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Introduction

CRC-TR2n

> QCD Phase diagram in T'— up plane: A lot of open questions

® Moat regimes, inhomogeneous chiral phases, quantum pion liquid: Spatial modulations of
the order parameter?
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[Fukushima, Hatsuda, Rept. Prog. Phy. 74 (2011), arXiv: 1005.4814.]
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Generalized PT-symmetry in QCD at i # 0 cnc.-rm

» Charge conjugation in Euclidean spacetime A, — —A;‘f; Wilson loop W = W

> At = 0: Fermion determinant can be expanded in Wilson loops trpW where trpW and
trpW T appear with similar coefficients = Indet[A4,] € R

see also: talk by M. Ogilvie on Wednesday

[Nishimura, Ogilvie, Pangeni, PRD 90, 045039 (2014) & PRD 91, 054004 (2015)]
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Generalized PT-symmetry in QCD at i # 0 cnc.-rm

» Charge conjugation in Euclidean spacetime A, — —A;‘f; Wilson loop W = W

> At = 0: Fermion determinant can be expanded in Wilson loops trpW where trpW and
trpW T appear with similar coefficients = Indet[A4,] € R

» Charge conjugation C exchanges trpW and trpWW '

» At ;1 # 0: Wilson loops trpW /W with non-trivial winding number n are weighted by
etF1 = Broken C symmetry

» But: Invariance under CK operation: trpWW — trpW7! = trpIV (K is complex
conjugation). This is a PT-type symmetry!

see also: talk by M. Ogilvie on Wednesday

[Nishimura, Ogilvie, Pangeni, PRD 90, 045039 (2014) & PRD 91, 054004 (2015)]
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Generalized PT-symmetry: Implications on the Hessian matrix cnc.-rm

» Consider a model with homogeneous (thermal) vev's <$> and propagators G,

» Low momentum representation of (scalar) propagators with Mass / Hessian matrix M

G M) =g+ M

[Schindler, Schindler, Medina, Ogilvie, PRD 102, 114510 (2020)]

[Schindler, Schindler, Ogilvie, J. Phys. Conf. Ser. 2038 (2021)]
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Generalized PT-symmetry: Implications on the Hessian matrix cnc.-rm

» Consider a model with homogeneous (thermal) vev's <$> and propagators G,

» Low momentum representation of (scalar) propagators with Mass / Hessian matrix M
G =q+ M

» Conventional, hermitian mass matrix with eigenvalues \; € R = usual exponential decay

[Schindler, Schindler, Medina, Ogilvie, PRD 102, 114510 (2020)]

[Schindler, Schindler, Ogilvie, J. Phys. Conf. Ser. 2038 (2021)]
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Generalized PT-symmetry: Implications on the Hessian matrix cnc.-rm

v

Consider a model with homogeneous (thermal) vev's <$> and propagators G,

» Low momentum representation of (scalar) propagators with Mass / Hessian matrix M
G M) =g+ M
» Conventional, hermitian mass matrix with eigenvalues \; € R = usual exponential decay

With PT-type symmetry: M and M* with same EVs \; € C

v

M = X M*Y = Compl. conj. EV pairs

[Schindler, Schindler, Medina, Ogilvie, PRD 102, 114510 (2020)]

[Schindler, Schindler, Ogilvie, J. Phys. Conf. Ser. 2038 (2021)]
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Generalized PT-symmetry: Implications on the Hessian matrix cnc.-rm

v

Consider a model with homogeneous (thermal) vev's <$> and propagators G,

» Low momentum representation of (scalar) propagators with Mass / Hessian matrix M
G M) =g+ M
» Conventional, hermitian mass matrix with eigenvalues \; € R = usual exponential decay

With PT-type symmetry: M and M* with same EVs \; € C

v

M = X M*Y = Compl. conj. EV pairs

What are the implications?

[Schindler, Schindler, Medina, Ogilvie, PRD 102, 114510 (2020)]

[Schindler, Schindler, Ogilvie, J. Phys. Conf. Ser. 2038 (2021)]
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Generalized PT-symmetry: Implications on the phase diagram cnc.-rm

G ¢ =g+ M

PT-type symmetry: What are the implications?

Eigenvalues E; of M Position-space propagator behavior Region
All positive Exponential decay Normal
Odd number of E; < 0 Exponential growth Unstable
Some E; = E;f Sinusoidally-modulated exponential PT broken
Even number of E; < 0 | Homogeneous solution unstable at some p # 0 | Patterned vacuum

[Schindler, Schindler, Ogilvie, PoS LATTICE2021 (2022)]
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Exotic phases in finite density QCD: Spatial modulations? cnc.-rm

