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m Functional quantization and 6

m Canonical quantization and 8






CP violation in the strong interactions?

No empirical evidence—neutron electric dipole moment (EDM) strongly constrained:
dp, = (0.0 & L.1gtar £ 0.25y5) X 1072 cm 2020 @ sy

QCD with massive quarks
Ny
1
LD strFu, FH + 3 4 (i — me™? ) gy + 9trFWF“
292
7=1

Believed to cause a neutron electric dipole moment (EDM) d,, ~ 107 1%e cm (9 +2; aj)

[Baluni (1979); Crewther, Di Vecchia, Veneziano, Witten (1979)]

But does 1t?
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Effective interactions with 6

SU(N¢)r, x SU(N¢)r global symmetry in the limit of massless quarks

Chiral U(1) 4 symmetry of the quarks is anomalous however
—— L Invariant under (rujikawa (1979,80)]

chiral trafo “spurion” trafo
P — eiﬁ75¢ plus mjeio‘J’YS — mjei(aJ_ZNf.B)’YS
P — PPy 8 — 6+2N;8

In fact, the “spurions” are those who break the symmetry explicitly.
This pattern should be replicated by any effective theory.

Rephasing invariant: § = 6 4 &, where & = Z;\Zl aj, — B is an angle



Integrating out gauge fields: Effective 't Hooft vertex

Tpological effects described by effective 't Hooft vertex (I'y, some coefficient): ¢ roor: (1976 56))

Nf Nf
1 " : . B _
Lt 1o 50trFu P — L—Twe [T(%; Puyy) — Tape ™ [](9; Pryy)
Jj=1 =1

m Effective interaction breaks U(1)4 explicitly — 7'-mass
m ¢ should be expressed in terms of parameters of the fundamental theory

m As a spurion, { — £ + 2N¢f

¢ = 0 (in general misaligned with masses) — CP violation

Two options:
P ¢ = —a (present claim, aligned with mass terms) — no CP violation

So which one 1s 1t?

In principle, we could have £ = co& + c90 for integer ca,o (o, 8 are angular variables) with co + co = 1. We

shall see that this general case is not realized in the explicit calculation.



Effective chiral Lagrangian (xPT)

U= erﬁé Uy: chiral condensate
w°+ﬁn+\/§n’ vert V2 KT
d = \/§7T_ 94 %T] + %7]/ \/§KO
VaK- V2 Ko ~ 2t/

Chiral Lagrangian (lowest order terms) inherits “spurious” symmetries:

2 2
B . .
L :%Tw# Ut Ut + f’f7° Te(MU + UT M) 4 [Ae £ det U + | M| £2 det UT

~

+iNGN — (mNN UPLN +icNUT@PLUN + dNM'PLN + eNUMUPLN +h.c. )

M = diag{m,e'“*, mqe'“?, mge'

. } nucleon doublet N =
M, U reduced to subspace (u, d)

Effective interaction o< det U cannot be quantitatively reliably handled in xPT but yet represents pattern of
broken axial symmetry.



CP-odd neutron interactions e.. srednicki QFT (2007)]

m Write Uy = (U) = diag(e'?, e'¥4, el¥s)
® Minimize V({U)) — m;(p; + a;) = m(my, mqg, ms)(& + oy + g + )
(for small angles)

= Substitute ¢; back into £ & suitably redefine N — N (N, U)

2c+1

Lreutron O — auﬂa./\TTa')’M’)’E,N CP even

2Ad+ ) _
+(}_e)m(g Yo+ ou+ o )NTETIN  CP odd



Neutron electric dipole moment

; Ve
: : = i : "
M= — 21D(q2)EZ(Q)usf(p’)Z[7",7”] 15 us(P) é .
n- ~
—Leg =D(0)7 Fyui[v”,'y”]ivs n AN
| — 4/ 4 &;;
CSE
m xPT value: d, = 3.2 x 10 15(¢ + a)ecm

