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Quantum gravity is not perturbatively
renormalizable ...
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.. requiring an infinite number of new
couplings in loop corrections



But it also has another problem ...
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Gibbons, Hawking, Perry '78

.. suitably reinterpreted, it might solve the first
problem
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We just need two key properties ...

traceless

@ Interactions terms are +ve exponentials of ¢

@ ¢ propagates with the wrong sign
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Now, in momentum space the propagators for h,, and ¢ take the form (see e.g. [17]):

(o(p) ¢(=p)) = (a

(huv (p) ¢(—p)) = ((P) huw (—p)) = (1

Ou(adp)v

(P (p) hap(—p)) = 2

(2.12)

P
Thus to ensure we have the key property that ¢ has a wrong-sign propagator, we just need to

choose a outside the range 0 < o < (d—2)/(d—1). Note that for all dimensions d > 3 this includes

the popular Feynman — DeDonder gauge. a = 2, where h,, and ¢ decouple




Preserve the exponentials ...
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(Really, e = 1)
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external legs (which are not drawn ). Added to this s all its 1PT quantum corrections e the snm

over all tadpole corrections.

Figure 3.2: The second-order part, Ts. of the Legendre eflective action, 1s given by an expansion
over melonic IFeynman diagrams, where the open circles are capies of 1’y as given in fig. 3.1. Again,

these copies have any number of external legs which are not drawn.
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Figure 3.1: The classical interaction verlex is represented by the black dol and has any number of
external legs (which are not drawn). Added to this is all its 1PI quantum corrections i.e. the sum

aver all tadpaole corrections.

Ty = S;[®] .. all massless tadpoles vanish
in gauge Iinv regulator dim reg.
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Figure 3.2: The second-order part, I's, of the Legendre effective action, is given by an expansion

over melonic Feynman diagrams, where the open circles are copies of I'y as given in fig. 3.1. Again,

these copies have any number ol external legs which are not drawi.
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Figure 3.2: The second-order part, I's, of the Legendre effective action, is given by an expansion

over melonic Feynman diagrams, where the open circles are copies of I'y as given in fig. 3.1. Again,

these copies have any number ol external legs which are not drawi.
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Figure 3.2: The second-order part, I's, of the Legendre effective action, is given by an expansion

over melonic Feynman diagrams, where the open circles are copies of I'y as given in fig. 3.1. Again,

these copies have any number ol external legs which are not drawi.
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Sum over  corrections ... ;
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As a concrete example we take Lhe Einstein-Hilbert vertex (3.1) and compute the remaining .J

differentials in (3.11) to explicitly the complete resimmmation aver purely ¢ quantum corrections:
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where A = A(z—1y), 8 = (d—2)/d. and for brevity we have also introduced o = (d—1)(d—2)/d?. It
is tedious but straightforward to confirm that the same answer is arrived at by computing explicitly
the Feynman diagrams in fig. 3.2 and then summing over them. We see again that, despite the

products of (differentials of) propagators, as appear inside the braces above, all contributions are

UV finite, thanks to the presence of e EHRA
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Other interactions & fields ... e 0N
Cosmological constant: Jgiasdi 1y
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But e.g. make A” the fundamental field:
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Starobinsky: gR’ ... but use inflaton
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Figure 3.1: The classical interaction verlex is represented by the black dol and has any number of

external legs (which are not drawn). Added to this is all its 1PI quantum corrections i.e. the sum

aver all tadpaole corrections.

[''=S5/[®] .. but massive tadpoles dont vanish!

.. discard e.g. by normal ordering.
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Diffeomorphism invariance ...

E.g. compare expanding around a background
metric, using background covariant propagators.




Summary

@ Can resum into a series of UV finite I,
@ Works also for matter fields with normal ordering

@ But then no small parameter any more (Really, ¢ = 1)
@ Background diffeomorphism invariance: resum I',?

@ BRST invariance: resum I ,?



We can also take the limit in which & becomes arbitrary large, provided we also allow (h.¢)
and (¢#27) Lo become large, whilst neverlheless leaving the (/i h.a) propagalor linite. Setling
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where v is a finile free gauge parameter, and ¢ < 1, yields €2 = 1/£2 4+ O(£?), together with
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