Inhomogeneous phase (IP) Quantum pion liquid (Q7L)
> “Patterned” » “PT broken”
» Long-range order & Translational SSB! » Disordering through Goldstone modes of
N chiral SSB??7?
> <¢]> ~ <¢Fﬂ/}> = fos(x) <¢ > <1/;F q[)> .
> (D) ~ )y = const.
> ($(@)$(0)) ~ Cose() e
» C(x) ~ e " Coge ()
QnL
1.0+ A~ 0.021
0.5
W 0.0 I~ /\
o \4
—0.5 Ap =~ 0.53 \/
-1.07 ‘ _ Apmdx 10 ‘
0 2 4 6 8 10 12
x X
[Buballa, Carignano, PPNP 81, 39-96 (2015)] [Pisarski et al., PRD 102, 016015 (2020)] [MW, Valgushev, arXiv:2403.18640]
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Exotic phases in finite density QCD: Spatial modulations? cnc.-rm

Inhomogeneous phase (IP) Quantum pion liquid (Q7L)
» “Patterned” » “PT broken”
» Long-range order & Translational SSB! » Disordering through Goldstone modes of
- chiral SSB??7?
> <¢J> ~ <¢FJ¢> = fos(X) <¢ > <1/;F 1/)> ¢
> iy~ 1)y = const.
> (@()6(0)) ~ Cose() SRR,
» C(x) ~ e " Coge ()
N, =81 L =80 w/ag = 0.66, ay = 0.200 Qr[l_
iz = /\
O \/ \
X
[Buballa, Carignano, PPNP 81, 39-96 (2015)] [Pisarski et al., PRD 102, 016015 (2020)] [MW, Valgushev, arXiv:2403.18640]
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Exotic phases in finite density QCD: Spatial modulations? cnc.-rm

Quantum pion liquid (Q7L)
“PT broken”
Disordering through Goldstone modes of
chiral SSB??7?
(¢j) ~ YTy = const.
C(x) ~ e ™ Cosc()

Inhomogeneous phase (IP)
> “Patterned”
» Long-range order & Translational SSB!
> () ~ W) = fos(x)
> (¢(x)$(0)) ~ Cose()

IP QnL
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[Buballa, Carignano, PPNP 81, 39-96 (2015)] [Pisarski et al., PRD 102, 016015 (2020)] [MW, Valgushev, arXiv:2403.18640]
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Exotic phases at p # 0 from functional methods: FRG cnc.-rm

» Inhomogeneous, chiral phase (IP): (y¢)) = f(x)
> Moat regime: E? = Wp* + Zp? + m? + O (p%) with Z < 0

Recent FRG study

[Fu, Pawlowski, Rennecke, PRD 101, 054032 (2020)]

1 + 1-dimensional Four-Fermion model

[Thies, Urlichs, PRD 67, 125015 (2003)]
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Exotic phases at p # 0 from functional methods: FRG cnc.-rm

» Inhomogeneous, chiral phase (IP): (y¢)) = f(x)
> Moat regime: E? = Wp* + Zp? + m? + O (p%) with Z < 0

Recent FRG study

[Fu, Pawlowski, Rennecke, PRD 101, 054032 (2020)]

1 + 1-dimensional Four-Fermion model

[Thies, Urlichs, PRD 67, 125015 (2003)]
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Exotic phases at p # 0 from functional methods: FRG cnc.-rm

» Inhomogeneous, chiral phase (IP): (y¢)) = f(x)
> Moat regime: E? = Wp* + Zp? + m? + O (p%) with Z < 0

Recent FRG study

[Fu, Pawlowski, Rennecke, PRD 101, 054032 (2020)]

1 + 1-dimensional Four-Fermion model

[Thies, Urlichs, PRD 67, 125015 (2003)]
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Exotic phases at p # 0 from functional methods: FRG cnc.-rm

» Inhomogeneous, chiral phase (IP): (y¢)) = f(x)
> Moat regime: E? = Wp* + Zp? + m? + O (p%) with Z < 0

Recent FRG study

[Fu, Pawlowski, Rennecke, PRD 101, 054032 (2020)]

1 + 1-dimensional Four-Fermion model

[Koenigstein, Pannullo, Rechenberger, MW, Steil, (2022)]
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QCD-inspired models: Four-fermion and quark-meson models cnc.-rm

100
» Four-quark interactions / quark-meson as gob™
low-energy approximation for QCD from A 2 1GeV > 60
» Nambu-Jona-Lasinio-type models / quark-meson E m
models for spontaneous chiral symmetry breaking 20 \‘
mechanism; no sign problem ! 0

. : . 260 280 300 320 340 360 380 400
> |Ps appear in phase diagrams of various of those 1. [MeV]
q

models [Buballa, Carignano, PPNP 81, 39-96 (2015)]
[Nickel, PRD 80, 074025 (2009) |
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QCD-inspired models: Four-fermion and quark-meson models cnc.-rm

100

» Four-quark interactions / quark-meson as 80
low-energy approximation for QCD from A 2 1GeV > 60

» Nambu-Jona-Lasinio-type models / quark-meson E m
models for spontaneous chiral symmetry breaking 20

mechanism; no sign problem !

> IPs appear in phase diagrams of various of those

models [Buballa, Carignano, PPNP 81, 39-96 (2015)]

\
\

0 260 280 300 320 340 360 380 400

Uq [MeV]

[Nickel, PRD 80, 074025 (2009) ]

BUT: Evidence that IPs are cutoff artifacts from multiple studies!

