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Renormalisation group flows

In relativistic QFT we typically think of RG flows as flows in theory
space, with a particularly interesting case that of a CFT in the UV
flowing to a CFT in the IR after a relevant deformation:
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RG flow is described by beta functions. An essential constraint is
unitarity.



Limit cycles
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IR limit cycle

Limit cycles have been suggested as possible endpoints of RG flows
in the early ’70s by Wilson, but they have never been found in
relativistic unitary QFT.

A certain type of limit cycle would arise for unitary theories that are
scale-invariant but not conformal.(Fortin, Grinstein & AS, 2012)



a-theorem

Strongest version: Is there a Riemannian metric GIJ in the space of
couplings such that ∂IA = GIJβJ for some scalar A?

Strong version: Is there a quantity that decreases monotonically in
the flow from the UV to the IR?

Weak version: In the flow between a UV and an IR fixed point, is
there a quantity a such that aUV > aIR?

A monotonically-decreasing quantity was found in d = 2 by
Zamolodchikov in 1986.

At the RG flow endpoints it becomes the central charge of the
corresponding CFT.

The RG flow in d = 2 is gradient in conformal perturbation theory.



a-theorem in d = 4

4d CFT in curved space: Tμ
μ = aE4 + cWμνρσWμνρσ

It was suggested by Cardy in 1988 that the coefficient of the Euler
term in the trace anomaly, called a, may be the quantity that
satisfies a (weak) a-theorem in d = 4.

There have been lots of successful checks of Cardy’s suggestion
over the years.

A nice chain of arguments by Komargodski and Schwimmer proved
the weak version of the a-theorem in 2011.

The relevant quantity is indeed a: aUV > aIR.

In perturbation theory, the strong version of the a-theorem was
established by Jack and Osborn in 1990.

The quantity they considered also becomes a at fixed points.



Multiscalar models

We will be interested in the strongest version of the a-theorem.

We will first consider multiscalar theories in d = 4, defined by

L = 1
2∂μφi∂μφi + 1

2κij φiφj + 1
4! λijkl φiφjφkφl .

The beta function of the quartic coupling in these theories has
been recently computed to six loops.(Bednyakov & Pikelner, 2021; using results of

Kompaniets & Panzer, 2017)

We want to see if

βI = GIJ∂J A , ∂I = ∂
∂λI , I = (ijkl) .

We will also discuss this problem in d = 4 − ε.



The metric

We will demand that the metric GIJ is Riemannian, i.e.
• symmetric, GIJ = GJI, and
• positive-definite, G ≻ 0.

The symmetry property is necessary for one to be able to choose
local coordinates such that, at a point,

GIJ = δIJ ⇒ βI = ∂IA ,
and this implies that the eigenvalues of the matrix

∂IβJ = ∂I∂J A ,
are real at real fixed points and unitarity is maintained.

These eigenvalues determine scaling dimensions of quartic
operators in φ at fixed points.



One loop

β1 ijkl = λijmnλmnkl + permutations =

Obviously

A1 = λijklλklmnλmnij =

G1 ijkl;mnpq = δijkl;mnpq =

The solution is not unique as we can rescale A by any constant and
the metric by the inverse of that constant.



Two loops

β2 = b2 + c2

A2 = a2 1 + a2 2 + a2 3

G2 = g2

Demanding β = G∂A now gives

a2 1 − c2 = 0 ,
a2 2 + 1

4 b1 g2 = 0 ,
2( a2 3) − 3( b2 ) + b1 g2 = 0 .

These can be solved with g2 = 0.



Need for metric at three loops

At three loops it turns out that we need a correction to the metric to
satisfy β = G∂A.(Wallace & Zia, 1974)

Contrast diagrams needed at two vs. three loops:

Diagrams with inequivalent vertices give rise to distinct
contributions to the beta function.

If those beta function contributions have incompatible coefficients,
then only a metric can restore the gradient property.



Four loops and beyond

1-loop 2-loop 3-loop 4-loop 5-loop 6-loop
A 1 3 5 17 42 177
GIJ 1 1 7 18 97 453

Equations 1 3 10 36 164 819

Starting at four loops, it appears that we don’t have enough
freedom to satisfy all equations. At this order naive counting shows
that we do, in fact, as some freedom remains from undetermined
lower order coefficients.

Naive counting fails, however, as some of our degrees of freedom
appear only in specific combinations.

At four loops β = G∂A cannot be satisfied unless the beta function
coefficients satisfy four constraints.(Jack & Poole, 2018)

They do, so the flow is gradient at four loops.



Scheme dependence

Coefficients in the beta function beyond leading order are
scheme-dependent.

When a Feynman diagram has subdivergences, these need to be
subtracted.

Of course one may decide to subtract subdivergences in different
ways, i.e. one may choose to remove finite parts along with the
divergences.

Such choices cannot possibly affect physical quantities or
statements.

In the present context, scheme changes are described by coupling
redefinitions:

λ → λ + r + O(λ3) .

Relations like the ones satisfied by the four-loop beta function
coefficients are scheme-independent.



Results at five loops

At five loops there are 110 beta function terms, 42 bubble diagrams
and 97 contributions to the symmetric metric.

We found 37 contstraints among beta function coefficients that
need to be satisfied for the flow to be gradient.