Experimental bound: |d,| < 1.8 x 10 2°ecm (90% c.1.) msou/esi (2020))

m Calculations e.g. of neutron EDM implicitly assume £ = 8

[e.g. Baluni (1979); Crewther, Di Vecchia, Veneziano, Witten (1979)]
m However £ = —& also perfectly valid by arguments used to this end
m Another signature—weaker bounds: ' — w7



Topology in four-dimensional spacetime—winding number An

U= (="t iagr  —br +1ibr
T\ br+ib agr — ia

)ESU( ) for a2 + af + b3 + bf =1

= Homotopy: SU(3) D SU(2) & S® — m3(SU(2)) = m3(S3) = Z

Theta-term/topological term is a total divergence: gauge
gauge 1 . 1 1 1 dependent
invariant ZtrF,u.l/Fyu =0.K, { A 0uAp + §AyAaAﬁ]

Kl—" = E#ya‘ﬁtr 5

L - %

Topological quantization for pure gauge A, — —é(aﬂ U)U ! at o0 = 53

1 - 1
An = 1672 /d4 Tl Fry = ) SN/l Haar measure for pure gauge

o el K. = $e,:otr[(U18, U)(U '8 U)(U '8, U))]
<y Clenee)
E.g. take boundary of Q = R* as a sphere §3: fw = -Sphace

Spate.
Or Q= T*(lattice), 2= S*(Euclidean dS): An € Z based on slightly more involved argument



Topology—instantons

ml#mnﬂm Space
Does An # 0 imply nontrivial physical field
configurations?

.. u o, Ty
Yes, cf. anti-instanton: A% = _TUZ P, y
z? 4 p sz

(extended solution to Fuclidean EOMs)

[Belavin, Polyakov, Schwarz, Tyupkin (1975)] ﬁ

Surface term decays as 1/|z|3 — surface integral
does not need to vanish

J wsld dw’-f

Theta term contributes to the action though being a total derivative



Topology on spatial hypersurfaces—point compactification, large gauge transformations

Consider temporal gauge A° = 0 (in view of canonical quantization)

Chern-Simons functional:

|
WIA] = . 251];9/ d3z tr

AaAk AAAk}z/d%Ko

Define Ay = UAU ' +iU VU (residual gauge freedom in temporal gauge)

Assume A =iU VU (i.e. pure gauge) on 8V @ (Hiree ]
With extra constraint U(Z) — const. on 8V (periodic on T3) ‘1"'"- 2 t(r"g ,','.Z
— Point compactification , homotopy V = $3 (V = T3) o lo’a;dp?

U™): Yarge” (n # 0) gauge transformation on spacelike (7 = const.) hypersurface V ~ §°
(V ~ T?) changing the Chern—Simons number by n = W|[A ;] — W[A] € Z units



Topology on spatial hypersurfaces—point compactification, large gauge transformations

Consider temporal gauge A° = 0 (in view of canonical quantization

. Equivalence classes of U(™ (not connected with 1 for
Chern—Simong . ; ,
n # 0) only exist when we require these added constraints

on A(Z) (beyond A%(Z) = 0) z K,
Cannot impose these unless properly taken account in

Define Ay = canonical formalism

Unlike An, the equivalence classes are a result of a gauge

choice. oy
With extra constraint U(z) — const. on 0V (periodic on =iy Spherc
& s ) zconest,

— Point compactification , homotopy V = $3 (V = T3) on Bowudlory

Assume A =1

U(™): Yarge” (n # 0) gauge transformation on spacelike (7 = const.) hypersurface V ~ §°
(V ~ T?) changing the Chern-Simons number by n = W[A ;] — W|[A] € Z units






Why T' — oo
(Implying Q© = VT — oo as opposed to a finite spacetime volume)

To evaluate amplitudes at finite 7', project path integral on the state in terms of a wave
function(al) ¥[¢(Z)] = (¢(Z)|¥) (more on this later):

(¥, 612t = [ DeDOLY Y1) Do g1, )
|¢:,¢) field eigenstates, not energy eigenstates Z((Z,;;*z((g))

