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Integrable systems & Field Theories

Quantum Chromodynamics & self-interacting fermions
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Integrable systems & Field Theories

Quantum Chromodynamics & self-interacting fermions
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G.Dunne, G. Basar (2008)  The nonlinear Schrodinger equation
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PT-SYMMETRY

Classical and quantum many particle models
Solitons and non-linear integrable equations

Quantum spin chains

A. Fring, Phil. Trans. R. Soc. A (2012)
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Integrability & non-Hermitian physics

week ending
PRL 100, 030402 (2008) PHYSICAL REVIEW LETTERS 25 JANUARY 008

Optical Solitons in P77 Periodic Potentials

Z. H. Musslimani
Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510, USA

K. G. Makris, R. El-Ganainy, and D. N. Christodoulides

College of Optics & Photonics-CREOL, University of Central Florida, Orlando, Florida 32816, USA
(Received 1 September 2007; revised manuscript received 24 October 2007; published 23 January 2008)

We investigate the effect of nonlinearity on beam dynamics in parity-time (‘7 ) symmetric potentials.
We show that a novel class of one- and two-dimensional nonlinear self-trapped modes can exist in optical
PT synthetic lattices. These solitons are shown to be stable over a wide range of potential parameters.
The transverse power flow within these complex solitons is also examined.
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Integrability & non-Hermitian physics

week ending

PRL 110, 064105 (2013) PHYSICAL REVIEW LETTERS 8 FEBRUARY 2013

Integrable Nonlocal Nonlinear Schrodinger Equation

Mark J. Ablowitz' and Ziad H. Musslimani’

'Department of Applied Mathematics, University of Colorado, Campus Box 526, Boulder, Colorado 80309-0526

2Deparz‘memf of Mathematics, Florida State University, Tallahassee, Florida 32306-4510
(Received 22 August 2012; published 7 February 2013)

A new integrable nonlocal nonlinear Schrodinger equation is introduced. It possesses a Lax pair and an
infinite number of conservation laws and is PT symmetric. The inverse scattering transform and scattering
data with suitable symmetries are discussed. A method to find pure soliton solutions is given. An explicit
breathing one soliton solution is found. Key properties are discussed and contrasted with the classical
nonlinear Schrodinger equation.
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0 Integrability and non-Hermitian physics via a simple
example

e Features of integrable non-Hermitian field theories

o Applications to black hole physics

0 Discussion
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Solitons and integrable equations
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Korteweg-de Vries equation

https:/ /youtu.be / WEbYELtGZwI

Laboratoire Interdisciplinaire CARNOT de Bourgogne, Equipe Solitons,
Laser et Communications optiques



Solitons and integrable equations
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Solitons and integrable equations

U + ouuy + Uppye = 0

\_ J

u(x, 1)

Korteweg-de Vries equation

Three soliton

A

e Different velocities

* Conserved quantities are functions of the velocities

e T o o . . o o2
o;:nal_e g)l'b CIZ?C the sum c}:)f :mfiﬁd%xsollto?[s _wglldjﬁegfftleCénales ug)

e e =o, 2 \ Oz
* There is no a concept of a two-soliton with twice one soliton energy....
Mass Momentum Energy



Solitons and integrable equations
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Korteweg-de Vries equation

KdV equation remains invariant under
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Complex Solitons and integrable equations

(- )

uy + ouu, + Uuppr = 0
> Y WPTx— —2, 6 — —t,0— —1, U — U
Korteweg-de Vries equation

KdV equation remains invariant under

p even function

U =Dp-+1q
q odd function
A. Khare, A. Saxena PLA (2016)

J. Cen, A.Fring, JPhA (2016)

F.C, A. Fring, JHEP (2016)



Complex Solitons and integrable equations
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Re u(x, 1)
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Korteweg-de Vries equation
U =7p —+ 1q
E.C, A. Fring, JHEP (2016)
&\, _
Two degenerate soliton |




Complex Solitons and integrable equations
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Korteweg-de Vries equation

U =p-—+11q
E.C, A. Fring, JHEP (2016)

Three degenerate soliton
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Complex Solitons and integrable equations
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Korteweg-de Vries equation

U =p-—+11q
E.C, A. Fring, JHEP (2016)

Three degenerate soliton

Re u(x, 1)

111111

Rogue wave type




Complex Solitons and integrable equations

(- )

