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The Phase Diagram of QCD: Here be dragons
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Figure: NSAC Long-Range Plan 2023.



The Phases of QCD: relevant areas of physics
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The Phases of QCD: research synergy
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The Phases of QCD: a synergistic research area

THE THREE KINDS OF SCIENTIFIC RESEARCH:

WE APPLIED A WE APPLIED A NOVEL FINALLY, A MAP
STANDARD THEORY TO  THEORY TO STANDARD OF EVERY TREE. =il
NOVEL CIRCUMSTANCES  CIRCUMSTANCES
AND GOT SOME AND GOT SOME
SURPRISING RESULTS.  INTRIGUING RESULTS.
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The Phases of QCD: difficult problems in fundamental physics
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Quark confinement
Chiral symmetry breaking
Quark-hadron duality

Non-hermiticity and sign
problems

Exotic dispersion relations
and inhomogeneous phases



The sign problem in QCD at uz # 0: introduction

Covariant derivative is non-Hermitian when g, # 0 but D, =0, +iA, + uo,

sign problem occurs when gauge field A, # 0 as well

K

—unctional determinants become complex. det (—u,A) = det (u,A)

p

. . - .
The Wilson line, or Polyakov loop, measures the free energy of a static W) = tr P exp [J

| | . i| dx A/(t,X)
guark, and Is an order parameter for the deconfinement transition

0

he essence of the sign problem: when p, # 0

L . L. . g Euclidean Bu\\/ -Bu\\/+ _
he imaginary part of nontrivially winding e e e B=1/T
quark paths are not cancelled by antiquarks

Space
Note: This sign problem may be NP



The sign problem in QCD at u, # 0: a formal proof

Dl/ — 0y + ZAU + //tq54y

©dT _. . '
Trlog [—D2 1 mz] = — J —eIm [[dxy] exp [—J dw’c,%] tr P exp ”dxy (iAy + 54y,uq>]

0 I 0
=dT d — N
Tr log [_D2 + m2] — J _e—Tm2J[dxy] exp _J, dfxg enﬂﬂqW [xy] n Wlﬂdlﬂg number
o 1 0 of the path x,(7)
WIS = [ W) e det(~, 4) = det (1,4 )

A N
Sign problem for |
complex representations Euc_lldean aBu\\/ e BH\\/+ B=1/T
SU(N) with N > 3 time

Space



Back to basics: a simple non-Hermitian mass mixing model

1 | > 1 1 |
L. ) == (Vo) += (V) +omzp” +—m x> — igdy
2 2 2 2
 (@(2)d(y))
1.2 |
| . points are lattice simulation;
\ ines are exact result
0.8 |
0.6 . .
0.4 | ) .
0.2 | ~ ]
] ‘ ° o o o ‘g.j:gzl)
* 5 10.,-'15' 20 25 30
—0.2 + : o o o ° °

d=1: transition between 2 real eigenvalues and a complex
conjugate pair

P .
m, —Iig
maSIS M = ( ¢ 2) M = 63%*63
matrix —ig m,

A novel algorithm for scalar fields related to
Kramers-Wannier duality for the Ising model can
be used to simulate this model.

Disorder lines mark the boundary between
exponential decay of propagators and
sinusoidally-modulated exponential decay. The
appearance of disorder lines and regions of

sinusoidal modulation follows directly in PT
-symmetric theories from the existence of
conjugate eigenvalue pairs. Spectral positivity is
violated Iin both cases.

Ogilvie and Medina, Lattice 2018, 1811.11112



A ¢* mass mixing model with Z(2) and PT symmetry

1 1 |
S(h.x) =) lg(Vﬂqﬁ)z + U(p) + hep + E(Vﬂ){)2 + cx” —igdy where U(¢) = A(¢p* — v*)*

X

Z(2) symmetry for h = 0: (¢, x) = (=, — x) This is a model of a scalar field ¢ in a

PT symmetry: y > — yandi — — 1 double well mixing with another particle .
Assuming constant vev’s ¢y and y,, we U(p,) —ig
can solve the tree-level equation to find M = . 7
the phase diagram. Stability of any -l

solution Is determined from the mass

matrix, which is P11 symmetric. The

— K
eigenvalues are either both real or form a M = 03% 03
conjugate parr.

