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Canonical quantization and �
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CP violation in the strong interactions?

No empirical evidence—neutron electric dipole moment (EDM) strongly constrained:
dn = (0:0� 1:1stat � 0:2sys)� 10�26e cm [2020 @ PSI]

QCD with massive quarks

L � 1
2g2 trF��F�� +

NfX
j=1

� j

�
i=@ �mj ei�j 

5
�
 j +

1
16�2 � trF��

~F��

Believed to cause a neutron electric dipole moment (EDM) dn � 10�15e cm
�
� +

P
j �j

�
[Baluni (1979); Crewther, Di Vecchia, Veneziano, Witten (1979)]

But does it?



CP violation in the strong interactions?

No empirical evidence—neutron electric dipole moment (EDM) strongly constrained:
dn = (0:0� 1:1stat � 0:2sys)� 10�26e cm [2020 @ PSI]

QCD with massive quarks

L � 1
2g2 trF��F�� +

NfX
j=1

� j

�
i=@ �mj ei�j 

5
�
 j +

1
16�2 � trF��

~F��

Believed to cause a neutron electric dipole moment (EDM) dn � 10�15e cm
�
� +

P
j �j

�
[Baluni (1979); Crewther, Di Vecchia, Veneziano, Witten (1979)]

But does it?

/ ~E2 + ~B2

/ ~E � ~B
parity-odd�j , parity-odd



CP violation in the strong interactions?

No empirical evidence—neutron electric dipole moment (EDM) strongly constrained:
dn = (0:0� 1:1stat � 0:2sys)� 10�26e cm [2020 @ PSI]

QCD with massive quarks

L � 1
2g2 trF��F�� +

NfX
j=1

� j

�
i=@ �mj ei�j 

5
�
 j +

1
16�2 � trF��

~F��

Believed to cause a neutron electric dipole moment (EDM) dn � 10�15e cm
�
� +

P
j �j

�
[Baluni (1979); Crewther, Di Vecchia, Veneziano, Witten (1979)]

But does it?



Effective interactions with �

SU(Nf )L � SU(Nf )R global symmetry in the limit of massless quarks

Chiral U(1)A symmetry of the quarks is anomalous however
�! L invariant under [Fujikawa (1979,80)]

chiral trafo

 ! ei�5 
� ! � ei�5 

plus

“spurion” trafo

mj ei�j 
5 ! mj ei(�j�2Nf �)

5

� ! � + 2Nf �

In fact, the “spurions” are those who break the symmetry explicitly.
This pattern should be replicated by any effective theory.

Rephasing invariant: �� = � + ��, where �� =
PNf

j=1 �j , �! � is an angle



Integrating out gauge fields: Effective ’t Hooft vertex

Tpological effects described by effective ’t Hooft vertex (�Nf some coefficient): [’t Hooft (1976,86)]

L+
1

16�2 � trF��
~F�� ! L� �Nf e

i�
NfY
j=1

( � jPL j )� �Nf e
�i�

NfY
j=1

( � jPR j )

Effective interaction breaks U(1)A explicitly �! �0-mass

� should be expressed in terms of parameters of the fundamental theory

As a spurion, � ! � + 2Nf �

Two options:
� = � (in general misaligned with masses) → CP violation
� = ��� (present claim, aligned with mass terms) → no CP violation

So which one is it?

In principle, we could have � = c� ��+ c�� for integer c�;� (�, � are angular variables) with c� + c� = 1. We

shall see that this general case is not realized in the explicit calculation.



Effective chiral Lagrangian (�PT)

U =U0e
i

f�
� U0 : chiral condensate

� =

2
6664
�0 + 1p

3
� +

q
2
3�
0 p

2�+
p

2K+

p
2�� ��0 + 1p

3
� +

q
2
3�
0 p

2K 0

p
2K� p

2 �K 0 � 2p
3
� +

q
2
3�
0

3
7775

Chiral Lagrangian (lowest order terms) inherits “spurious” symmetries:

L =
f 2
�

4
Tr @�U@�U y +

f 2
�B0

2
Tr(MU +U yM y) + j�je�i�f 4

� detU + j�jei�f 4
� detU y

+i �N =@N �
�
mN �N ~UPLN + ic �N ~U y=@PL ~UN + d �N ~M yPLN + e �N ~U ~M ~UPLN + h.c.