Re u(x, 1)
ur + ouuy + Uppye = 0

\

Korteweg-de Vries equation

u=p-+1q |

F.C, A. Fring, JHEP (2016) A

two degenerate + one soliton




Complex Solitons and integrable equations

(- )

Re u(x, 1)
uy + ouu, + Uuppr = 0 H

\

Korteweg-de Vries equation

u=0p-+1q

E.C, A. Fring, JHEP (2016)
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Two degenerate soliton

e Same velocities

e Real conserved quantities (infinitely many) & @

e Energies could be n times one soliton energy



Complex Solitons and integrable equations

But if the KdV equation is so well known, how could this have gone unnoticed?
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V. Matveev, JMP (1994) Singular solutions with infinite (divergent) energies
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Complex Solitons and integrable equations

But if the KdV equation is so well known, how could this have gone unnoticed?

V. Matveev, JMP (1994) Singular solutions with infinite (divergent) energies

PT-SYMMETRY

Non-physical solitons are regularized: removing singularities and
making charges finite!

An additional symmetry ensures the reality of the integrals of motion

All conserved charges are real, even though solitons are complex

F.C, A. Fring, JHEP (2016) J. Cen, E.C, A. Fring, Annals of Phys. (2017)



Why these solitons are relevant 2??

Solitons + QM



Solitons + QM

M.Kac  “Can one hear the shape of a drum ?”



Solitons + QM

M.Kac  “Can one hear the eigenvalues of a potential ?”



Solitons + QM

M.Kac  “Can one hear the eigenvalues of a potential ?”

V(x) = —
) cosh? x

1 7
bound

Y\
i v

\

Reflectionless potentials for all energies!



Complex Solitons + QM + optics

M.Kac  “Can one hear the eigenvalues of a potential ?”

. ‘1 xxxxxxxxxxxxxxxxxxxxxxxxxxxx —
20 =10 10 20 30

Why these potentials are interesting?



Complex Solitons + QM + optics

The Schrodinger equation
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Complex Solitons + QM + optics

The Schrédinger equation

4 )

. Oy h* 0%y

in— = Y FV(x)y
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Formal coincidence ¢

f aE 1 azE \ ) Paraxial Opftics
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The paraxial equation of diffraction



Complex Solitons + QM + optics

The Schrédinger equation

4 R
. Oy h* 0w
in— = - V(x)y
g ot 2m ox ,
Formal coincidence ¢
4 R
O0E 1 0°E () E
|— = I n(x
oz 2k ox2
_ Y,

The paraxial equation of diffraction

A complex potential

A refractive index with
gain and loss



Complex Solitons + QM + optics

The Schrédinger equation

4 R
. Oy h* 0w
in— = -~ V(x)y
g ot 2m ox )
Formal coincidence ¢
4 ™
O0E 1 0°E k() E
|— = I n(x
oz 2k ox2
_ Y,

The paraxial equation of diffraction

The probability density

The power intensity



Complex Solitons + QM + optics

The path of a beam of light through a material ‘ E(x, Z) ‘2

Complex soliton

E. C., V. Jakubsky, M. Plyushchay, PRA (2015)



Complex Solitons + QM + optics

%

The path of a beam of light through a material ‘ E(x, Z) ‘

Complex soliton a0
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J%OO -50 0 50 100
Reflectionless but detectable, non trivial phase shift

E. C., V. Jakubsky, M. Plyushchay, PRA (2015)



Complex Solitons + QM + optics

The path of a beam of light through a material ‘ E(x, Z) ‘2

Complex soliton Z a0
V(z)
4E 30
2t
N\ [~ N\ [ 20
10 -3 | | 6 10

i

10

0
-100 -50 0 50 100

Invisible potentials in both directions

E. C., V. Jakubsky, M. Plyushchay, PRA (2015)



Complex Solitons + QM + optics

The path of a beam of light through a material ‘ E(x, Z) ‘2

Complex soliton 2
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Invisible optical crystal with a bound state in the continuum (BIC)

E. C., V. Jakubsky, M. Plyushchay, PRA (2015)
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e Features of integrable non-Hermitian field theories



