propagator G−1
ϕϕ(q)

where U(ϕ) = λ(ϕ2 − v2)2



Moatons
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G−1
ϕϕ(q)

q

Inverse propagator G−1
ϕϕ(q)

Bodiam Castle in East Sussex 

By WyrdLight.com, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.php?

curid=7910287
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Stability of homogeneous phases: another approach
The vev's   and  are determined at tree 
level from the static field equations. The 
stability of a solution against fluctuations is 
determined by the eigenvalues of .

ϕ0 χ0

q2 + ℳ

ℳ = (
U′ ′ (ϕ0) −ig

−ig m2
χ )

In particular, the stability at  is 
determined by the sign of  

q = 0
det (ℳ)

ℳ = σ3ℳ*σ3

Eigenvalues of  ℳ
 and λ1 > 0 λ2 > 0

 and λ1 < 0 λ2 > 0
 λ1 = λ*2

 and λ1 < 0 λ2 < 0

Propagators

Exponential Decay

Exponential Growth of  modeϕ0

Sinusoidally Modulated Exponential Decay

Exponential Growth of some  modesp ≠ 0

Phase
Normal

Unstable

 BrokenPT

Inhomogeneous 
Lifshitz Phase

 symmetry of the  
mass matrix 

PT
ℳ



Phase diagram of the  mass-mixing modelϕ4

Schindler, Schindler, Ogilvie, J. Phys. 
CS 2038 (2021, 2106.0709

The normal to complex boundary is a 
disorder line, not a phase transition

 plane(ϕ, g)  plane(h, g)



Inhomogeneous behavior in simulations of the  mass-mixing modelϕ4

Schindler, Schindler, Ogilvie, J. Phys. CS 2038 (2021), 2106.0709; see 
e.g. Muratov, PRE  66 (2002) for the Coulomb case ( )mχ = 0

 in coordinate spaceϕ(x)



Inhomogeneous behavior in simulations of the  mass-mixing modelϕ4

Schindler, Schindler, Ogilvie, J. Phys. CS 2038 (2021), 2106.0709; see 
e.g. Muratov, PRE  66 (2002) for the Coulomb case ( )mχ = 0

 in coordinate spaceϕ(x)  in momentum spaceϕ̃(p)



Inhomogeneous behavior in simulations of the  mass-mixing modelϕ4

d=2 d=3

g=1.0 g=1.4



Stability of inhomogeneous phases in the  mass-mixing model ϕ4

The inhomogeneous phases represent stable equilibrium behavior

Hot vs. cold start
⟨ϕ(x)⟩

Measurement



Heavy fermions at nonzero temperature and density

S =
1

2β ∑
x { 1

g2
χ

[(∇χ)2 + m2
χ χ2] +

1
g2

ϕ
[(∇ϕ)2 + m2

ϕϕ2]} − ∑
x

log [1 + zeβχ(x)+iβϕ(x)]

Fisher and Park, PR E 60 (1999); Glaser et al., EPL, 78 (2007); Shin et al. Soft Matter, 2009; 
Nishimura, Ogilvie, Pangeni, Phys. Rev. D 95, 076003 (2017), 1612.09575; Schindler, Schindler, 
Ogilvie, J. Phys. CS 2038 (2021, 2106.0709

• First used by Fisher and Park (1999) to study an  transition for 


• Same symmetries as the mass-mixing model


• Model of a gas of fermions interacting via attractive and repulsive Yukawa interactions 
mediated by  and  respectively; equivalent to a generalized Ising model


• The log term is essentially a heavy quark determinant, with . The role of 
the Polyakov loop in the fermion determinant is played by 

iϕ3 z < 0

χ ϕ

z = exp (βμ − βM)
exp (βχ(x) + iβϕ(x))



Phase diagram of heavy fermion model

Schindler, Schindler, Ogilvie, J. Phys. 
CS 2038 (2021, 2106.0709

Criterion for stability against patterns valid in lattice model and 
continuum: 