Marc Winstel

Spatially oscillating correlations in D = 2 + 1 four-fermion model with PT-symmetry



QCD-inspired models: Four-fermion and quark-meson models cnc.-rm

100
» Four-quark interactions / quark-meson as gob™
low-energy approximation for QCD from A 2 1GeV > 60
» Nambu-Jona-Lasinio-type models / quark-meson E m
models for spontaneous chiral symmetry breaking 20 \‘
mechanism; no sign problem ! 0

. : . 260 280 300 320 340 360 380 400
> |Ps appear in phase diagrams of various of those 1. [MeV]
q

models [Buballa, Carignano, PPNP 81, 39-96 (2015)]
[Nickel, PRD 80, 074025 (2009) |

BUT: Evidence that IPs are cutoff artifacts from multiple studies!

[Narayanan, PRD (2021)], [Buballa et al., PRD (2021)], [Pannullo, MW, PRD (2023)], [Pannullo, PRD (2023)], [Koenigstein, Pannullo, PRD (2023)],
[Pannullo, MW, Wagner, PRD (2024)]
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Regulator dependence of IPs: 2+1-dimensional GN model cnc.-rm

Tioq
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Strong regulator dependence of results & IP vanishes when renormalizing the theory !
[Buballa, Kurth, Wagner, MW, PRD 103, 034503 (2020), arXiv: 2012.09588 ]
No instability towards IP in general four-fermion model with scalar (S = 0) channels
[Pannullo, MW, PRD 108, 036011 (2023) arXiv:2305.09444]
Strong regularization scheme dependence in non-renorm. NJL model

[Pannullo, MW, Wagner, PRD (2024)]
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Generic four-fermion model setup cnc.-rm

> Study of 2 + 1-dimensional models

- - 2
Serli o] = [ {6 @40 v - 3 (% (e 0))
J
» 4 x 4 Dirac basis for chiral symmetry, 2 flavors (45 = i747s5)
(C]) € (171’7471’7&74577_"7 i7?74’i7?7577?745) X (171/7#)

> Bosonized version
(6,03 = [ NZ— QU Y, Q=F+on+Y o5
J

> Integrate out ¥, 1 = Ser[d] ~ In DetQ
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How to detect the IP cnc.-rm

Large-N limit / Mean-field approximation: No integration about 5

= 0 ~ ming Segr[ ]

> Global minimization of Seg[¢(x)] using ansatzes / lattice field theory
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How to detect the IP cnc.-rm

Large-N limit / Mean-field approximation: No integration about 5
= 0 ~ ming Segr[ ]

> Global minimization of Seg[¢(x)] using ansatzes / lattice field theory

=3

> Stability analysis of homogeneous ground state ¢(x) = ¢ = const.

(+) Well tested on 1 + 1-dim. GN model, very reliable in finding inhomogeneous phases
(+) Implementable in multiple works
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How to detect the IP cnc.-rm

Large-N limit / Mean-field approximation: No integration about 5
= 0 ~ ming Segr[ ]

> Global minimization of Seg[¢(x)] using ansatzes / lattice field theory

> Stability analysis of homogeneous ground state ¢(x) = $= const.
(+) Well tested on 1 + 1-dim. GN model, very reliable in finding inhomogeneous phases
(+) Implementable in multiple works
(—) Does not work when there is an energy barrier between true ground state and 5
(—) Less info about ground state: Only momentum q with most negative curvature
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How to detect the IP cnc.-rm

Large-N limit / Mean-field approximation: No integration about 5
= 0 ~ ming Segr[ ]

> Global minimization of Se[¢(x)] using ansatzes / lattice field theory

=3

> Stability analysis of homogeneous ground state ¢(x) = ¢ = const.

S

(+) Well tested on 1 + 1-dim. GN model, very reliable in finding inhomogeneous phases
(+) Implementable in multiple works
(
(

)
—) Does not work when there is an energy barrier between true ground state and ¢
—) Less info about ground state: Only momentum q with most negative curvature
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Stability analysis cnc.-rm

¢j(x) = ¢j + 6¢;(x)

» First non-vanishing correction expressed by Hessian matrix (analog of mass matrix M)

S _ gf d?q
N 2 ) (2m)2

Free fermion propagator S with mass M?(¢;) at fixed p and T

5 () H(a)oba),  Hyo(a) = (32) + %j;t [S(0 + (0.0 ¢; S(p) ]

v

v

Eigenvalues of Hessian = Bosonic two-point functions F (<g0jg0j>c)
d’r

Inhomogeneous phase: F(Q)(q) <0forg#0 Moat: Z = g>(q 0) <0

v

» Quantum pion liquid: F(2)(q = 0) € C but appear in complex-conjugate pairs!
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1 + 1-dimensional GN model: Two-point function

—0.10 —0.05 0.05 0.10

(2

» 1 = 1.2 corresponds to a Moat regime
» 1 = 0.8 corresponds to the IP

Marc Winstel
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Four-fermion model with PT-type symmetry in D =2 + 1 cnc.-rm

Smix[¥, 0] = JdedQ{ (7 + ysp) ¥ — [ (Dv)® _]‘\//(w17uw)2]}

v

Bosonization similar to before

n 2
Sl 0,0, = fdgw l¢ (7 +imw, +y0u+0) P+ 2”/\“;” + %1

> Homogeneous condensation:
° w; =0 & wy ~ i(yTpy/N purely imaginary; shift in chemical potential i1 = 1 + i

v

Charge symmetry breaking at p # 0: Cwy = —wyp, but CK invariance — as in QCD!

