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Overview

Talk based on: 1) Chern-Simons Gravity and PT Symmetry with N E Mavromatos, Phys.
Rev. D 110 045 2) Phases of scalar fields and PT symmetry with L. Chen, arXiv 2409.05439
[quant-ph]

1. Heuristics of PT symmetry

2. Emergent PT symmetry

3. String inspired gravity and PT symmetry

4. Consequences of nonperturbative renormalisation

5. Chern-Simons Gravity
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Simple models with PT symmetry: global to local QFTs [1, 2]

• ϕ pseudo-scalar (iϕ)δ ϕ2, δ a real parameter, δ → 2 upside down potential

• ieψγµψAµ, Aµ is an axial vector, e gauge charge

• Above changes sign of electric force: PT QED

• Axion electrodynamics: ig α
4πfa

a (x)Fαβ (x) F̃
αβ (x); a (x) is a pseudoscalar, coupling g

real; F̃αβ (x) = 1
2ϵ

αβγδFγδ (x) [3]

• Axion term is PT symmetric since F F̃ and ia are both PT symmetric
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Renormalisation and PT symmetry

Lee model [4, 5] : PT appears from nowhere

Toy model “fermionic” particles N and V , and bosonic particle θ; renormalisation exact
The interactions with coupling g in the model allow

V → N + θ (1)

and so g0ψ
†
VψNa and also the reverse process

N + θ → V . (2)

No crossing symmetry:
N → V + θ̄ is not allowed

Coupling constant renormalisation: g 2 > M2, then the bare coupling can become
imaginary: Hamiltonian is PT -symmetric

g2
0 = g2/

(
1− g2

M2

)
(3)
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Renormalisation group flows

A non-toy relative of the Lee model:

Chiral Yukawa model [6, 7]

L =
1

2
∂µϕ∂

µϕ− 1

2
M2ϕ2 + ψ

(
i /∂ −m

)
ψ − igψγ5ψϕ− u

4!
ϕ4 (4)

u > 0 Hermitian; u < 0 has a PT phase (conventionally unbounded); g , ig
Spacetime dimension D = 4− ϵ, ϵ > 0

Unitarity in PT
1. u < 0 is limδ→2 |u| (iϕ)δ ϕ2 so not

self-adjoint with DIrac inner product
(i.p.); real eigenvalues

2. PT Hamiltonian H self-adjoint
w.r.t. different i.p.; real eigenvalues

3. Formally Hilbert space has a new
inner product η (hard to find)

Schwinger construction [9, 10]
Z1 [j ] =

∫
Dϕ exp (iS [ϕ]− j (x)ϕ (x))

Z2 [j ] =
〈
0|ηT

(
exp

[
−
∫
dxj (x)ϕ (x)

])
|0
〉

Z [j ] = Z1 [j ] = Z2 [j ]
Schwinger-Dyson equations are the same using
either Zi

Z1 [j ] → Γ[ϕ] the effective action of Wetterich
[11] and the functional RG
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Renormalisation group [6, 8] I

Using a general purpose Mathematica program RGBeta [8] , in terms of t = logµ and h = g2

the renormalisation group beta functions are

dh

dt
= βh (h, u) and

du

dt
= βu (h, u) (5)

where

βh (h, u) =− ϵh +
1

(4π)2
10h2 +

1

(4π)4

(
−57

2
h3 − 4h2u +

1

6
hu2

)
+

1

(4π)6

([
−339

8
+ 222 ζ(3)

]
h4 + 72h3u +

61

24
h2u2 − 1

8
hu3

) (6)

and

βu (h, u) = −ϵu +
1

(4π)2

(
−48h2 + 8hu + 3u2

)
+

1

(4π)4

(
384h3 + 28h2u − 12hu2 − 17

3
u3

)
. (7)
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Renormalisation group [6, 8] II
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Figure: Global flow for ϵ = 0.01. There are a group of four fixed points that are close to the origin, and one
high-u fixed point that we ignore from concerns over its validity in perturbation theory. 4 nontrivial fixed points,
1 trivial fixed point. Flow from infrared Hermitian fixed point to nonHermitian UV fixed point
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Renormalisation group [6, 8] III

Finite RG flows
1)No flows from positive to negative h and vice versa
2) Flows from positive u to negative u, i.e. Hermitian to PT -symmetric .