�
M = diagfmuei�u ;mdei�d ;msei�sg
~M , ~U reduced to subspace (u ; d)

nucleon doublet N =

 
p
n

!

Effective interaction / detU cannot be quantitatively reliably handled in �PT but yet represents pattern of
broken axial symmetry.



CP -odd neutron interactions [e.g. Srednicki QFT (2007)]

Write U0 = hU i = diag(ei'u ; ei'd ; ei's )

Minimize V (hU i) → mi ('i + �i ) � �m(mu ;md ;ms)(� + �u + �d + �s)

(for small angles)

Substitute 'i back into L & suitably redefine N ! N (N ;U )

Lneutron �� 2c + 1
f�

@��
a �NT a�5N CP even

+
2(d + e) �m

f�
(� + �u + �d + �s) �N�aT aN CP odd



Neutron electric dipole moment

iM =� 2iD(q2)"��(~q)�us 0(~p0)
i
4
[�; � ]q� i5us(~p)

→Leff =D(0)�n F��
i
4
[�; � ]i5| {z }
�~S �~E

n

�PT value: dn = 3:2� 10�16(� + ��)e cm

Experimental bound: jdn j < 1:8� 10�26e cm (90% c.l.) [nEDM/PSI (2020)]

Calculations e.g. of neutron EDM implicitly assume � = �
[e.g. Baluni (1979); Crewther, Di Vecchia, Veneziano, Witten (1979)]

However � = ��� also perfectly valid by arguments used to this end

Another signature—weaker bounds: �0 ! ��



Topology in four-dimensional spacetime—winding number �n

U =

�
aR + iaI �bR + ibI

bR + ibI aR � iaI

�
2 SU(2) for a2

R + a2
I + b2

R + b2
I = 1

)Homotopy: SU(3) � SU(2) �= S3 �! �3(SU(2)) = �3(S3) = Z

Theta-term/topological term is a total divergence:
1
4
trF��

~F�� = @�K� K� = �����tr
�
1
2
A�@�A� +

1
3
A�A�A�

�

Topological quantization for pure gauge A� ! �
i
g (@�U )U�1 at @
 �= S 3

�n =
1

16�2

ˆ




d4xF��
~F�� =

1
4�2

˛

@


d3�K? 2 Z

E.g. take boundary of 
 = R
4 as a sphere S3:

Or 
=T 4(lattice),
=S4(Euclidean dS):�n 2Z based on slightly more involved argument

gauge
invariant

gauge
dependent

Haar measure for pure gauge
K� = 1

6"����tr[(U
�1@�U )(U�1@�U )(U�1@�U )]



Topology—instantons

Does �n 6= 0 imply nontrivial physical field
configurations?

Yes, cf. anti-instanton: A�
u
v = ����

u
vx�

x 2 + �2

(extended solution to Euclidean EOMs)
[Belavin, Polyakov, Schwarz, Tyupkin (1975)]

Surface term decays as 1=jx j3 → surface integral
does not need to vanish

Theta term contributes to the action though being a total derivative



Topology on spatial hypersurfaces—point compactification, large gauge transformations

Consider temporal gauge A0 = 0 (in view of canonical quantization)

Chern–Simons functional:

W [~A] =
1

4�2 "ijk

ˆ
V

d3x tr
�
1
2
Ai@jAk � i

3
AiAjAk

�
� 1

4�2

ˆ
V

d3x K0

Define ~AU = U ~AU�1 + iU�1~rU (residual gauge freedom in temporal gauge)

Assume ~A = iU�1~rU (i.e. pure gauge) on @V
With extra constraint U (~x )! const. on @V (periodic on T 3)
! Point compactification , homotopy V �= S3 (V �= T 3)

U (n): “large” (n 6= 0) gauge transformation on spacelike (� = const.) hypersurface V ' S3

(V ' T 3) changing the Chern–Simons number by n = W [~AU (n) ]�W [~A] 2 Z units

Equivalence classes of U (n) (not connected with 1 for
n 6= 0) only exist when we require these added constraints

on ~A(~x ) (beyond A0(~x ) = 0)

Cannot impose these unless properly taken account in
canonical formalism

Unlike �n , the equivalence classes are a result of a gauge
choice.
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FUNCTIONAL QUANTIZATIONFUNCTIONAL QUANTIZATION