1 + βχQṼqq(k) > 0

 plane(n, T)  plane(μ, T)



Complex  lattice field theories: phase structureZ(3)

Complex  spin model with 
a real chemical potential

Z(3) Zc = ∑
{zj}

exp ∑
⟨jk⟩∥

J (eμsjs*k + e−μs*j sk) + ∑
⟨jk⟩⊥

J (sjs*k + s*j sk)

Chiral  spin model with an 
imaginary chemical potential

Z(3) Zχ = ∑
{zj}

exp ∑
⟨jk⟩∥

J̃ (eiμ̃sjs*k + e−iμ̃s*j sk) + ∑
⟨jk⟩⊥

J̃ (sjs*k + s*j sk)

In   chiral spin models have an intricate phase structure, the 
Devil’s Flower with an infinite number of inhomogeneous phases with 
repeating structures such as  or along the 
chiral direction similar to chiral spirals. This behavior is closely related to 

the Devil’s Staircase of the Frenkel-Kontorova model.

d ≥ 3 Z(3)

…012012… …021021…

Yeomans and Fisher, J. Phys. C 14 (1981)

Complex and chiral are dual to one another , in an 
extension of Kramer-Wannier duality: spin-spin in d=2, spin-gauge in  

d=3, gauge-gauge in d=4. This duality maps a complex lattice 
model into a real one.

(J, μ) ↔ (J̃, μ̃)

Meisinger and Ogilvie, PoS Lattice2013 



Complex  lattice field theories: the Migdal-Kadanoff real-space renormalization groupZ(3)

R(ωz) = ωpR(z) ω ∈ Z(3) R(z*) = R*(z)

z′ = R(z) z = exp (−3J/2 + iθ)The MKRG shows the devil’s flower structure for 
chiral Z(3) spin models.

Schindler and Ogilvie, in preparation

The MKRG respects duality, and can be applied to all chiral and complex Z(3) models

3d Z(3) complex gauge theory 3d Z(3) complex spin theory

After a study of all models with 
, we find that the only ones 

with devil’s flowers are dual to 
chiral spin models. All others have 
four homogeneous phases in their 

complex form. This is explained 
by  Elitzur’s theorem and the need 
for a scalar order parameter in the 

dual chiral form. 

d ≤ 4



Models and Mechanisms for QCD: Nambu-Jona Lasinio models at finite density

• Four-fermion models: non-renormalizable in d=4 and 
sensitive to regulator 

• Inhomogeneous phases for  known; see Buballa 
(1406.1367; Prog. Part. Nucl. Phys. 81 (2015) for a review 

•  d=2 kinks, chiral spirals 

• Lifshitz instability found in many models 

• Sinusoidal modulation of correlation functions expected for 
 (relativistic Friedel oscillations: Kapusta and Tolmela, 

PRD 37 (1988) 

• Mass mixing scenario occurs in a d=2+1 model: Winstel, 
PRD 110 (2024) 2403.07430

μ ≠ 0

μ ≠ 0
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'j

Mixing of   inverse propagators in a 
  model. Winstel, 2403.07430 

σ − ω3
d = 2 + 1

ℒE = ψ̄ (γ ⋅ ∂ + μγd) ψ + ∑
a

λa

2N (ψ̄Γaψ)2



Models and Mechanisms for QCD: Polyakov loop models

Seff ≃ J ∑
(x,y⟩

[W(x)W*(y) + W*(x)W(y)] + ∑
x

[zW(x) + z−1W*(x)]
This class of models treats confinement effects 
but not chiral symmetry. They are often based 
on dimensional reduction at strong coupling to 
a 3d spin model of Polyakov loops W(x)

A nonzero  leads to complex 
conjugate mass pairs in Polyakov 
loop correlation functions in both 

the  and  representations
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 for  implying 
. This  behavior reverses 

at  due to a particle-hole               
 symmetry of this model.