Integrability & non-Hermitian physics

week ending
PRL 100, 030402 (2008) PHYSICAL REVIEW LETTERS 25 JANUARY 008

Optical Solitons in P77 Periodic Potentials

Z. H. Musslimani
Department of Mathematics, Florida State University, Tallahassee, Florida 32306-4510, USA

K. G. Makris, R. El-Ganainy, and D. N. Christodoulides

College of Optics & Photonics-CREOL, University of Central Florida, Orlando, Florida 32816, USA
(Received 1 September 2007; revised manuscript received 24 October 2007; published 23 January 2008)

We investigate the effect of nonlinearity on beam dynamics in parity-time (‘7 ) symmetric potentials.
We show that a novel class of one- and two-dimensional nonlinear self-trapped modes can exist in optical
PT synthetic lattices. These solitons are shown to be stable over a wide range of potential parameters.
The transverse power flow within these complex solitons is also examined.
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The nonlinear Schrodinger equation

iq + o (qm — 2k |q|? q) =0



The nonlinear Schrodinger equation

ige + o (que — 2K |q|°q) =0

Propagation of light in fiber optics

Cambndge Studies in Modem Optics 1 0

Optical Solitons
Theory and

Experiment

J. R TAYLOR
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F. Abdullaev S.Darmanyan
P. Khabibullaev
Optical Solitons

Solitons in
Optical Fiber
Systems

MarioF.S.Ferreira . "";1% % ¢ -
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A.Hasegawa
M. Matsumoto

Optical Solitons
in Fibers

Optical
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From Fibers
to Photonic
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The nonlinear Schrodinger equation

iq + o (qm — 2k |q|? q) =0

and many, many more applications...

* Water waves

e Plasma physics

* Bose-Einstein condensates

* Superconductivity

* Gravity

* (lassical and quantum field theory
* Non-Hermitian physics



The nonlinear Schrodinger equation

iq + o (qm — 2k |q|? q) =0

What is the origin of this equation?

Zero curvature formalism

Lax Pair formalism = Zakharov and Shabat (1972)
U, =VU U, =UT <~ OBl — @ 5] =
\Ijtx T \ijt

Gauge field equations



The nonlinear Schrodinger equation

What is the origin of this equation?

Zero curvature formalism

Lax Pair formalism = Zakharov and Shabat (1972)

U=V U, =UY & [au_av+pv]i=o0

: / \ 2 = ) e i 2
L iqs + agre — 20t = 0, 1000 - ZIaAT
— =g + 20qr° = 0 ;
T R A A TS el T
KC”" ) )) C 10T, + 20T
- d
_( —igm Al
H = <A*(ZC) i >
Finding the objects {/ and V s equivalent to find an integﬁale_ S}@’gﬁm!!




The nonlinear Schrodinger equation

What is the origin of this equation?

Zero curvature formalism

Lax Pair formalism = Zakharov and Shabat (1972)

iq + (qm — 2k |q|? q) =0



The Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy

What is the origin of this equation?

Zero curvature formalism

Lax Pair formalism Sz Zakharov and Shabat (1972)
e Sine-Gordon
—iA q(x,t
e — (T(x’ t) Q(i)\ ) ) » Korteweg de Vries (KdV)

* Non-linear Schrodinger

) Bz, t)
i (C’(m,t) —A(z, 1)

) e mKdV

e Hirota



The nonlinear Schrodinger equation

What is the origin of this equation?

Zero curvature formalism

Lax Pair formalism = Zakharov and Shabat (1972)

iq + (qm — 2k |q|? q) =0



The nonlocal nonlinear Schrodinger equation

week ending

PRL 110, 064105 (2013) PHYSICAL REVIEW LETTERS 8 FEBRUARY 2013

Integrable Nonlocal Nonlinear Schrodinger Equation

Mark J. Ablowitz' and Ziad H. Musslimani’

'Department of Applied Mathematics, University of Colorado, Campus Box 526, Boulder, Colorado 80309-0526

2Deparz‘menl‘ of Mathematics, Florida State University, Tallahassee, Florida 32306-4510
(Received 22 August 2012; published 7 February 2013)

A new integrable nonlocal nonlinear Schrodinger equation is introduced. It possesses a Lax pair and an
infinite number of conservation laws and is PT symmetric. The inverse scattering transform and scattering
data with suitable symmetries are discussed. A method to find pure soliton solutions is given. An explicit
breathing one soliton solution is found. Key properties are discussed and contrasted with the classical
nonlinear Schrodinger equation.
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The nonlocal nonlinear Schrodinger equation