Problem: Neither know ¥[¢(Z)] nor kernels of Schrodinger equation
Way out: Euclidean path integral/project on ground state

o HT o iHT(1—ic)

lim ——— or lim —————
Tooo e EoT TS 00 e—1B0 T(1-ie) Ey: ground state energy

H: Hamiltonian

— Obtain vacuum correlations without bothering about ¥[¢(Z)]



Boundary configurations & topological quantization

The parameter 6 can be viewed as an angular variable
(forced by the anomalous chiral current). —

Requires An € 7 (“topological quantization”) — exp(iS)|s = exp(iS)|o+on

Readily built into the path integral for VT' — oo without constraining boundary
conditions by hand:

(Relatively) nonvanishing contributions in infinite spacetime only from classical local
minima of the Euclidean action & fluctuations about these—these configurations must go
to pure gauges at oo

There is no such restriction/principle to fized physical bes. for finite VT.

Indeed, for pure gauge configurations at co — An € Z (as discussed above)

Consequence: An € 7Z requires T'— oo first —in the path integral, take T' — o0, then sum
over all topological sectors An weighted exp(iAné)



More technically: Integration contour from Lefschetz thimbles

Parametrization of the path integral through steepest descent contours about classical
saddle points — Contour integration on Lefschetz thimbles

09(ziw) _ 3Suld(wiw)] _ _OReSelg(ziw)] _ ,  , OlmSslg(eiw)] _

ou  ¢(z;u) du du
Each thimble emerges from a

SA
J—”—L critical point and corresponds to
one An €7
,,,j—/ /_L f-/ \_,F\ Keeping VT finite while summing

\_/ : over different An does not
Jf correspond to a nonsingular
- 7+ Ai deformation of the contour
Integration contour sweeps o
& p Z = lim lim D¢ e~ 5El¢]

over full thimbles first: N—oo \ e~ VT—00 ap



Soisité =—aqoré =07

The effective vertex generates the following correlation functions at tree level:

H"/Jj Zj 'lpj 1nst—< 1£H.PL +€£HPR]> a:l,...,:cl',...)

1=1
Goal: Compute correlation function and compare with EFT answer above to fix ¢

Cf. leading contribution to two-point function
(:(z)¥;(2")) =1Soinst 45(z, ')

. d4 . , S
iS0iat (0, ') =(~70, + imee 127") [ Egrintee 08

(2m)* p2 —m?2 +ie

So ¢ = 0/¢ = —a implies CP-violation/no CP-violation

Only one explicit calculation based on dilute instanton gas (DIGA) finding £ = 6

['t Hooft (1986)]



Fermion correlations

m Obtain correlation functions from Green’s functions in fixed background of instantons
and anti-instantons
m Interfere all instanton configurations
m First, within one topological sector
m Then over the different sectors

DIGA to dermine CP phase of 't Hooft

vertex—not quantitatively accurate for
actual QCD

Green’s function in n-instanton, 7-anti-instanton background (DIGA)

>

Pov(z — 20,5 (2 —20,7) . an Por(z —20,)Pip(z' —0,)

3 Y ~ g /
1Sn,ﬁ(:c, T ) ~ 1SO1nst($; z )+ me—ic meia

v=1

<1
Il
i

"JJOL,RZ ‘t Hooft zero modes

Comments:
m For small masses, zero modes dominate close to the cores of instantons, far away from
instantons the solution goes to the zero-instanton configuration [piaxonov, Petrov (1986))
m Alignment of phase o between Lagrangian mass and instanton-induced ySB — No
indication of CP violation here
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. s B d4p : 1 1
1Soinst (2, 2') = (—=7#8y + ime ™7 )/ e e
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Interferences within the topological sectors

Within a topological sector, interfere/sum/integrate over
m all instanton/anti-instanton numbers n + 7 with An = n — 7 fixed
m locations of all instantons/anti-instantons