Theta in infinite spacetime volumeTheta in infinite spacetime volume



Why T !1

(Implying 
 = VT !1 as opposed to a finite spacetime volume)

To evaluate amplitudes at finite T , project path integral on the state in terms of a wave
function(al) 	[�(~x )] = h�(~x )j	i (more on this later):

h	f ; tf j	i ; ti i =
ˆ
D�fD�i h	f ; tf j�f i

ˆ

�(tf ;~x )=�f (~x )
�(ti ;~x )=�i (~x )

D� eiS [�]h�i j	i ; ti i
j�i;f i field eigenstates, not energy eigenstates

Problem: Neither know 	[�(~x )] nor kernels of Schrödinger equation

Way out: Euclidean path integral/project on ground state

lim
T!1

e�HT

e�E0T
or lim

T!1
e�iHT (1�i")

e�iE0T (1�i")
H : Hamiltonian
E0: ground state energy

→ Obtain vacuum correlations without bothering about 	[�(~x )]



Boundary configurations & topological quantization

The parameter � can be viewed as an angular variable
(forced by the anomalous chiral current). �!
Requires �n 2 Z (“topological quantization”) ! exp(iS)j� = exp(iS)j�+2�

Readily built into the path integral for VT !1 without constraining boundary
conditions by hand:
(Relatively) nonvanishing contributions in infinite spacetime only from classical local
minima of the Euclidean action & fluctuations about these—these configurations must go
to pure gauges at 1

There is no such restriction/principle to fixed physical bcs. for finite VT.

Indeed, for pure gauge configurations at 1 ! �n 2 Z (as discussed above)

Consequence: �n 2 Z requires T!1 first !in the path integral, take T !1, then sum
over all topological sectors �n weighted exp(i�n�)



More technically: Integration contour from Lefschetz thimbles

Parametrization of the path integral through steepest descent contours about classical
saddle points �! Contour integration on Lefschetz thimbles

@�(x ;u)
@u

=
�SE[�(x ;u)]
��(x ;u)

=) �@ReSE[�(x ;u)]
@u

� 0 and
@ImSE[�(x ;u)]

@u
= 0

A

-S

-∞
μ

...

... ...

Each thimble emerges from a
critical point and corresponds to
one �n 2 Z
Keeping VT finite while summing
over different �n does not
correspond to a nonsingular
deformation of the contour

Integration contour sweeps
over full thimbles first:

Z = lim
N!1

NX
�n=�N

lim
VT!1

ˆ
�n
D� e�SE[�]



So is it � = ��� or � = �?

The effective vertex generates the following correlation functions at tree level:

h
NfY
j=1

 j (xj ) � j (x 0j )iinst =

0
@e�i�

NfY
j=1

PLj + ei�
NfY
j=1

PRj

1
A �H (x1; : : : ; x 01; : : :)

Goal: Compute correlation function and compare with EFT answer above to fix �

Cf. leading contribution to two-point function

h i (x ) j (x 0)i =iS0inst ij (x ; x 0)

iS0inst ij (x ; x 0) =(��@� + imie�i�i
5
)

ˆ
d4p
(2�)4

e�ip(x�x 0) �ij
p2 �m2

i + i�

So � = �/� = ��� implies CP -violation/no CP -violation

Only one explicit calculation based on dilute instanton gas (DIGA) finding � = �
[’t Hooft (1986)]



Fermion correlations

Obtain correlation functions from Green’s functions in fixed background of instantons
and anti-instantons
Interfere all instanton configurations

First, within one topological sector
Then over the different sectors

Green’s function in n-instanton, �n-anti-instanton background (DIGA)

iSn ;�n(x ; x 0) � iS0inst(x ; x 0)+
�nX

��=1

 ̂0L(x�x0;��) ̂
y
0L(x

0�x0;��)

me�i� +
nX

�=1

 ̂0R(x�x0;�) ̂
y
0R(x

0�x0;�)

mei�

 ̂0L;R: ‘t Hooft zero modes

Comments:
For small masses, zero modes dominate close to the cores of instantons, far away from
instantons the solution goes to the zero-instanton configuration [Diakonov, Petrov (1986)]

Alignment of phase � between Lagrangian mass and instanton-induced �SB �→ No
indication of CP violation here
Should be expected—�-phase has not entered calculation thus far

DIGA to dermine CP phase of ’t Hooft
vertex—not quantitatively accurate for

actual QCD

cf.