» Complex saddle points (c,w,) = (7,indg,)!

v

The following results are generic for all models with local (1/31“1#)2 inD=2+1

[MW, PRD 110, 034008 (2024)]
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D = 2 + 1 four-fermion model: Homogeneous phase boundary cnc.-rm

0.7 F 3
0.6 F ]
s E AN N 3
E HBP. O\ h o Ny
M 04F g S
- Av/m =10 \ IR
03F ——. X\y/m =08 A
oo b Av/m =05 B
“E. Ay /7 =0.3 'T i ]
0.1 F Av/m=0.1 : - 1 -
F—— GN, \y =0.0 I 1 f ]
0.0 N O N T T O | 1 | TN P
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7

In general: Broken phase enlarged by vector coupling
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Homogeneous phase diagram: Chiral condensate cn.-rm

E — Ay /m=01 ] s — Av/r=10 3
orE v/m e 0.99 orE v/m E 0.99

s —— GN, Ay =0.0 J - ~— GN, Ay = 0.0 J
0.6 3 0.93 0.6 3 0.93
05 3 Moso 0.5 3 Moso
& 04 = | & 04 = |

] 0.60 A E 0.60 2

0.3 3 0.3 3
E 0.40 3 0.40

0.2 = 0.2 3
01 = 0.20 01 = 0.20
0.0 0.00 0.0 = 0.00
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I I

Now to the interesting object Hy 4, !
Mixing effect H,, ~ > = New physics in broken phase!

[MW, PRD 110, 034008 (2024)]
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Stability analysis in four-fermion model with P77 symmetry cnc.-rm

Mean-field stability analysis: Diagonalize Hessian H, 4, (q)

. . Ay /7 =1.0, T = 0.05, u =16
> Symmetric phase: No IP & no moat regime v/m =10, s

f— r@ d

. . " " 1.2 :-' FL(4/2) 1

> Exponentially decaying propagators, “normal o Pl
. F— lop . -
symmetric phase b e s ]
- / -1

08F 4 DR ]

F 2 Tt =

0.6 . / P

04 F Liven] .

U R— .

02F / ]

OO E 1 1 1 1 1 1 1 1 1 1 1 1 .

0 1 2 3 4
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Stability analysis in four-fermion model with P77 symmetry cnc.-rm

Mean-field stability analysis: Diagonalize Hessian H, 4, (q)

Ay /7 =1.0, T = 0.05, p =1.03

2) . (2)= 2, e R B e
> Broken phase: F( 7eCwith 'Y/ =141 R ):
¢.7 ¢A7 Pk b REF:";) R
. . [ ‘b -7 ]
» Low momentum expansion of inverse propagators Lo b ey e ) R .
. : 5
(2) 0.8 | < —_
2 d2F o Pad e H
» Poles are ¢° = —Ffb)(q =0) <dqf§q_o> eC o F e .
Ny
0.4 =
—mx _: ;'J‘-‘ -
= (¢(z)$(0)) ~ e " sin(pr) -
00 b e
0 1 2 3 4 5 6
q
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Stability analysis in four-fermion model with P77 symmetry cnc.-rm

Mean-field stability analysis: Diagonalize Hessian H, 4, (q)

Ay /7 =1.0, T = 0.05, p =1.03

2) . (2)= 2, e R B e
> Broken phase: F( 7eCwith 'Y/ =141 R ):
¢.7 ¢A7 Pk b REF:";) R
. . [ ‘b -7 ]
» Low momentum expansion of inverse propagators Lo b ey e ) R .
. : 5
(2) 0.8 | < —_
2 d2F o Pad e H
» Poles are ¢° = —Ffb)(q =0) <dqf§q_o> eC o F e .
Ny
0.4 =
—mx _: ;'J‘-‘ -
= (¢(z)$(0)) ~ e " sin(pr) -
00 b e
0 1 2 3 4 5 6
q

Quantum pion liquid, P7T broken!
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Static Hessian: Complex-conjugate eigenvalues
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Static Hessian at zero temperature cnc.-rm

Smooth onset of ky when increasing Ay at fixed p

1.0_||| T[T TTT] 0.28
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Scales of the oscillation cnc.-rm

r ~ p/m with C(z) ~ e”™* cos(px)

0'30 _I LELEL I LI | I LI | I LELEL I LI | I LI ) I. 0'56
F— Xy /7 =1.0
005 GN.Av =0.0 0.48
- ] 0.40
0.20 — .
C ] 0.32
&~ 015 = -
- ] 0.24
0.10 -
- ] 0.16
0.05 |~ - 0.08
0'00 -I Ll I L1l I L1l 7 0'00