⟨W⟩ < ⟨W*⟩ z < 1
FQ > FQ̄

z = 1
z → z−1

Nishimura, Ogilvie and 
Pangeni, PRD 93 

(2016), 1512.09131; 
see Akerlund et al., 

JHEP 10 (2016) 
1602.02925 for Z(3)



Models and Mechanisms for QCD: PNJL models

• PNJL models include both confinement and chiral 
symmetry effects. They have the same issues as 
NJL models plus sensitivity to confinement physics 

• Free energy dominated by a complex saddle point 
with  and  real and unequal 

• Sinusoidal modulation is seen but Lifshitz transition 
unclear

W W*

Figures show the critical line and disorder line in the  
plane for two different PNJL models; the contours show the 
imaginary part of the screening length. From Nishimura, Ogilvie, 
Pangeni PRD 91(2014) 1411.4959

μ − T

Model A

Model B

Ω(σ, ω0, W, W*) = Vχ(σ) + Ugauge(W, W*) −
T
𝒱

ln det 𝒟(σ, W, W*)



Models and Mechanisms for QCD:  modelPQMV
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Ω(σ, ω0, W, W*) = Vχ(σ) +
1
2

m2
ωω2

0 + Ugauge(W, W*)

−
T
𝒱 [ln det 𝒟(σ, ω0, W, W*)

+ln det 𝒟vac(σ)] .
Haensch, Rennecke,von Smekal 2308.16244

Polyakov Quark model with 
vector ( ) repulsionω0



Experimental Signatures: HBT Interferometry of Moatons
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E2 = Z(p)p2 + m2 = (1 −
λ2

p2 + M2 ) p2 + m2

E2 ≈ m2 + (1 −
λ2

M2 ) p2 +
λ2

M4
p4 + O(p6)

Rennecke and Pisarski PoS CPOD2021, 2110.02625; Rennecke, Pisarski and Rischke 2301.11484; PRD 107 (2023)
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Experimental Signatures: Dilepton production

10-17

10-16

10-15

10-14

10-13

10-12

10-11

10-10

10-9

 200  400  600  800
d

4
R

/d
3
Q

d
M

M [MeV]

q=1

q=50

q=100

normal

d=10-4

10-18

10-16

10-14

10-12

10-10

10-8

 200  400  600  800

M [MeV]

q=1

q=50

q=100

normal

d=10-5

10-16

10-14

10-12

10-10

10-8

 200  400  600  800

M [MeV]

q=1

q=50

q=100

normal

d=10-6

Hayashi and Tsue,  
2407.08523

π+ + π− → γ → l+ + l−

Dilepton production in a 
background chiral spiral of 
wave number :q

• Spike at threshold is a van Hove singularity: density of states diverges at a 
nontrivial extremum of the energy  

• Direct consequence of exotic dispersion relation and non-Hermitian 
physics. 

• Very general behavior: independent of  any particular model or mechanism 
and an underlying inhomogeneous phase is not necessary

Nussinov, Ogilvie, Pannullo, Pisarski, Rennecke, Schindler, Winstel, Valgushev, in preparation  

⟨σ + iπ3⟩ = σ0 exp(i ⃗q ⋅ ⃗r )
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Conclusions

• High-density QCD is an important area of fundamental physics where non-
Hermitian behavior occurs. 

• Rich phase structure possible, with many models exhibiting exotic dispersion 
relations, and some have inhomogeneous phases due to a Lifshitz transition 

• Potential experimental signals seem to be a generic feature of phases with 
exotic dispersion relations. 

• Lessons are relevant for non-Hermitian field theories in other areas of particle 
physics.
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An algorithm for simulating some complex actions:  Ogilvie and Medina, Lattice 2018, 1811.11112 

S(χ) = ∑
x

[ 1
2

(∂μχ(x))2 + V(χ(x)) − ih(x)χ(x)]

exp [−
1
2 (∂μχ(x))

2] = ∫ dπμ(x)exp [ 1
2

πμ(x)2 + iπμ(x)∂μχ(x)]
exp [−V (χ (x))] = ∫ dχ̃(x)exp [−Ṽ (χ̃ (x)) + iχ̃(x)χ(x)]

Dual weight positivity implies not only 
that standard lattice simulation 
methods can be be applied but also 
that mean field theory and other 
analytical methods can be used.