Fixed points are O(ϵ) Flows where pertubation theory valid.
One-loop β function of g as ϵ→ 0+

d

dt
(g 2) =

5

8π2
(g 2)2 − ϵg 2, (8)

where d/dt ≡ µ d/dµ, and µ is a transmutation mass scale. The solution with ϵt ≪ 0 is

g 2 ≈ − 1

C + 5
8π2 t

, (9)

where C is an integration constant.
Hermitian couplings, C < 0, g 2 increases, g 2 pole at finite t = tp = 8π2|C |/5 [13]

t > tp g 2 < 0

PT symmetric, asymptotically free
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Renormalisation group [6, 8] IV

Conjecture to avoid pole [14, 15, 16]

Conjecture in higher D
lnZPT (g) = Re

[
lnZ

(
λ = −g + i0+

)]
based on weak coupling, zero temperature, quartic scalar interactions.

In other situations, the conjecture, as expressed in the above form, will not be expected to hold [17].

Something similar may be valid though.
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Gravitational multiplet in string theory I

Compactification to 4 space-time dimensions:
the bosonic ground state closed-string sector [18]
consists of massless fields in the so-called gravitational multiplet, which contains

• spin-0 (scalar) dilaton Φ(x)

• gµν(x), (3+1)-dimensional graviton

• spin-1 antisymmetric tensor gauge Kalb-Ramond field Bµν(x) = −Bνµ(x)

• field strength Hµνρ(x) = ∂[µBνρ](x) + ∆µνρ from Green-Schwarz mechanism (cancels gauge and gravity
anomalies)

• ∆µνρ leads to Chern-Simons gravity [19], since Bianchi identity

εµνρσ H[νρσ ;µ] = ε µ
abc Habc

;µ =
α′

32κ

√
−g

(
Rµνρσ R̃µνρσ − Fµν F̃

µν
)
, (10)
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Gravitational multiplet in string theory II

• In 3 + 1 dimensions KR axion field b is the dual of the KR field strength Hµνρ:

∂σb ∝ εσµνρHµνρ . (11)

• Euclidean effective string action:

S
eff(I)
B = −

∫
d4x

√
−g

[ 1

2κ2
R +

1

6
Hλµν Hλµν −

√
2

3

α′

96κ
b(x)

(
Rµνρσ R̃µνρσ − Fµν F̃

µν
)

+ . . .
]
,

(12)
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Gravitational multiplet in string theory III

Ambiguity: emergence of PT symmetry [20]

From (11) we need to evaluate εµνρλ ε
µνρσ which can be done

before or after continuing to Minkowski space from Euclidean space:

ε
(E)
µνρλ ε

µνρσ (E) = +6 δ σ
λ , (13)

and
εµνρλ ε

µνρσ = −6δσλ , (14)

So 1
6
Hλµν Hλµν = ± 1

2
∂µb∂

µ

b
Minus choice leads to ghost b field: b (x) → ib (x) canonical kinetic term

BUT

i

√
2

3

α′

96κ
b(x)

(
Rµνρσ R̃µνρσ − Fµν F̃

µν
)

which is PT symmetric.

Simplification:
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Gravitational multiplet in string theory IV

• Reduce gauge sector to U(1) in flat space

• Yang-Mills contribution topological and so not depenendet on metric

• leads to Hermitian or PT symmetric axion electrodynamics

• axion gravitodynamics part ignored: comes from anomaly cancellation (which arises through a one loop
calculation); maybe not affected by renormalisation

Above needs further justification: gravitons could affect axion self energy
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Axion electrodynamics [3]

RG flows axion electrodynamics

Euclidean Lagrangian LE

LE =
1

4
FµνFµν +

1

2
∂µb∂µb +

1

2
m2

Rb
2 +

1

4
igR b Fµν F̃µν , (15)

[gR ] = −1 is −1

Theory is not perturbatively renormalisable.
Functional RG −→ ∂tg

2 = (2 + 2γF + γa) g
2, ∂tm

2 = (γa − 2)m2

where (scheme dependent,g ,m dimensionless,m2 ≡ m2
R

k2 , g
2
Rk

2)