® remaining collective coordinates

— Dilute instanton gas approximation (skip technicalities)

Can also obtain coincident fermion correlations using the index theorem and anomalous
current only



Correlation function for fixed An

W an =) i [Ae ) (S Put 2 PR) (VI 4 iSoima(e,2') (VD)7

x (1K)ﬁ+n(— 1)n+ﬁeiAn(cx+9)

= [(ei‘ﬂrAnJrl (2ik VT) Py, + 6 ®Ian_1(2i VT) Pr) * h(z,2) + Ian(2ik VT)iSomst (2, z')]
m x (—1)Angiln(ato)
Instantons per spacetime volume: ik o« e~5B

XSB rank-two spinor-tensor from integrating quark zero-modes over the locations of the instantons: h(z, z’)
Modified Bessel function: I, (z)

Sum is dominated by particular value of n /& 7: [Diakonov, Petrov (1986)]

V)"
<n)_—w0n(nn') =k VT {{n = {n))*) = L im —————~ =
T o BV ’ (n) VEVT' Tz [ay(ize0)
— No relative CP phase between mass and instanton induced breaking
of xral symmetry—alignment in infinite-volume limit




Correspondingly, partition function for fixed An: (et Leutwyler, Smilga (1992)]
Znn = Inp (216 VT) (—1)A7etAn(e0)

Note: The topological phase e2™+8) multiplies (1(z)%(z'))an and Za, entirely—not just
the contributions induced by instantons.

Other correlation functions (n point, stress-energy, for some observer,...) are calculated
from the Feynman diagram with the Green’s function in the n instanton, 7 anti-instanton
background.

Then it remains to average over n, 7, locations and remaining collective coordinates.

There is no CP violation/misalignment of phases to this end. It remains to consider the
interference between the topological sectors.



Interferences among topological sectors (are immaterial)

Topological quantization <+ Interference between sectors for V1" — oo

Fermion correlator

W@)I() =lim lim San=—nH(@)P())an

N
N

1_—iay®

=iSoimst(z, ') + ikh(z,z')m e (same as for fixed An)

. . . 4 . ,
Recall: iSpinst(, ') = (—7#8, + 1me*1°‘75) / (gTz){feﬂp(miz )m

— No relative CP-phase between mass and instanton term
— €= —«
— CRP is conserved




Limits ordered the other way around

First sum over all An as well:
o [ Ale, &) (R m ™€ P+ mom e Pr) (V)" Soinas (2, 2') (V)]

7,n>0 ﬁ+neiAn(a+9)

X (—mik)

= [— (e7Pr + € Pr) %E(m, z') + 1Soinst (2, :c’)] e VT cos(ato)

7 Z_ ,nllﬁ!(_iK’ VT)ﬁ+ne—i(ﬁ—n)(a+€) — e—ZiKVTcos(a—i—H)
n,f

Then, VT — oo trivial as VT-dependence cancels
— Relative CP phase leading to CP-violating observables

However: Changing the order does not correspond to a nonsingular integration contour.



Reduced argument without instantons

» Take (F(z)F(z)) as measure for CP violation

m Each element in the sequence over N vanishes (not so when limits ordered the other
way around):

N An
. _ Ang
(F(z)F(z)) = lim lim ZAn=_n v Zan

N
N
N_e)];o VT —oo ZAnsz ZAn

=0

m Index theorem: No L/R imbalance in fermion zero modes — Zero modes remain
aligned with quark mass after interference of An-sectors






Theta vacuum, standard story

Take, A° = 0, assume in addition:

For |Z| — oo: A(Z) = iU Y(Z)V U(Z) and U(Z) — const. Peiiiien [cf. Jackiw

(1980)]

Consider initial and final states, taking =4 — £o00
— Construct from pure gauge configurations on these surfaces, with

An = 1672 / d4:rFW F’W = N — N—oo gauge invariant ’ J"_ Mm)
1 Chern—Simons number point com-
Ntco =75 d3aKJ_ Y/ . . feati . @ (Hhrce]
4m not gauge invariant pactification P 4,‘,
z4=*oc0 & «(,/’rM/
on Wo’