04 06 08 10 12 14 1.6
u

Frequency roughly of same order as m in large parts of the QnL
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Conclusions cnc.-rm

Observation of quantum pion liquid (Q7L)

» Spatially oscillating correlators C'(z) ~ e”™*sin(kz) in NJL-type models (D =2 + 1)
[MW, PRD 110, 034008 (2024)]
® Related to C/C invariance of FF model
® Mixing between scalar and vector mesons; Competing attractive and repulsive interactions
® Similar effects reported in Polyakov-Loop quark-meson model with w
[Haensch, Rennecke, von Smekal, PRD 110, 036018(2024) arXiv:2308.16244]

» Regimes with spatially modulations very relevant in QCD at p # 0 (P7T symmetry!)
® CKC symmetry as generalized P7T symmetry — Results relevant in other contexts?
® All mechanisms from above also apply to QCD at pu # 0
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Outlook cnc.-rm

QL seems stable against quantum fluctuations compared to inhomogeneous phase

>

[MW, Valgushev, arXiv:2403.18640 (2024) & in preparation]

v

QmnL: How to get realistic estimates for the ratio between decay rates and frequency?

» Dilepton production rate as a experimental observable, 7+ + 7~ — v — [T +[~: Spike
at threshold given by non-trivial minimum of the dispersion

[Hayashi, Tsue, arXiv: 2407.08523], [Nussinov, Ogilvie, Pannullo, Pisarski, Rennecke, Schindler, Winstel, Valgushev, in preparation]

v

Think of more characteristic heavy ion collision observables for the moat regime & other
spatially modulated regimes !
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Appendix



Exotic phases at i # 0 from functional methods: DSE cnc.-rm

N, =81 L = 80 a, = 0.66, ady = 0.290

g

n/zy

» Stability analysis of 2PI effective action in
rainbow ladder approximation

> QCD Dyson-Schwinger setup with gluon > Below certain temperature: (1)) = 0 is
propagator fitted to quenched lattice data unstable with respect to IP
> Perturbative quark-loop effects » Analysis can only be trusted on left
= Chiral density wave is self-consistent spinodal where (11)) = const. # 0

solution of DSE

[Miiller, Buballa, Wambach, PL B 727, 240 (2013)] [Motta et al., arXiv:2406.00205 (2024)]
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D = 2 + 1 four-fermion model: General stability analysis cnc.-rm

(.63 = [ NZ—+¢Q¢ L Q=d+aontY ¢,
J

» Curvature is diagonalizable

) (M2, T,¢) = % — 0 (M2, 1 T) + Loy, (M1, T, g?)
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D = 2 + 1 four-fermion model: General stability analysis cnc.-rm

2
S[90.3) = [ NS 00 b, Q=0+ Y 66
J J

> Curvature is diagonalizable
1
F((;]) <M27,U/7T7 q2> = X _gl (M27/1/7T> + L2,®j (]\/IQaM7T7 q2)

> Momentum dependence fully contained in Ly 4 (M?, 1, T, ¢*)
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D = 2 + 1 four-fermion model: General stability analysis cnc.-rm

(.63 = [ NZ QU Qe drnsY o
J

» Curvature is diagonalizable

e (M2 T, ¢?) = % — 0 (M2, 0, T) + Lo, (M2, 1, T, 0?)

» For each combination of the 16 interaction channels we find:
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D = 2 + 1 four-fermion model: General stability analysis cnc.-rm

(.63 = [ NZ QU Qe drnsY o
J

» Curvature is diagonalizable

e (M2 T, ¢?) = % — 0 (M2, 0, T) + Lo, (M2, 1, T, 0?)

» For each combination of the 16 interaction channels we find:
® Loy, = Lo = — (4M? + ) l2(q*) — known from GN model — no instabilities
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D = 2 + 1 four-fermion model: General stability analysis cnc.-rm

(.63 = [ NZ QU Qe drnsY o
J

» Curvature is diagonalizable

e (M2 T, ¢?) = ; — 0 (M2, 0, T) + Lo, (M2, 1, T, 0?)

» For each combination of the 16 interaction channels we find:

® Loy, = Lo = — (4M? + q?) l2(q*) — known from GN model — no instabilities
® Ly, = Ly = —q*(2(q*) — also monotonically increasing — no instabilities
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D = 2 + 1 four-fermion model: General stability analysis cnc.-rm

(.63 = [ NZ QU Qe drnsY o
J

» Curvature is diagonalizable

e (M2 T, ¢?) = ; — 0 (M2, 0, T) + Lo, (M2, 1, T, 0?)