iS0inst(x ; x 0) = (��@� + ime�i�5
)

ˆ
d4p
(2�)4

e�ip(x�x 0) 1
p2 �m2 + i�
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Interferences within the topological sectors

Within a topological sector, interfere/sum/integrate over

all instanton/anti-instanton numbers n + �n with �n = n � �n fixed

locations of all instantons/anti-instantons

remaining collective coordinates

�! Dilute instanton gas approximation (skip technicalities)

Can also obtain coincident fermion correlations using the index theorem and anomalous
current only



Correlation function for fixed �n

h (x ) � (x 0)i�n =
X
�n;n�0

n��n=�n

1
�n !n !

h
�h(x ; x 0)

�
�n

me�i�PL +
n

mei�PR

�
(VT )�n+n�1 + iS0inst(x ; x 0) (VT )�n+n

i
� (i�)�n+n(�1)n+�nei�n(�+�)

=
h�

ei�I�n+1(2i�VT )PL + e�i�I�n�1(2i�VT )PR
� i�

m
�h(x ; x 0) + I�n(2i�VT )iS0inst(x ; x 0)

i
� (�1)�nei�n(�+�)

Instantons per spacetime volume: i� / e�SE

�SB rank-two spinor-tensor from integrating quark zero-modes over the locations of the instantons: �h(x ; x 0)

Modified Bessel function: I�(x )

Sum is dominated by particular value of n � �n : [Diakonov, Petrov (1986)]

hni =
P1

n=0 n (�VT )n

n !P1
n=0

(�VT )n

n !

= �VT ;

ph(n � hni)2i
hni =

1p
�VT

; cf. lim
x!1

I�n(ix e�i0+)

I�n 0(ix e�i0+)
= 1

�→ No relative CP phase between mass and instanton induced breaking
of �ral symmetry—alignment in infinite-volume limit



Correspondingly, partition function for fixed �n : [cf. Leutwyler, Smilga (1992)]

Z�n = I�n(2i�VT ) (�1)�nei�n(�+�)

Note: The topological phase ei�n(�+�) multiplies h (x ) � (x 0)i�n and Z�n entirely—not just
the contributions induced by instantons.

Other correlation functions (n point, stress-energy, for some observer,...) are calculated
from the Feynman diagram with the Green’s function in the n instanton, �n anti-instanton
background.
Then it remains to average over n , �n , locations and remaining collective coordinates.

There is no CP violation/misalignment of phases to this end. It remains to consider the
interference between the topological sectors.



Interferences among topological sectors (are immaterial)

Topological quantization ↔ Interference between sectors for VT !1

Fermion correlator

h (x ) � (x 0)i =lim
N!1
N2N

lim
VT!1

PN
�n=�N h (x ) � (x 0)i�nPN

�n=�N Z�n

=iS0inst(x ; x 0) + i��h(x ; x 0)m�1e�i�5
(same as for fixed �n)

Recall: iS0inst(x ; x 0) = (��@� + ime�i�5
)
´ d4p

(2�)4 e�ip(x�x 0) 1
p2�m2+i�

�→ No relative CP -phase between mass and instanton term
�→ � = ��

�→ CP is conserved



Limits ordered the other way around

First sum over all �n as well:X
�n;n�0

1
�n !n !

h
�h(x ; x 0)(�n m�1ei�PL + n m�1e�i�PR) (VT )�n+n�1+ iS0inst(x ; x 0) (VT )�n+n

i
� (�mi�)�n+nei�n(�+�)

=
h
�
�
e�i�PL + ei�PR

� i�
m

�h(x ; x 0) + iS0inst(x ; x 0)
i

e�2i�VT cos(�+�)

Z !
X
n ;�n

1
n !�n !

(�i�VT )�n+ne�i(�n�n)(�+�) = e�2i�VT cos(�+�)

Then, VT !1 trivial as VT -dependence cancels
�→ Relative CP phase leading to CP -violating observables

However: Changing the order does not correspond to a nonsingular integration contour.