Gauge transformations change ni by same number of integer units
N_o — M)

Neo — (N

—iné [Callan, Dashen, Gross (1976);
Jackiw, Rebbi (1976); Jackiw (1980)]

Construct ground states from prevacua: (field eigenstates)

Gauge invariant (up to phase) state |8) =

n



Standard story: two loose ends

The prevacua |n) are field eigenstates, very different from the ground state
Resolutions:
m Take T' — oo in the path integral to project on the ground state:
|vac) = e HT S e |n), T — oo (cf. VT — oo in previous part)
n
m Or use the symmetries and no further properties of the wave functional

[Jackiw, Rebbi (1976); Jackiw (1980)]

States are not normalizable in the proper sense because (8(")|90)) = §(8(*) — (%))
[cf. e.g. Callan, Dashen, Gross (1976); issue taken by Okubo, Marshak (1992)]

Without ado, this contradicts 1st postulate of quantum mechanics.
Possible resolutions:

m Construct wave packets—not acceptable however because gauge invariance should be
exact

m Use gauge fixing in order to normalize states (which is what we will do here)



al'N L 1 . e 1 1

B. STATEMENT OF THE POSTULATES

The prevacua |n) te
1. Description of the state of a system

Resolutions: _
In chapter I, we introduced the concept of the quantum state of a particle.
m Take T — o0 We f_u'st charact?rized this state at a gl:ven time by a square-integrable wave

function. Then, in chapter II, we associated a ket of the state space &, with
HT each wave function: choosing | ) belonging to &, is equivalent to choosing
the corresponding function y(r) = {r|y >. Therefore, the quantum state of
a particle at a fixed time is characterized by a ket of the space &, In this 1
form, the concept of a state can be generalized to any physical system. na

|vac) = e~

m Or use the sy

[Jackiw, Rebbi (197

First Postulate: At a fixed time 7, the state of a physical system is defined )
States are not nor by specifying a ket | ¥/(¢,) > belonging to the state space &. ) _ 9(]))
[cf. e.g. Callan, Dashen, Gy

. . Cohen-Tanoudji, Diu, Lalo&
Without ado, thislioienfenendi o beed

T T

Possible resolutions:

m Construct wave packets—not acceptable however because gauge invariance should be
exact

m Use gauge fixing in order to normalize states (which is what we will do here)
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Canonical quantization of the gauge field
Minkowski spacetime, temporal gauge A° = 0, no sources —
gE® =—8/0t A°
gB% =V x A% —1/2f%¢ A% x AP

Canonical momentum conjugate to A®: m No constraints on 8V accounted for —
- . g% - W[A] must be defined for U(Z)+#const. on 8V
gli*=-E°+ ~_6B° , ,
8 m Residual gauge dofs.: Throw out unphysical states
The corresponding operator must “First quantize, then constrain”

observe the commutation relations:
[A%(Z), 1% (")) = 1696%°6%(Z — &'), [O*(F),I*(2')] =0

. 0 g =
Th tators hold for (8 bit = —+6n—B°
ese commutators hold for (A arbitrary) 344 +6n =

Hamiltonian density:

2
M= (B +(B) =, <<g b - 9H)éa> + (éa)2>

[Jackiw (1980)] 2




Wave functional in gauge theory (temporal gauge A, = 0)

Since [U(”), H] =0, can find states ¥y [A(U(l))n] = eing(i)\lle(l) [Zl]

Wave functionals not properly normalizable

- « . —i(6®) g0 v 1 77, (8) 1 7
/DA \If(g?)) [A] 9(]) [A] = Z /O<W e OO0 WIAL Wéi)) [A]Tﬁ((;(j)) [A]

—2r6(6) — 69) / DA e OO eWiAlylay 1y () 1 7)

=276(6() — 905,

i / DAV [ Ale P el 4]

Not properly normalizable either

Cf. T*/lattice:



Crystal or circle?