Schindler, Schindler and Ogilvie 1906.07288; PRD 102 (2020)



Equivalent forms of the ¢4 mass-mixing model

Original complex form with manifest PT symmetry

| | |
S =Y [5< Vb + U@) +h +— (V0" +=my ~ iy

X

Nonlocal real action (“attractive vs. repulsive” forces): Yukawa-frustrated ¢4

|
Seff = . [5<aﬂ¢<x>>2 + U($) + he

X

8 2 Z DA — V)D(y) Integration over ¢ gives a term
2 which acts to restore symmetry

Derivative expansion of S,

e o1 i Derivative expansion shows
F o2 e | P = 50PN+ | igshitz instability for large g

X X

1
Seft ~ [5<aﬂ¢<x>>2 + U) + hep

Local real action
This local real form can be

2
_ 1 2 1 (V-7—go) -
_ (v heb + —720) - simulated using standard
§=Y 2( ﬂ¢(x)> + U() + hp + 1) S oIt




Stability of homogeneous phases

Nonlocal real action (“attractive vs. repulsive” forces): Yukawa-frustrated qb4 with y integrated out

1 2
Seff = 2. lg@cb(x»z + U(g) + hep| - ‘(”2 Y AR - Y)P) where U(¢) = A(¢p> — v2)?
X X,y

g2

il

Gs(@) = q” + U'(¢h)

Inverse propagator G, ;(q)

required for all g for stability of homogeneous 12f
solution ¢,

Parameters  U’(¢p) =—-5 m*=1
Gys()
g = 4 (blue) stable

g = 2.5 (green) unstable

g = 2 (red) unstable




Moatons

Moat Moatons

Inverse propagator G, q}(q)

Bodiam Castle in East Sussex 91

By WyrdLight.com, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.php?
curid=7910287



Stability of homogeneous phases: another approach

The vev's ¢§y and y, are determined at tree

level from the static field equations. The = Uldy) —ig
stability of a solution against fluctuations is —ig m)?

determined by the eigenvalues of q2 + .

In particular, the stability at g = 0 is M = 6y M* o, PT symmetry of the
determined by the sign of det () mass matrix ./

Cigenvalues of A Propagators Phase

Ay >0and 4, > 0 —xponential Decay Normal

Ay <0and4, >0 =xponential Growth of ¢hy mode Unstable

Ay = AF Sinusoidally Modulated Exponential Decay ~ PT Broken

Ay <0and 4, <0 —xponential Growth of some p # 0 modes  Inhomogeneous
_ifshitz Phase




Phase diagram of the ¢* mass-mixing model

(¢, ) plane (h, g) plane
3n ; 3
"\ Complex ,"'
\ J Complex
2k !.. "o' 2L — —_—
Patterns

Unstable
Normal |
V \ 0
(l3 0 3 -3 0 3
¢ h
The normal to complex boundary is a Schindler, Schindler, Ogilvie, J. Phys.

disorder line, not a phase transition CS 2038 (2021, 2106.0709



Inhomogeneous behavior in simulations of the ¢4 mass-mixing model

@(x) in coordinate space

0.20

Schindler, Schindler, Ogilvie, J. Phys. CS 2038 (2021), 2106.0709; see

e.g. Muratov, PRE 66 (2002) for the Coulomb case (m, = 0)




Inhomogeneous behavior in simulations of the 454 mass-mixing model

@(x) in coordinate space $(p) in momentum space

0.20 0.40 0.60 g/h 0.00 0.20 0.40 0.60

1.00
1.00

1.10
1.10

i

1.20
1.20

I

1.30
1.30

r"‘

Schindler, Schindler, Ogilvie, J. Phys. CS 2038 (2021), 2106.0709; see

e.g. Muratov, PRE 66 (2002) for the Coulomb case (m, = 0)




Inhomogeneous behavior in simulations of the ¢4 mass-mixing model

d=3

d=2
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Stability of inhomogeneous phases in the qb4 mass-mixing model

1000}

The iInhomogeneous phases represent stable equilibrium behavior

64 - 64 [ 0.70 500
1000}
0.90 500!
32+ 32L
1000}
1.10 500
1+ 1L
1000}
1.30 500
0.0
e
-5
1000}
Hot vs. cold start
<¢(X)> 1.50 500
1000}
1.70 500