Reduced argument without instantons

Take hF (x ) ~F (x )i as measure for CP violation

Each element in the sequence over N vanishes (not so when limits ordered the other
way around):

hF (x ) ~F (x )i = lim
N!1
N2N

lim
VT!1

PN
�n=�N

�n
VT Z�nPN

�n=�N Z�n
= 0

Index theorem: No L/R imbalance in fermion zero modes ! Zero modes remain
aligned with quark mass after interference of �n-sectors



CANONICAL QUANTIZATIONCANONICAL QUANTIZATION
(in finite and infinite volumes)(in finite and infinite volumes)



Theta vacuum, standard story

Take, A0 = 0, assume in addition:

For j~x j ! 1: ~A(~x ) = iU�1(~x )~rU (~x ) and U (~x )! const. But why? [cf. Jackiw
(1980)]

Consider initial and final states, taking x4 ! �1
→ Construct from pure gauge configurations on these surfaces, with

�n =
1

16�2

ˆ
d4xF��

~F�� = n1 � n�1 gauge invariant

n�1 =
1

4�2

ˆ

x4=�1

d3�K? 2 Z Chern–Simons number
not gauge invariant

point com-
pactification

Gauge transformations change n�1 by same number of integer units

Construct ground states from prevacua:
n�1 ! jni
n1 ! hn j (field eigenstates)

Gauge invariant (up to phase) state j�i =P
n

e�in�jni [Callan, Dashen, Gross (1976);
Jackiw, Rebbi (1976); Jackiw (1980)]



Standard story: two loose ends

The prevacua jni are field eigenstates, very different from the ground state
Resolutions:

Take T !1 in the path integral to project on the ground state:
jvaci = e�HT P

n
e�in�jni, T → ∞ (cf. VT !1 in previous part)

Or use the symmetries and no further properties of the wave functional
[Jackiw, Rebbi (1976); Jackiw (1980)]

States are not normalizable in the proper sense because h�(i)j�(j )i = �(�(i) � �(j ))
[cf. e.g. Callan, Dashen, Gross (1976); issue taken by Okubo, Marshak (1992)]

Without ado, this contradicts 1st postulate of quantum mechanics.

Possible resolutions:
Construct wave packets—not acceptable however because gauge invariance should be
exact
Use gauge fixing in order to normalize states (which is what we will do here)

[Cohen-Tanoudji, Diu, Laloë]
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Canonical quantization of the gauge field

Minkowski spacetime, temporal gauge A0 = 0, no sources �→
g ~Ea =�@=@t ~Aa

g ~Ba =~r� ~Aa � 1=2 f abc ~Aa � ~Ab

Canonical momentum conjugate to ~Aa :

g~�a = �~Ea +
g2

8�2 �
~Ba

No constraints on @V accounted for �!
	[~A] must be defined for U (~x ) 6=const: on @V

Residual gauge dofs.: Throw out unphysical states
“First quantize, then constrain”The corresponding operator must

observe the commutation relations:

[Aa ;i (~x );�b;j (~x 0)] = i�ij �ab�3(~x � ~x 0) ; [�a ;i (~x );�b;j (~x 0)] = 0

These commutators hold for (�� arbitrary) ~�a =
�

i�~Aa
+ ��

g
8�2

~Ba

Hamiltonian density:

H =
1
2

�
(~Ea)2 + (~Ba)2

�
=

1
2

0
@ g

�

i�~Aa
� g2

8�2 (� � ��)~Ba

!2

+ (~Ba)2

1
A

[Jackiw (1980)]



Wave functional in gauge theory (temporal gauge A0 = 0)

Since [U (n);H ] = 0, can find states 	�(i) [~A(U (1))n ] = ein�(i)	�(i) [~A]

Wave functionals not properly normalizable
ˆ
D~A	

(a)�
�(i)

[~A]	
(b)
�(j )

[~A] =
1X

�=�1

ˆ
0�W [~A]<1

D~A e�i(�(i)��(j ))(W [~A]+�) 
(a)�
�(i)

[~A] 
(b)
�(j )

[~A]

=2��(�(i) � �(j ))
ˆ

0�W [~A]<1
D~A e�i(�(i)��(j ))W [~A] 

(a)�
�(i)

[~A] 
(b)
�(j )

[~A]

=2��(�(i) � �(j ))�ab

Cf. T 4/lattice:
Z =

X̂
a

ˆ
D~A	

(a)�
�(i)

[~A]e��H	
(b)
�(i)

[~A]

Not properly normalizable either



Crystal or circle?

The functionals 	�(~A) with above periodicity properties can be viewed as Bloch states.