V(χ)* = V(−χ) ⇒ Ṽ( χ̃) ∈ ℝ symmetry:PT

S̃ = ∑
x

[ 1
2

π2
μ(x) + Ṽ(∂ ⋅ π(x) − h(x))]

If dual weight positivity holds 
              
the functional integral is manifestly positive and the 
dual action  is simulatable by standard methods.

w̃[ χ̃(x)] ≡ exp [−Ṽ( χ̃(x))] ≥ 0

S̃



Mixing model: Phase diagram as a function of g2

2



Mixing model: phase diagram in the Coulomb limit mχ → 0

mχ ≠ 0 mχ = 0

“avoided critical point”



Imaginary Yukawa coupling (ICY)

V(ϕ, χ) = m2
ϕϕ2/2 + m2

χ χ2/2 − igχϕ2

2 4 6 8 10 12 14 16 18

0.1

0.2

0.3

|x� y|

h�(x)�(y)i
m2

1 = 0.03, m2
2 = 0.05, g = 0.01

m2
1 = 0.05, m2

2 = 0.05, g = 0.05

m2
1 = 0.09, m2

2 = 0.01, g = 0.09

• No sign of any complex mass 
pairs in d=1,2 or 3. 

• This model goes smoothly into a 
 model in a scaled limit where 

and  go to infinity.
ϕ4 g

mχ

Ṽ(ϕ, πμ) = m2
ϕϕ2/2 + (∂ ⋅ π − gϕ2)2/2m2

χ



Computational complexity

The well-known work of Troyer and Wiese (PRL 2005) shows that 
the sign problem of fermionic many-body systems is NP-hard by 
showing its equivalence to finding the ground state of a random-
bond Ising model

It has been proposed that scalar field theory models with long-range 
interactions (Schmalian and Wolynes, PRL 2001) and higher-derivative 
interactions (Westfahl et al, Chem. Phys. Lett 2002) can model glassy 
behavior, a prototypical NP-hard problem.

Computational complexity in such systems has its origins in the complexity 
of the ground states and equilibrium states of the systems, in particular in 
spatial structure.

Seff = ∑
x

[ 1
2

(∂μϕ(x))2 + λ(ϕ2 − v2)2 + hϕ] +
g2

2 ∑
x,y

ϕ(x)Δ(x − y)ϕ(y) Δ̃(k) =
1
k2



Z(N) spin models and pattern formation

Chiral  Devil’s FlowerZ(3) ℋ = −
J
2 ∑

⟨jν⟩
(zjz*j+ ̂ν + z*j zj+ ̂ν)Basic model

Chemical potential

Chiral Z(N) model ⇒ e2πiΔ/Nzjz*
j+ ̂d

+ e−2πiΔ/Nz*j zj+ ̂d

The chiral model has an intricate low-temperature (large J) structure with patterned phases. These may be 
commensurate or incommensurate, depending on d. Lattice duality maps between classes of Hamiltonians, 
complex and real, with non-Hermitian transfer matrices. The 2d case is clear: we are looking at the universality 
class of 2d Z(N) parafermions and the patterned behavior in the chiral model corresponds to states with nonzero 
N-ality realized as kinks.

Yeomans and Fisher, 1984

J → J̃ =
N2

4π2J
μ → μ̃ = −

2πiJμ
N

The Villain action Z(N) model has a simple dual form in all d.

⇒ eμzjz*
j+ ̂d

+ e−μz*j zj+ ̂d

Meisinger and Ogilvie, 1306.1495, 1311.5515



Complex  models and the real-space renormalization groupZ(N)

Ogilvie, Schindler, Schindler, in preparation