A parity transformed conjugate pair, r(z,t) = kqg*(—z, 1)
A time-reversed pair, r(x,t) = kq*(x, —t)
A real parity transformed conjugate pair, r(z,t) = +q(—=x,1)

A PT-symmetric pair, r(x,t) = +q¢"(—x, —t)




The nonlocal nonlinear Schrodinger equation

A parity transformed conjugate pair, r(z,t) = kqg*(—z, 1)
A time-reversed pair, r(x,t) = kq*(x, —t)
A real parity transformed conjugate pair, r(z,t) = +q(—=x,1)

A PT-symmetric pair, r(x,t) = +q¢"(—x, —t)

The nonlocal Hirota equation J. Cen, E.C, A. Fring, JMP (2019)

gt — 10qQyy + QiO{C]QT + 6 [Qmwx — 66[”]:1:] = 0,

New classes of integrable systems & solitons solutions



The nonlocal nonlinear Schrodinger equation

A parity transformed conjugate pair, r(z,t) = kqg*(—z, 1)
A time-reversed pair, r(x,t) = kq*(x, —t)
A real parity transformed conjugate pair, r(z,t) = +q(—=x,1)

A PT-symmetric pair, r(x,t) = +q¢"(—x, —t)

The nonlocal Hirota equation J. Cen, E.C, A. Fring, JMP (2019)

gt — 10qQyy + QiO{C]QT + 5 [Qmwaz — 6@”]:1:] = 0,

New classes of integrable systems & solitons solutions

3
St = —(S X Spp — 55 (S - Sz) Sz + BSX (S X Spux)

k;/ Gauge transformations Extended Landau-Lifschitz equation

J. Cen, F.C, A. Fring, JPhA (2020)



New solutions and models....

....but something else ???



The Bullough-Dodd model (Tzitzéica
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The Bullough-Dodd model (Tzitzéica
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The Bullough-Dodd model (Tzitzéica

1 1 3
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The Bullough-Dodd model (Tzitzéica
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The Bullough-Dodd model (Tzitzéica

1 1 _ 3 .. _
) = 1 o (5 BV kx) = When (3 is imaginary the
o7 (Z,t) =1In i ( ST oms kx) 1 solutions become regular.....
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The Bullough-Dodd model (Tzitzéica

1 1 . 3
ﬁBD=§ u903“90—6¢—§€ ¢+§

" cosh (5 e g kx) AL
o In

 cosh (6+ Vk? — 3t+kaz) =1

PT :x — —x, t— —t,

p—¢" +ef —e ¥ =0

When (3 is imaginary the
solutions become regular.....

1= =1, ©— Q.

= e
P ie = o

the energies are real E[gpli] = —6|k|



PT-SYMMETRY regularizes solitons and

explains the reality of conserved charges...

...... something else 17?



Field theories and linear stability

1 oV
L =50up0"¢ = V(p). P — " - 8(90)
90

Lagrangian density in 1+1 D Euler-Lagrange equations

= (



Field theories and linear stability
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Field theories and linear stability

1 oV
[ =— MéﬁﬁuSﬁ _ V(Sp% 90 - (70// | (‘70) — 0
2 O
Lagrangian density in 1+1 D Euler-Lagrange equations

Sialperturbation @ — Q. - €X ek 1

. 0°V
953 — Ps T telX— X” T X (290)
dp |, %,

) +0(E*) =0

Ps

X(z,t) = ei)\tq)(x)

Ansatz



Field theories and linear stability

1 oV
L 25(9#@8“@ — V(p), p— " &(f) = (
Lagrangian density in 1+1 D Euler-Lagrange equations
Sialperturbation @ — Q. - €X ek 1
)% 0°V
953 . 80;/ | (90) 4 e X . X// + x (290) + 0(82) — 0
890 Ps agp Ps

— P + VIO = NP

_ 0PV (p)
0p?

x(z,t) = eMo(x)
Ansatz Vi(x) :

Ps

Sturm-Liouville eigenvalue problem/ Schrédinger equation with potential



Field theories and linear stability

Let's see some very well-known examples

P, + ViD= NP

_ PV (y)

Vl (ZE) . 8902

Ps



Field theories and linear stability

P, + ViD= NP

_ PV (y)
0p?

Let's see some very well-known examples

Vl (.CE) .