γa =
g2

6 (4π)2

(
2− γF

4

)
, (16)

γF =
g2

6(4π)2

(
(2− γa

4 )

(1 +m2)2
+

(2− γF
4 )

1 +m2

)
(17)
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Wetterich equation [11]

Derived from Wetterich equation (which can treat nonrenormalisable theories)
Effective action functional Γk with smoothly suppressed infrared modes

∂tΓk [ϕ] =
1

2
Tr

[
1

Γ
(2)
k + Rk

∂tRk

]
(18)

where Γ
(2)
k is a second functional derivative and Rk is a smoothing function.

Ansatz for Γk :

Γk =

∫
d4x

ZF

4
(Fµν (x))

2 +
Za

2
(∂µb (x))

2 +
m̄2

k

2
b (x)2

+i
ḡk
4
b (x)Fµν (x) F̃µν (x)

+ ZF

∫
d4x LGaugeFix
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Fixed points and singularities

Massless case (relevant for Kalb-Ramond axion and Chern-Simons gravity):

∂tg
2 = 2g2 13g

4 − 8064 π2g2 − 147456π4

g4 − 384π2g2 − 147456π4
(19)

Singularity of βg occurs for gsing : (± 48.3728i , ±78.2689) . (20)

PT symmetric singularity, Hermitian singularity g2
sing = (−2339.93, 6126.02)

Nontrivial fixed points denoted by g⋆ are:

g⋆ = (±13.2389 i , ±79.3174) ⇒ g2
∗ = (−175.268, 6291.25) . (21)

PT symmetric fixed point, Hermitian fixed point
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Beta function 1a

0
0

βg

g2

Figure: The beta function βg ≡ ∂tg
2 of the Hermitian theory

Exhibits the proximity of a singular behavior at a finite running coupling
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Beta function 1b
Fixed point behavior (βg (g)

∣∣
g=g⋆

= 0), characterised by the existence of a trivial infra-red fixed point at zero

coupling, and a non-trivial infra-red fixed point at strong coupling, g 2
⋆ ≫ 1.

0
0

βg

g2

~

~

Figure: Nonperturbative RG beta function for non-Hermitian case as a function of g̃2, is qualitatively different from the
Hermitian beta function. Non-pole singular behaviour at finite coupling.

Scale k = ksing corresponding to singularity by solving RG equation. g(k) has infinte sheeted Riemann sheet
structure near singularity (not a pole)
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Beta function 1c
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Figure: Zoomed-in Nonperturbative RG beta function for non-Hermitian case
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Connection to running gravity

Axion coupling and Newton’s constant

g2 ≡ (gR(k)k)
2 =

1

864

M2
Pl,R(k)

M4
s

k2 =
1

864

1

G̃N

k2

M2
s

. (22)

Ms : UV cutoff in the effective low-energy theory, t ≡ log
(

k
Ms

)
GN is (3+1)-dimensional gravitational (Newton’s) coupling,

G̃N ≡ GNM2
s its dimensionless counterpart.

d

dt
log

(
g2 G̃N

)
= 2 ⇒ g2 G̃N = D exp

(
2t
)
, (23)

where D is a positive integration constant to be fixed by the boundary conditions

UV regime, t → 0 20 / 26



Connection to running gravity 2

Infrared (IR) region corresponds to k → 0, or, some times, for practical purposes
k → k0 = mIR ≪ Ms , with mIR an infrared mass cutoff.

G̃N(t → −∞) = lim
t→−∞

g2(t = 0)

g⋆ 2
G̃N(t = 0) e2t = 0 , (24)

indicating that the gravitational constant at the singularity goes to zero (using PT axion
electrodynamics with g⋆ 2 the non-trivial UV fixed point).

The finite value G̃N(t = 0) can be identified with the Newton’s constant in the UV regime
(short distances)
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Conclusions

The inclusion of axion graviton interactions
is one next step to see the robustness of the
findings, but PT and axion physics is an
interesting area in terms of repulsive gravity.
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