Bloch states live on a crystal:
~A

U (1)
4

is a different site than ~A
In contrast: In gauge theory
~A

U (1)
4

is a redundant
description of the configuration
~A—corresponding to
'! '+ 2�n on a circle

On a crystal: Bloch states do not correpsond to normalized wave functions, these are rather
wave packets made up of Bloch states. Packets, however, not translation (gauge) invariant

On a circle: Truncation of the inner product according to a single period leads to properly
normalizable states, corresponding here to gauge fixing ~A 2 A so that each physical
configuration appears one time and one time only:ˆ

A
D~AfA[~A]| {z }

gauge invariant
under change of A

	
(a)�
�(i)

[~A] 	
(b)
�(j )

[~A] Note: Under gauge fixed inner product, 	(a)
�(i)

,

	
(b)
�(j )

no longer orthogonal for �(i) 6= �(j )



Form of the wave functional
Require: Gauge invariance & �

i�~A(~x )
should remain Hermitian under restricted inner product

=) 	(a)[~A]
(�)
= 	(a)[~A]g:i: exp(i'[~A]) valid for all U (~x ) (also nonconstant on boundary)

gauge invariant independent of state (a)

Problem:
ˆ

d3x tr~B � �

i�~A
leads to dependence of pure gauge on other directions

�! “Diagonalize” H :

�

�~A(~x )
W [~A] =

g
8�2

~B(~x )

	0[~A] =e�i(����)W [~A]	[~A] ;

H 0 =e�i(����)W [~A]H ei(����)W [~A] =
1
2

ˆ
d3x tr

"
�g2 �2

�~A2
+ ~B2

#
=� g2

2

ˆ
�

P �2

�A2(�)
+

1
2

ˆ
d3x tr ~B2 ; � 2 f�gauge; �kg

Only trivial one-dimensional representations of SU(2)

	[~AU ] =ei'[~AU ]	[~A] (eigenstate of U ) ; U3 = U2 U1

ei'[~AU3 ] = ei'[~AU2 ]ei'[~AU1 ] ) ei'[~AU2U1 ] � ei'[~AU1U2 ] = 0
) 	0[~A] is gauge invariant (**)

Throw states not
satisfying (�; ��) out
of the Hilbert space
!CP conserved



Gauß’ law

For 
(~x ) an infinitesimal generator of gauge transformations
�! Noether charge:

Q(
) =
1
g

ˆ
d3x tr

h
�i (D i
)

i
=

ˆ
V

d3x tr

" 
�E i +

g2

8�2 �B
i

!
D i


#

=

ˆ
d3x tr

"

D i

 
E i � g2

8�2 �B
i

!#
+

ˆ
@V

da i tr

"



 
�E i +

g2

8�2 �B
i

!#

For 
(~x ) = 0 when ~x 2 @V and since 	0 is gauge invariant
! Gauß’ law: ~D � ~E 	0[~A] = 0

Usually, the argument is made the other way around: Impose Gauß’ law to throw states
out of the Hilbert space

Since [Q(
);W [~A]] = 0 for 
(~x ) = 0 when ~x 2 @V this also holds when
	0[~A]! ei~�W [~A]	0[~A], so imposing Gauß’ law does not fix ~�, does not tell us about large
gauge transformations



Nondiagonal basis

Redefining derivatives w.r.t. ~A as

~D~A	[
~A] = i

�
�

i�~A
� (� � ��) g

8�2
~B
�
	[~A]

corresponds to a canonical transformation of the momentum operator.

Induces translation as

T [�~A]	[~A] = e�i(����)(W [~A+�~A]�W [~A])	[~A+�~A]

For a shift �~Agauge corresponding to a general gauge transformation:

T [�~Agauge]	[~A] = 	[~A] if 	[~A] = ei(����)W [~A]	g:i:[~A]

Agrees with reasoning & result in the diagonal basis

� � �� in 	���� is pinned to � � �� in H so that CP is conserved

gauge invariant



Conclusion

There is no CP violation in QCD.

Challenges to the standard calculation and resolutions:

Taking T !1 after summing over sectors corresponds to an inequivalent deformation of the
integration contour
Maintain contour and order of limits

No point compactification/topology in temporal gauge (w/o extra constraint)
Drop the constraint, define 	 for all spatial gauges

�-vacua are not properly normalizable
Physical Hilbert space allows to restrict inner product to integrate over each physical
configuration one time and one time only



THANK YOU!THANK YOU!