» For each combination of the 16 interaction channels we find:
® Loy, = Lo = — (4M? + q?) l2(q*) — known from GN model — no instabilities
® Ly, = Ly = —q*(2(q*) — also monotonically increasing — no instabilities

» Remember: T'®)(q # 0) < 0 necessary for IP
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cnc.-ﬁ

Momentum dependence of two point function Lo /Lo _

Lo+
T /Mo = 0.05
/Mo = 1.0

Epa
T/Mo = 0.00
/Mo = 1.0

T
2

2
2
|

' 1
/Mo
» Ly /Ly _ are monotonically increasing functions of ¢ for all M

Spatially oscillating correlations in D = 2 + 1 four-fermion model with PT-symmetry

[Pannullo, MW, PRD 108, 036011 (2023) arXiv:2305.09444]
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Momentum dependence of two point function Lo /Lo _ cnc.-rm

Loy

T/ Mo = 0.00 °

1w/ Mo = 1.0 2

. |

1 2
q/Mo

Ly
T /Mo = 0.05
/Mo = 1.0

» Ly /Ly _ are monotonically increasing functions of ¢ for all M

No IP and no moat regime in all models containing (some of) these 16 interaction channels

e

[Pannullo, MW, PRD 108, 036011 (2023) arXiv:2305.09444]
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Examples (1): FF and Yukawa models

CRC-TR2n

Momentum
Model Used channels ¢; Field basis ; dc:pcn(gc e of Symmetry groups
) +(2)
diagonalizing 87 re)
Loy La
GN 1 o o
NJL 1,174, 1775 . 71,75 o 4. 75
yHGNp I v, 5. yas T, s T4, 7)5
PSFF Tiv . 175 T U, (2N] x SUA(Z) %
LR Pix P

IPs and moat regime absent also for Yukawa versions of these models

[Pannullo, MW, PRD 108, 036011 (2023) arXiv:2305.09444]
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Examples (I1): Multiple chemical potentials

CRC-TR2n

Used

Bosonic

Non-zero

Field basis &

Momentum dependence of I';) Underlying
channels ¢; auxiliary chemical diagonalizing S:f(" symmetry group
fields ¢ potentials JMZ ) = Lo o (M2 0, T %)
Lous LT pL=pt ps dr = (o +1u5) [ @ pr)
MR = p— pas or = (o —105) F(@% i)
L o,a03 = gt o1 = (o +) f(ci’)i.m)
py == ¢ = (0 —<3) Fet. )
L s 0, M5 pLg=pLtpr o= (0 + Tsy) S(@4 prn)
ML = L = g +f (% mr1)
MRt = pR+ 1 i
pRL=pR = o= (0 - Tis) S(@2 prs)
+f(@% nrit)
1.7, 715 o.00,3. 745 MLt L br = (o +15) F((Pr +d0.3)% pret)
MRS PR

or = (o — nus)

@3

+ /(9L —dos)* pry)

T dr +a0s)’ peret)
+[(r — @os)?, pr.y)

\2) | pl)
IS §

Gr

With multiple chemical potentials the analysis is straightforward only for a limited number of

interaction channels
[Pannullo, MW, PRD 108, 036011 (2023) arXiv:2305.09444]
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Non-vanishing imaginary part at ¢ # 0 cnc.-rm

Av/m=1.0,T =0.3, u=1.0

v P
1.50 f == rer(?)
1osE Rerg)
» At larger T: H(0) has real eigenvalues, but o f
o : OO g 1mr @ ==
H(q # 0) develops compl. conj. eigenvalue pairs b #3mTe, | . :
0.75 F e e
. , ‘ 2 ETII
» Caused by mixing of spatial vector components w; 050 f ooz =
> Interpretation of this phenomenon unclear so far e
F—
0'00:17177177;77771lllllllllllllllllllllllt
0 1 2 3 4 5 6
q
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Complex-conjugate eigenvalues for ¢ # 0 cnc.-rm

_ (2) . 2
Rmax = max;q <Im1“¢j (9) Static case — ky = max; Iml“((j) ,)(0)
J
- T T T T I T T T T T T T T L™ 0.8 T T T T T T 0.28
0.7 F — Av/m =10 3 0.25 — Avin=1.0
E N, Ay = 0.0 E —— GN, Ay=0.0 7 0.24
0.6 = -
= 3 0.20 ]
0.5 3 0.20
0.4 E— — 0.15 & 0.16
N : s g 10 <
0.3 3 = 0.12
o 1 0.10 B

0.2 :— —.': 1 0.08
F 3 0.05

0.1E 3 ] 0.04

0.0 :_l PR R N SR T 1_: 0.00
0.0 0.5 1.0 1.5 ' . . . . . 1.6 :

7
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Complex-conjugate eigenvalues for ¢ # 0 cnc.-rm

_ (2) o _ (2)
kmax = max; g <Im1“¢j (q) ¢p = mingec,C = {¢q € [0, oo)|ImI‘¢j (q) # 0}
- T T T T I T T T T I T T T T L= : T T T T I T T T T I T T T T T : 5
0.7 — Av/r=10 4 Mo.25 0.7 == — Ay /r=10 3
C N, Ay = 0.0 ] F e N, A\v = 0.0 3
0.6 - - 0.6 = = 4
E 3 0.20 o 3
0.5 3 0.5 =
- ] 0.15 & 3 E 3
0.4 - . 0.4 -]
&~ - ] RS : E a
0.3 = ~ 0.3 E ,
: ; 0.10 - 3
0.2 - 0.2 =
01 E 3 0.05 01 3 !
0.0 :_l PR R R T B R T T l_: 0.0 :—l PEEE T T I T B |_: 0
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
I I
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2+1-dimensional GN model : Search for inhomogeneities

cn?—m}

> Lattice field theory: Stability analysis & brute for minimization
> At finite lattice spacing: inhomogeneous groundstates