Measurement




Heavy fermions at nonzero temperature and density

_ 1 1 >, v L e
5= "\ 2 [(w) ]+g¢[(v¢) Fm2p?] b =Y log [1 + zef |

First used by Fisher and Park (1999) to study an i¢° transition for z < 0

Same symmetries as the mass-mixing model

Model of a gas of fermions interacting via attractive and repulsive Yukawa interactions
mediated by y and ¢ respectively; equivalent to a generalized Ising model

The log term is essentially a heavy quark determinant, with z = exp (ﬂ,u — ,BM). The role of
the Polyakov loop in the fermion determinant is played by exp (ﬁ)((x) + iﬁgb(x))

Fisher and Park, PR E 60 (1999); Glaser et al., EPL, 78 (2007); Shin et al. Soft Matter, 2009;
Nishimura, Ogilvie, Pangeni, Phys. Rev. D 95, 076003 (2017), 1612.09575; Schindler, Schindler,

Oqilvie, J. Phys. CS 2038 (2021, 2106.0709



Phase diagram of heavy fermion model

0.2

T 0.1

Criterion for stability against patterns valid in lattice model and

(n, T) plane
Normal
Complex \
\
\_\
\‘.

Patterns

Unstable

|

0.9
n

continuum:

~

1L+ broV, (k) >0

(1, T') plane
0.2
\
Complex
) ]l
T O} /
\\ Patterns _/./
Normal
0.
-0.2 -0.1 0

Schindler, Schindler, Ogilvie, J. Phys.

CS 2038 (2021, 2106.0709



Complex Z(3) lattice field theories: phase structure

Com,o/e>|< Zh(3) SPiN mOdell \lNlth Z, = Z exp Z J <e”sjs]j< + e_”sj*sk> + Z J <st£’< + S].*Sk)
a real chemical potentia () (R, G0y,
thra/ IZ(3) Sﬁ'n mcl(jel W'thl aln Z, = Z exp Z ,’f(eiﬂsjsgI< + e‘iﬂsjfksk) + Z f(sjslf + Sj*sk>
imaginary chemical potentia () (R, Gy,
Complex and chiral are dual to one another (J, i) <> (J, i), in an \
extension of Kramer-Wannier duality: spin-spin in d=2, spin-gauge in T 001122001122 ...
d=3, gauge-gauge in d=4. This duality maps a complex lattice @>
model into a real one.
Meisinger and Ogilvie, PoS Lattice2013 12>
Ind > 3 Z(3) chiral spin models have an intricate phase structure, the
Devil’s Flower with an infinite number of iInhomogeneous phases with
repeating structures such as ...012012... or ...021021...along the Helical
chiral direction similar to chiral spirals. This behavior is closely related to 012012
the Devil’s Staircase of the Frenkel-Kontorova model.

Yeomans and Fisher, J. Phys. C 14 (1981) 0 Y <



Complex Z(3) lattice field theories: the Migdal-Kadanoff real-space renormalization group

The MKRG shows the devil’s flower structure for 7' = R(2) z=-exp(—3J/2 +i0)

chiral Z(3) spin models.
R(wz) = w’R(z) w € Z(3) R(z*) = R*(z)

The MKRG respects duality, and can be applied to all chiral and complex Z(3) models

3d Z(3) complex gauge theory 3d Z(3) complex spin theory

ii 1-5
7 o
/ 4
:
)
#

After a study of all models with

d < 4, we find that the only ones

with devil’s flowers are dual to
chiral spin models. All others have
four homogeneous phases in their

> 0
complex form. This is explained
by Elitzur’'s theorem and the need
for a scalar order parameter in the
dual chiral form.
155 1.5

Schindler and Ogilvie, in preparation



Models and Mechanisms for QCD: Nambu-Jona Lasinio models at finite density

A 2
. . . =yly- — (T
* Four-fermion models: non-renormalizable in d=4 and Lp=w(r0+ura) v+ Z ON U

sensitive to regulator

- Inhomogeneous phases for i #* 0 known; see Buballa Ay /1 =1.0, T = 0.05, y1 =1.03
(1406.1367; Prog. Part. Nucl. Phys. 81 (2015) for a review

d=2 kinks, chiral spirals

- Lifshitz instability found in many models

- Sinusoidal modulation of correlation functions expected for

u # 0 (relativistic Friedel oscillations: Kapusta and Tolmela,
PRD 37 (1988)