The functionals \Ifg(A) with above periodicity properties can be viewed as Bloch states.

Bloch states live on a crystal: In contrast: In gauge theory
AU(U is a different site than A Vi A o is a redundant
4
Vi descrlptlon of the configuration

W A—correspondlng to

@ — @+ 27mn on a circle
On a crystal: Bloch states do not correpsond to normalized wave functions, these are rather
wave packets made up of Bloch states. Packets, however, not translation (gauge) invariant

On a circle: Truncation of the inner product according to a single period leads to properly
normalizable states, corresponding here to gauge fizing A € A so that each physical
configuration appears one time and one time only:

(a)

/ DA fal A’] pla)* [A] (2) [ A’] Note: Under gauge fixed inner product \Ife(l),

9(1) g(])

\—v—/ b
A gauge invariant \IJE)(J)) no longer orthogonal for §(1) # gU
under change of A




Form of the wave functional
should remain Hermitian under restricted inner product

Require: Gauge invariance & 5 A( 5

— (o )[ | = © \If(“) Algi exp 1g0[\valid for all U(Z) (also nonconstant on boundary)

independent of state (a)

]
Problem: [ d®ztrB . — leads to dependence of pure gauge on other directions

i0A
— “Diagonalize” H: /[ A] :e_i(g_en)wm\lf[;i] ,
5 ) .. H :efi(efen)vv[]x] Hei(afen)W[A] _ % /dsm tr l_gz% + B2
5ﬁ(f)W[A]:@B($) :—9—2 L—i—l/d%tréz o€ {o o}
2 F8A2(0) ' 2 ’ gavger 7|
Only trivial one-dimensional representations of SU(2) R
‘If[zzi U] :ei(p[AU]\I’[A] (eigenstate of U), Us=U, U satisfying (*, **) out
ei(p[;iys} _ ei(p[zyz] eitp[;lul} N enp[zuz vl _ enp[AUl vl — 0 of the Hilbert space

— CP conserved

= W'[4] is gauge invariant (*¥*)




Gaul’ law

For Q(Z) an infinitesimal generator of gauge transformations
— Noether charge:
Q(Q) :—/dsa:tr (D) :/ dztr || -B'+ 6B | D'Q
% 8
By R )
v 8m

g
:/d3:ctr QD' | E'— = 6B’
8m?
For Q(Z) = 0 when Z € 0V and since ¥’ is gauge invariant
— GauR’ law: D - E¥'[A] =0

Usually, the argument is made the other way around: Impose Gauf’ law to throw states
out of the Hilbert space

—

Since [Q(2), W[A]] = 0 for Q(Z) = 0 when Z € 0V this also holds when
V'[A] — ?WIAIY/[ 4], so imposing Gau®’ law does not fix §, does not tell us about large
gauge transformations




Nondiagonal basis

Redefining derivatives w.r.t. A as
Dyv[A] =1 (w(iii —(6- en)&grzé) w[A]
corresponds to a canonical transformation of the momentum operator.
Induces translation as
TIAA]Y[A] = e {6 on)(WIA+AA-WIA) g4 1 AZ)
For a shift Aﬁgauge corresponding to a general gauge transformation:
T[AAgeugel V[A] = [A] if W[4] = ¢ emWIAg STA)

Agrees with reasoning & result in the diagonal basis

6 — O in ¥g_g, is pinned to § — Oy in H so that C'P is conserved




Conclusion

There is no CP violation in QCD.

Challenges to the standard calculation and resolutions:

m Taking T" — oo after summing over sectors corresponds to an inequivalent deformation of the
integration contour
Maintain contour and order of limits

m No point compactification/topology in temporal gauge (w/o extra constraint)
Drop the constraint, define ¥ for all spatial gauges

m f-vacua are not properly normalizable
Physical Hilbert space allows to restrict inner product to integrate over each physical
configuration one time and one time only