» Thus: Do we also find an inhomogeneous phase in the continuum?

global minimum

(1, pas, T) /0 = (1.041,0.000,0.114)

/o

global minimum

(p, pas, T) /o = (1.083,0.000,0.114)

local minimum

(#, pas, T) /o0 = (1.041,0.000,0.114)

o/ /oy
—04 02 00 02 0.4 —0.16 —0.08 0.00 0.08 0.16 -04 =02 00 02 04
—_— [ —
10.0 A 10.0
e < 50l
ol
00 4 004
T T T T i .
0.0 5.0 10.0 0.0 5.0 10.0
X0

Marc Winstel
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X100

X100

[Buballa, Kurth, Wagner, MW, PRD 103, 034503 (2020), arXiv: 2012.09588 |, [Pannullo, Wagner, MW, Symmetry 14, 265 (2022), arXiv:2112.11183]
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Chiral/Isospin imbalance in the Gross-Neveu model CRC-TRan

Stability analysis on the lattice of GN model with 145 or pr

0.6 - 4
200 = 0.3649 a0 ~0.3649 0.22
0.5 - Lop=14.59 B Lop=21.89
6 04 4 0.20
3 03 E
0.2 4 018
0.1 4
0.16
0.0 T T T T T T T T é’
~
06 4 i 0.14
a00~0.2327 a0, =0.2327
0.5 Log=13.96 T Log=23.27
0.12
L 0.4 - 4
5
>
303 0.10
0.2 4
0.1 < 0.08
0.0 T T T T T
1.00 1.05 110 115 100 1.05 110 1.15
Hlog ulog

[Pannullo, Wagner, MW, Symmetry 14, 265 (2022), arXiv:2112.11183]
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O(N) model in the large-N limit cnc.-rm

2
_Z (577 L 27 m? 2y AN 250
L = 5 (99) + 332 250) + 5ot @

v

Large-N limit easily solvable with constraint field approach, AN & M is fixed

[Pisarski, Tsvelsik, Valgushev, PRD 102,016015 (2020)] [Moshe, Zinn-Justin, Phys. Rept. 385, 69 — 228 (2003)]

v

Vary only m? and Z

v

Theory in 3 4+ 1 dim. at nonzero T": Consider only static mode F,, = 27Tn for n =0

v

Natural ansatz for ground state: The chiral spiral

N NT
& = o (cos(krgz),sin(kgz), 6L = 0)

> As expected: kg # 0 is solution for classical EoM
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Large- N phase diagram cnc.-rm

Solve theory in Large-N limit with chiral spiral ansatz

[Pisarski, Tsvelsik, Valgushev, PRD 102, 016015 (2020)]
T T T

{¢)=0, OSP “Quantum spin liquid” (QSL)

T (¢)#0 : ] » Disordering of chiral spiral
5 (IP) via fluctuation of
transverse modes ¢ |

(¢)=0, QSL

5 ! » Transverse modes =
O R - Goldstone modes of O(N)
0.4 0.2 ojo 0o 04 symmetry breaking

2

m

QSL : {¢"(2)¢? (0))| 20 ~ 0Ye™™¢; cos(my)!
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Large- N phase diagram cnc.-rm

Solve theory in Large-N limit with chiral spiral ansatz

[Pisarski, Tsvelsik, Valgushev, PRD 102, 016015 (2020)]
T T T

{¢)=0, OSP “Quantum spin liquid” (QSL)

T (¢)#0 : ] » Disordering of chiral spiral
5 (IP) via fluctuation of
transverse modes ¢ |

(¢)=0, QSL

5 ! » Transverse modes =
O R - Goldstone modes of O(N)
0.4 0.2 ojo 0o 04 symmetry breaking

2

m

QSL : {¢"(2)¢? (0))| 20 ~ 0Ye™™¢; cos(my)!
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Large- N phase diagram cnc.-rm

Solve theory in Large-N limit with chiral spiral ansatz

[Pisarski, Tsvelsik, Valgushev, PRD 102, 016015 (2020)]
2 T T T

{¢)=0, OSP “Quantum spin liquid” (QSL)

T (¢)#0 ] » Disordering of chiral spiral
: (IP) via fluctuation of
transverse modes ¢ |

(¢)=0, QSL

¢ > Transverse modes =

P TR NSRS i Goldstone modes of O(N)
I - - 5 o symmetry breaking

QSL : (¢' ()7 (0))]gep ~ Y€ ™ ¢y cos(myz)!
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Large- N phase diagram cnc.-rm
osP

Large-N limit with chiral spiral ansatz

2 T T " /
=
(6)=0, OSP ©
N1* (dy=0 <
{¢)=0, QSL
QSL
OE == e o T |
0.4 0.2 0.0 0.2 0.4
I'I12 ,;
SIWAWA
v V
X

|

QSL : {¢"(2)¢? (0))| 2o ~ 0Ye ™™ ¢y cos(myx)!