N i i i i -

LS AP AFEPATErE EFAFEPErE AR SRS N |

- Mass mixing scenario occurs in a d=2+1 model: Winstel, 0 11 l— 3r A 5 6
PRD 110 (2024) 2403.07430 q

Mixing of 0 — w5 inverse propagators in a
d = 2 + 1 model. Winstel, 2403.07430



Models and Mechanisms for QCD: Polyakov loop models

This class of models treats confinement effects

but not chiral symmetry. They are often based Ser = J Z | W)WH(y) + Wx)W(y)| + Z ZW(x) + 27 W ()|
on dimensional reduction at strong coupling to (x.y)

a 3d spin model of Polyakov loops W(x)

)

N

A nonzero Z leads to complex

conjugate mass pairs in Polyakov
loop correlation functions in both

the (3,3) and (6,6) representations

Mass Spectrum

Nishimura, Ogilvie and
Pangeni, PRD 93
(2016), 1512.09131;
see Akerlund et al.,
JHEP 10 (20106)
1602.02925 for Z(3)

(W) < (W*) for z < 1 implying
FQ > F O This behavior reverses

at z = 1 due to a particle-hole

= Z_1 symmetry of this model.

00 05 10 15 20 25 3000 05 10 15 20 25 30
<1 <1



Models and Mechanisms for QCD: PNJL models

300

; .
(W, W) — > Indet D (o, W, W*) o Model A

Q(Ga 0)0, Wa W*) — V){(G) + Ugauge 0.015

200¢

0.03
PNJL models include both confinement and chiral ol ( 0045
symmetry effects. They have the same issues as
NJL models plus sensitivity to confinement physics 100y
50t
00

Free energy dominated by a complex saddle point

T (MeV)

with W and W* real and unequal 0 100 ﬂgggv) 3 400
300 . :
Sinusoidal modulation is seen but Lifshitz transition 2s0p  Model B
unclear
200t
2
g 150
=
Figures show the critical line and disorder line inthe u — T 100l
plane for two different PNJL models; the contours show the
imaginary part of the screening length. From Nishimura, Ogilvie, S0r

Pangeni PRD 91(2014) 1411.4959

0 100 200 300 400
u (MeV)



Models and Mechanisms for QCD: PQM,, model

1
Polyakov Quark model with Q(o, wy, W, W¥) =V (0) + Emf)wg + Uggoe(W, W)

vector (w,) repulsion T
- [m det D (o, @y, W, W*)

Haensch, Rennecke,von Smekal 2308.16244
+In det @Vac(a)] .

700000F ---- Re H: ] 60005- Im H,
5 e ] ;
600 000} Re H; 4000F Im Hi
Re Hj :
. 500000 ' Re H, = _2000¢
AN i ‘/ . N i
= 400000+ R = ol
= : ' : = :
— 300000 % ‘: ~ -2000}
O I S T SR SRR AN SR SR S . : ............................... :
0O 200 400 600 800 1000 1200 1400 0O 200 400 600 800 1000 1200 1400

ug [MeV] us [MeV]



Experimental Signatures: HBT Interferometry of Moatons

Normal Moatons

c(side)/C('Ong)

c(side)/C('ong)

Q
pa)

Rennecke and Pisarski PoS CPOD2021, 2110.02625; Rennecke, Pisarski and Rischke 2301.11484; PRD 107 (2023)



Experimental Signatures: Dilepton production

T+ s>y

d=10-4 d=10-" d=10-"°
Dilepton production in a T = ' = e =
background chiral spiral of T M R
wave number g: 2 | - 1012
(6+imy) = o6yexp(ig - I) E :z 5' s I{' o i
ol | : T
Hayashi and Tsue, onl | N T L el
2407.08523 W e B B
M [MeV] M [MeV] M [MeV]

Nussinov, Ogilvie, Pannullo, Pisarski, Rennecke, Schindler, Winstel, Valgushev, in preparation

Spike at threshold is a van Hove singularity: density of states diverges ata =

nontrivial extremum of the energy
Direct consequence of exotic dispersion relation and non-Hermitian
physics.

Very general behavior: independent of any particular model or mechanism

and an underlying inhomogeneous phase is not necessary



Conclusions

High-density QCD is an important area of fundamental physics where non-
Hermitian lbehavior occurs.