Ps

Quantum meaning of classical field theory*
R. Jackiw

Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

Recent researches have shown that it is possible to obtain information about the physical content of
nontrivial quantum field theories by semiclassical methods. This article reviews some of these
investigations. We discuss how solutions to field equations, treated as classical, ¢-number nonlinear
differential equations, expose unexpected states in the quantal Hilbert space with novel quantum numbers
which arise from topological properties of the classical field configuration or from the mixing of internal
and space-time symmetries. Also imaginary-time, c-number solutions are reviewed. It is shown that they
provide nonperturbative information about the vacuum sector of the quantum theory.

Rev. Mod. Phys. 49, 681 (1977)



Field theories and linear stability

P, + ViD= NP

_ PV (y)
0p?

Let's see some very well-known examples

Vl (ZE) .

Ps

Sine-Gordon V() = —cos

statickink (¢, = 4arctane”



Field theories and linear stability

P, + ViD= NP

Let's see some very well-known examples

0%V
Vl (ZE) pp— (;0)
89@ Ps
Sine-Gordon V() = —cos 9
V1 (:1:) == — 5 = i
cosh” x

statickink (¢, = 4arctane”
one-soliton reflectionless potential



Field theories and linear stability

—Pyp + V1P = XD

Let's see some very well-known examples

0°V ()
V1 (lE) p—
Oy s
2
ViR _coshza’; i

one-soliton reflectionless potential




Field theories and linear stability

Let's see some very well-known examples

P, + ViD= NP

0°V ()
V1 (lE) p—
Oy s
2
ViR _coshza’; i

one-soliton reflectionless potential

two-soliton reflectionless potential

Vi) = -5

cosh? z




Field theories and linear stability

Let's see some very well-known examples

P, + ViD= NP

0°V ()
V1 (lE) p—
Oy s
2
ViR _coshza’; i

one-soliton reflectionless potential

two-soliton reflectionless potential

Vi) = -5

cosh? z




The Bullough-Dodd solutions and linear stability

—O.,.. + VP = AP Bullough-Dodd static solutions
5 . i
Vi(z) m 0 V(zga) T cosh (ﬁ + \/§:C) =)
8(70 I Qf) —=lip
04 _Cosh (6 -+ \/§x) = e ]|
Vi (@) = 1 ° y Sstnl’ [5 (5 V8z)

1l — ol (ﬁ—|—\/§a:) [Q—I—cosh (5"‘\/&’3)}27



The Bullough-Dodd solutions and linear stability

two-soliton reflectionless potential

) 3 . 8 sinh? [% (5 T \/537)]
1 — cosh (5 T \/§$) [2 + cosh (5 - \/gx)fj

V1+(x) = 1

singularity g = —5\/§ when 8 € R

no singularities PI-SYMMETRY 5 < iR

There exist linear stable perturbations !

We found new complex solitons with broken PT which are unstable!

E.C, A. Fring, T. Taira, NPB (2022)



PT-SYMMETRY

It is not a mere artifact which measure reality
energy conditions but also the physical sense of
theories...



Non-Hermitian field integrable field theories

New classes of integrable systems & solitons solutions

Non-physical solitons are regularized (removing singularities!)
All conserved charges are real, even though solitons are complex

An additional symmetry ensures the reality of the integrals of motion
The linear stable pertubations display also PT-symmeftry

Are these features available only in this kind of integrable theories?

No, they can be applied everywhere.....

J. Cen, E.C, A. Fring, T. Taira, PLA(2022) E.C, A. Fring, T. Taira, NPB (2021)

E.C, A. Fring, T. Taira, JHEP (2022) E.C, A. Fring, T. Taira, NPB (2022)



Applications of Field Theory to Hermitian and
Non-Hermitian Systems

Tt

Take-home

T =

1

message

Non-Hermitian ideas provide new phenomena in (integrable) field theories



Outline

e Applications to black hole physics



The Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy

Zero curvature formalism

Lax Pair formalism 7 Zakharov and Shabat (1972)
U=V, U, =U &  QU_0,V+[UV]=0
(.1 e Sine-Gordon

—iA qlx,t

U = (T £ )  Korteweg de Vries (KdV)

e mKdV
v Al(as )l Bl )
T Ot — Al * Non-linear Schrodinger

e Hirota



Integrable systems and gravity

Zero curvature formalism L2 —1A Q(:‘C’ t)

Zakharov and Shabat (1972) r(@, b))k
v — A(z,t) B(z,t)

oU —0,V+|UV|=0 e Cz,t) — A

29 This structure is intimately related with AdS; gravity

M. Cérdenas, F. C. K. Lara, M. Pino, PRL (2021)
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Integrable systems and gravity

1 1
Ry — §R9W = Z_lew =0

BTZ black hole
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Black Hole in Three-Dimensional Spacetime

(1),(2),(a) (1),(a)
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e Laboratory to understand the main features of black holes
e One of the best evidences for the AdS/CFT correspondence

e Very useful in several contexts beyond holography: string theory, QFT, .....