Some are simple, but most appear rather complicated, e.g.

They are all scheme-independent and satisfied!



A simple constraint at five loops

Consider the primitive diagrams

β5 ⊃ b5 67 + b5 69 .

It turns out that these diagrams both come from

A5 ⊃ a5 42

and there is no other way to generate them in G∂A.
This means that

b5 67 = a5 42 and b5 69 = a5 42 ⇒ b5 67 = b5 69 .
This is satisfied since both coefficients are equal to 36ζ23.



Results at six loops

At six loops there are 571 beta function terms, 177 bubble diagrams
and 453 contributions to the symmetric metric.

We found 234 contstraints among beta function coefficients that
need to be satisfied for the flow to be gradient.

Again, few are simple, and most appear rather complicated.

They are all scheme-independent.

All but 5 are satisfied.

This constitutes a direct proof that the beta function is not a
gradient vector field.

But is the RG flow gradient or not?



Renormalisation subtleties

In dim-reg, beta functions arise from the simple poles of
counterterms introduced via

φB = μ−ε/2Z1/2φR , λB = με(λR + L) .
But there is a subtlety: we never actually compute Z1/2. Rather, we
compute (Z1/2)T Z1/2, e.g. via

p p

But this is ambiguous, because one can introduce an arbitrary
orthogonal matrix between (Z1/2)T and Z1/2. Then,

γ → γ − ω , βI → βI + (ωλ)I ,
with ω in the Lie algebra of the orthogonal group.



RG flow

Usually this subtlety is implicitly resolved by requiring that the
anomalous dimension matrix be symmetric.

Nevertheless, physical statements should not depend on such
choices.

It immediately follows that the beta function is not the vector field
whose gradient properties we should be checking.

What is the correct vector field?

Jack & Osborn gave the answer in 1990.

The problematic equation turns out to be

Tμ
μ = βIOI .



Trace of stress-energy tensor

This is true only for zero-momentum insertions of Tμ
μ. More

generally,
Tμ

μ = βIOI + ∂μJμ.

If we have scalar fields, for example, J μ = Sij φi∂μφj, with Sij
anti-symmetric.

Using the equations of motion we see then that

Tμ
μ = BIOI, BI = βI − (Sλ)I.

S can be computed in perturbation theory, e.g. using dim-reg.

BI is invariant since βI → βI + (ωλ)I and S → S + ω.

The lesson is that the RG flow is governed by the B function, not the
beta function.



How to compute S

This S is perhaps unfamiliar.

It appears due to the need to renormalise correlation functions
involving both Tμ

μ and OI.

The renormalisation of such correlation functions can be
systematised by considering local couplings, λ → λ(x), in addition
to considering the theory in curved space.

New counterterms are then necessary, to cancel new divergences
that arise in this background, e.g.

Lc.t. ⊃ (NI)ij∂μλI φi∂μφj , NI = ∑
n

N(n)
I
εn

.

A careful treatment shows that

Sij = (N(1)
I )ijλI .



How to compute S

Diagrammatically, to determine Nwe have to look for diagrams that
contribute to the anomalous dimension of the field, but we need to
compute them allowing momentum to flow out of the coupling,
e.g.

p

p

p

p

This specific diagram gives contributions to N, but not S. This is
because it is symmetric under exchange of the external legs.

In multiscalar models, the first potential contribution to S is at five
loops. There are four relevant asymmetric diagrams:



From β to B

At five loops we had found 37 constraints among beta function
coefficients that need to be satisfied for the flow to be gradient.

It turns out that the four contributions to S at five-loop order do not
affect these constraint equations.

At six loops there are 19 contributions to S.

We had found that the beta function was not a gradient vector field.

After including the five- and six-loop S, we find that with four
conditions on S the B vector field is indeed gradient:

s5 2 = 259
4608

,
192 s5 3 − 384 s5 4 = 31 − 36ζ3 ,
s5 1 − 12 s5 2 − s5 4 = 12 s6 8 − 6 s6 9 − 6 s6 16 ,

4 s5 1 − 2 s5 3 = −2 s6 3 + s6 6 + 4 s6 10 − 2 s6 15 + s6 17 .



4 − ε dimensions

In d = 4 − ε the beta function has one more term, linear in λ:

βijkl = −ε λijkl + O(λ2) .

This term is easy to accommodate via the bubble .

However, such a contribution to Awill then get multiplied with
terms from the metric and will start appearing all over the place at
higher orders.

These contributions can be absorbed in order-ε terms in A and GIJ.

Both are needed, and then ε2 terms need to cancel. This sets further
constraints among beta function coefficients at five and six loops.

All of them (4 at five and 32 at six loops) are scheme-independent,
independent of the constraints we found in d = 4 and satisfied!



Conclusion

Perturbative computations in a variety of contexts support a
gradient property for the RG flow.

This is often highly non-trivial and follows from relations among
beta function coefficients.

In the highest-loop case, the gradient property of the RG flow rests
on relations among five- and six-loop contributions to S.

It is crucial to identify the correct vector field that describes the RG
flow.

As a future direction we may consider the gradient question in
theories with scalars, fermions and gauge fields in d = 4 and
d = 4 − ε. Some work already exists in the literature.