Rich phase structure possible, with many models exhibiting exotic dispersion
relations, and some have Inhomogeneous phases due to a Lifshitz transition

Potential experimental signals seem to be a generic feature of phases with
exotic dispersion relations.

Lessons are relevant for non-Hermitian field theories in other areas of particle
physics.
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An algorithm for simulating some complex actions: Ogilvie and Medina, Lattice 2018, 1811.11112

NPEDY B@m»z + V(x(x)) - ih(X))((X)l Complex weights

X

PT symmetry: V(p)* = V(—=y) = V(7)) € R

| ; | Positive
exp l—z (dﬂ )((X)) l — Jdﬂﬂ(x)exp [Znﬂ(x)z + iﬂﬂ(x)()ﬂ )((x)] weights
exp [~V (7 (0)| = dez(x)exp =V (700) + i7000)|
if dual weight positivity holds
w7(x0)] = exp [-V(7(x)| >0 Dual weight positivity implies not only
the functional integral is manifestly positive and the that standard lattice simulation

methods can be be applied but also
that mean field theory and other
analytical methods can be used.

dual action S is simulatable by standard methods.

- | -
§=Y [En,f(x) + V(0 2(x) - h(x))]

X



Mixing model: Phase diagram as a function of g2

5 | | | |
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Mixing model: phase diagram in the Coulomb limit 72, — 0

m, = ()
3
Complex
2L
1 -
" Unstable
Normal
0
-3 0
o)

3.5

3.0

2.0(

1.5

1.0

0.5

0.0

25|

Normal

Complex

Pattemns

‘avoided critical point”




Imaginary Yukawa coupling (ICY)

V(¢,)() — 2¢2/2 + m )(2/2 — lg)(¢2 <¢(5L’)¢(y)> .m% = (.03, m% = 0.05, g = 0.01
i ~eom2=0.05, m2=0.05 g¢=0.05
Vg, m,) = myp*12 + (0 - — gp*)*/2m; 0314 - s+ om2 =009, m2=001, g=0.09

No sign of any complex mass 0.2

pairs in d=1,2 or 3. Lo

- . 01l . -

This model goes smoothly into a

¢4 model In a scaled limit where ¢

and m go tO Inflnlty I A*l‘:': ..... 41; ......... ; ;;; lil‘x— y|

2 4 0 8 10 12 14 16 18




Computational complexity

The well-known work of Troyer and Wiese (PRL 2005) shows that
the sign problem of fermionic many-body systems is NP-hard by

showing Its equivalence to finding the ground state of a random-
bond Ising model

't has been proposed that scalar field theory models with long-range
interactions (Schmalian and Wolynes, PRL 2001) and higher-derivative
interactions (Westfahl et al, Chem. Phys. Lett 2002) can model glassy
obehavior, a prototypical NP-hard problem.

2
= Zy‘, POAC— ) AR = —

1
Seff = . [5<aﬂ¢<x>>2 + A = v+ hp

k2

Computational complexity in such systems has its origins in the complexity

of the ground states and equilibrium states of the systems, In particular in
spatial structure.



/Z(N) spin models and pattern formation

Chiral Z(3) Devil’s Flower

Basic model = — — Z (z 2z z*zj+,;)
A ; JV>
T ---001122-001122---
@ Chemical potential = elzz*  +e'iz
32> f {12% T j+d JT
(322 f 123
© @2 o a2 R 2B, 27iAIN
NG Chiral Z(N) model => e ]+ Ste T
Ferro o -~ Helical The Villain action Z(N) model has a simple dual form in all d.
SEERR 012012 -
. 17 N? 3 2iJu
O , Z 4] N
A=3 Yeomans and Fisher, 1984 Meisinger and Ogilvie, 1306.1495, 1311.5515

The chiral model has an intricate low-temperature (large J) structure with patterned phases. These may be
commensurate or incommensurate, depending on d. Lattice duality maps between classes of Hamiltonians,
complex and real, with non-Hermitian transfer matrices. The 2d case is clear: we are looking at the universality

class of 2d Z(N) parafermions and the patterned behavior in the chiral model corresponds to states with nonzero
N-ality realized as kinks.




Complex Z(N) models and the real-space renormalization group

Ogilvie, Schindler, Schindler, in preparation