Spatially oscillating correlations in D = 2 + 1 four-fermion model with PT-symmetry
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Correlators N =1

cn?—m}

Correlators are (discrete) rotationally symmetric, study C'(x) = C((«,0,0))

Large-N
Z=-1.0,m*>= 0.0 Z=0.0,m?>= 0.0 s
‘ : SE . - r
—— QSL-Fit — QSL-Fit 15 | (9?)=0, SP
¢ Lattice Data 006 ¢ Lattice Data | 10 wr=o |
os /
N 0.0 s { ] (#%)=0, QSL
~05
-1.0 [ ]
-15 —— Large-N 2nd order
207557 =02 0.0 02 0.4
m?2
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Correlators N = 1 cnc.-rm

Correlators are (discrete) rotationally symmetric, study C'(x) = C((«,0,0))

Large-N
Z=-1.0,m?= 0.0 Z=0.5m?= 0.0 ,
L ' ‘ ‘ ‘ R . I
o1 —— QSL-Fit o8 OSP-Fit s | 60, sp
¢ Lattice Data ¢ Lattice Data o w0 | '
0.10- 0.04 05 e
8 8 N 0.0~ N %
S S N (9%)=0,05L
0.05F 0.02 -
-1.0 (]
0.00- -15 ~—— Large-N 2nd order
| o.00p 20257 ~02 0.0 02 04
[ 0 mZ
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Correlators N = 1 cnc.-rm

Correlators are (discrete) rotationally symmetric, study C'(x) = C((«,0,0))

Large-N
Z=-1.0,m*>= 0.0 Z=-1.0,m?>= 0.4 s
o —— QSL-Fit —— QSL-Fit s | 60, sp
¢ Lattice Data 008 ¢ Lattice Data | 1o =0 |
o101 0.06 05
8 8 N 0.0} e %
o O 0.04 (¢?) =0, QSL
0.05 -05
0.02 -0 L4 °
-1s
ooor 0.00 ) ) |~ Large:N 2nd order
| , 20257 —-0.2 0.0 0.2 0.4
[ 0 m2
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Correlators N = 1 cnc.-rm

Correlators are (discrete) rotationally symmetric, study C'(x) = C((«,0,0))

Large-N
Z=-1.0,m?>= 0.0 Z=-1.0,m?’= -04
[ T T i T 2. T
0.15 —— QSL-Fit 03l —— QSL-Fit s ‘\ =0, 5P
¢ Lattice Data ¢ Lattice Data 1o wieo |
0.10f o2l os /‘c‘
3 3 N u.o—mm*/ 3
o O (9?)=0, QSL
0.05f 01 -05
-1.0f @ [ ]
L] -15
0.00F 0.0F ~—— Large-N 2nd order
s s 207557 02 0.0 02 04
0 0 2 4 3 8 10 m?2
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Correlators N = 1 cnc.-rm

Correlators are (discrete) rotationally symmetric, study C'(x) = C((«,0,0))

Large-N
Z=-2.0,m?=-0.4 Z=-10,m’= -04
T . T T 2. T
) \
0.3 QSL-Fit 15 “ (9?)=0, SP
) ‘ )
osl ¢ Lattice Data 1o wh=o |
0.2 0.5 /
x 00 8 N u.o—mm*/ o
o O ($2)=0, QSL
0.1 -0
-1.0f @
-0.5
[ ] -15
0.0F —— Large-N 2nd order
° 20 - n n N L
L N -0.4 -0.2 0.0 0.2 0.4
0 2 4 6 8 10 0 2 4 6 8 10 mZ
X X
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'Phase diagram’ N =1 cnc.-rm

2.0 T T T T
1.5F ° N
1.0 (] ‘ 1
0.5F ]
e asL
@® OSP
N 0.0 Not distingui ® ]
guishable 2y —
oo § =005t
~0.5F ° o
( ]
~10f e ° o
_15—- M
—2.0—2%32 ~02 0.0 0.2 0.4
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Independence of N cnc.-rm

C(x)

0.151

0.101

0.051

0.00

N=1

Z=-1.0,m?= 0.0

—— QSL-Fit
¢ Lattice Data

0.20f o

0.15

N =2

Z=-1.0,m?= 0.0

—— QSL-Fit
¢ Lattice Data

N=1

Z=-1.0,m?*= 0.0

—— QSL-Fit
¢ Lattice Data

» m? = 0.0, Z € [-1.0,1.0] Resulting regimes (QSL /OSP) almost independent of

N(=1,2,4,8,10)

» Mechanism through disordering with transverse modes cannot be the full picture

» Lacking a (local) order parameter to fully map out regime in (Z, m?) plane
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