Integrable systems and gravity

1 1
Ry — §R9W = g_zgw =0

Can be formulated as two independent Chern-Simons copies

Gauge connections
spin connection & dreibein

SL(2,R)

A. Achucarro and P. K. Townsend, PLB (1986) E. Witten, NPB (1988)



Integrable systems and gravitation

1 1
Ry — §R9W = g_zgw =0

Can be formulated as two independent Chern-Simons copies

Gauge connections

spin connection & dreibein

Zero curvature condition

This is done choosing specific boundary conditions for the gravitational field.

A. Achucarro and P. K. Townsend, PLB (1986) E. Witten, NPB (1988)



Integrable systems and gravity

AT = Wt e/l mmmmpp T — gAt 4 AT A AT =0

Zero curvature condition

Coussaert, Henneaux, P. van Driel (1995)

Boundary conditions A4 = b1 (d+ a)b b(p) = exp [log (%) LO}

a = a,dp + adt

[Ln, Lm] = (7’L s m) Ln—l—m SL(2,R) Generators



Integrable systems and gravity

a = a,dy + a;dl

: —IA t

CLgo ~ 2@>\L0 ot Q(QO, t)Ll -+ fl“(gp7 t)L—l — i T(SOZ t) Q(Zp)i )>
Alp,t) Blp,t

B (0, 1)Ly — Blo, )L, + Clo, )L = V = (CEZJ% L f&;’z)

M. Cérdenas, F. C. K. Lara, M. Pino, PRL (2021)



Integrable systems and gravity

a = a,dy + a;dl

Ay ~ 2t A\ Lo — Q(Spv t)Ll als T(SO’ t)L_l e (T(_S;);) Q(Zp)it)>
ar ~ —2A(p,t)Lo — B(p,t)L1 + C(p,t)L_1 = V = @Eig —ﬁ@%)

Fr = dAT + AT A AL G 9,U — 0,V +[U,V] =0

General Relativity AKNS hierarchy

M. Cérdenas, F. C. K. Lara, M. Pino, PRL (2021)



Integrable systems and gravity

We have developed a dictionary

zero curvature formulation

P T

Integrable systems AdS, gravity

\/

conserved quantities

M. Cérdenas, F. C. K. Lara, M. Pino, PRL (2021)



Integrable systems and gravity

M. Cérdenas, F. C., M. Pino, work in progress  Soliton solutions in gravity

2
ds? = (4@ — (AT )do + (A-Aﬂdt) +
0

[%(pngb — B*dt) + %(rédgb + Cdt)] lﬁ(pzdgb + B~dt) + g(WLEdgb — C*dt)

S EEEEREREEEE—SE—S—E—CEm—————————GC——————

Black hole horizon: Black flowers




Integrable systems and gravity

M. Cérdenas, F. C., M. Pino, work in progress  Soliton solutions in gravity

2
ds? = (z@ — (AT )do + (A-Aﬂdt) +
0

[%(f&@ — Btdt) + %(r@dgb + Cdt)] [B(p&kb + Bdt) + g(r+€dq§ — Ctdt)

—

N



Integrable systems and gravity

Non-local PT - inspired solutions

Flat-limit of the AKNS boundary conditions

Conformal symmetry AdS/CFT

Interpretation of the quantum linear problem and black hole entropy
Gravity analogue for integrable systems related by gauge transformations
Higher dimensions and further hierarchies

Different generating solution schemes

How are these results connected with self-dual Yang-Mills description of

integrable systems & Ward conjecture?



Outline

e Many open problems and new physics in solitons theory

* Meaning of complex and non-local solitons

* New ways to investigate gravity and more to be explored

e Electromagnetic solutions, self dual Yang-Mills and beyond

e Applications for AdS/CFT integrability?

G Discussion
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