Spatially oscillating correlations in strongly-interacting four-fermion model with generalized PT-symmetry

Marc Winstel

[MW, Physical Review D 110, 034008 (2024), arXiv: 2403.07430]

Applications of Field Theory to Hermitian and Non-Hermitian Systems, King's College London

DFG

September 13, 2024

Introduction

- ▶ QCD Phase diagram in $T \mu_B$ plane: A lot of open questions
	- ' Moat regimes, inhomogeneous chiral phases, quantum pion liquid: Spatial modulations of the order parameter?

 $[Fukushima, Hatsuda, Rept, Prog, Phv, 74 (2011), arXiv: 1005.4814].$

Marc Winstel Spatially oscillating correlations in $D = 2 + 1$ [four-fermion model with PT-symmetry](#page-0-0) 1/21

Generalized \overline{PT} -symmetry in QCD at $\mu \neq 0$

- \blacktriangleright Charge conjugation in Euclidean spacetime $A_\mu \to -A_\mu^T;$ Wilson loop $W \Rightarrow W^\dagger$
- Equal to At $\mu = 0$: Fermion determinant can be expanded in Wilson loops ${\rm tr}_F W$ where ${\rm tr}_F W$ and ${\rm tr}_FW^\dagger$ appear with similar coefficients $\Rightarrow \ln \det[A_\mu] \in \mathbb{R}$

see also: talk by M. Ogilvie on Wednesday

[Nishimura, Ogilvie, Pangeni, PRD 90, 045039 (2014) & PRD 91, 054004 (2015)]

Marc Winstel Spatially oscillating correlations in $D = 2 + 1$ [four-fermion model with PT-symmetry](#page-0-0) 2 / 21

Generalized \mathcal{PT} -symmetry in QCD at $\mu \neq 0$

- \blacktriangleright Charge conjugation in Euclidean spacetime $A_\mu \to -A_\mu^T;$ Wilson loop $W \Rightarrow W^\dagger$
- Equal to At $\mu = 0$: Fermion determinant can be expanded in Wilson loops ${\rm tr}_F W$ where ${\rm tr}_F W$ and ${\rm tr}_FW^\dagger$ appear with similar coefficients $\Rightarrow \ln \det[A_\mu] \in \mathbb{R}$
- \blacktriangleright Charge conjugation C exchanges $\text{tr}_F W$ and $\text{tr}_F W^{\dagger}$
- ► At $\mu \neq 0$: Wilson loops ${\rm tr}_FW/W^\dagger$ with non-trivial winding number n are weighted by $e^{\pm \beta \mu} \Rightarrow$ Broken $\mathcal C$ symmetry

see also: talk by M. Ogilvie on Wednesday

[Nishimura, Ogilvie, Pangeni, PRD 90, 045039 (2014) & PRD 91, 054004 (2015)]

Generalized \overline{PT} -symmetry in QCD at $\mu \neq 0$

- \blacktriangleright Charge conjugation in Euclidean spacetime $A_\mu \to -A_\mu^T;$ Wilson loop $W \Rightarrow W^\dagger$
- Equal to At $\mu = 0$: Fermion determinant can be expanded in Wilson loops ${\rm tr}_F W$ where ${\rm tr}_F W$ and ${\rm tr}_FW^\dagger$ appear with similar coefficients $\Rightarrow \ln \det[A_\mu] \in \mathbb{R}$
- \blacktriangleright Charge conjugation C exchanges $\text{tr}_F W$ and $\text{tr}_F W^{\dagger}$
- ► At $\mu \neq 0$: Wilson loops ${\rm tr}_F W/W^{\dagger}$ with non-trivial winding number n are weighted by $e^{\pm \beta \mu} \Rightarrow$ Broken $\mathcal C$ symmetry
- ▶ But: Invariance under \mathcal{CK} operation: $\text{tr}_FW \to \text{tr}_FW^T = \text{tr}_FW$ ($\mathcal K$ is complex conjugation). This is a PT -type symmetry!

see also: talk by M. Ogilvie on Wednesday

[Nishimura, Ogilvie, Pangeni, PRD 90, 045039 (2014) & PRD 91, 054004 (2015)]

- ► Consider a model with homogeneous (thermal) vev's $\langle \vec{\phi} \rangle$ and propagators G_{ϕ} .
- \blacktriangleright Low momentum representation of (scalar) propagators with Mass / Hessian matrix M

$$
G^{-1}(q^2) = q^2 + \mathcal{M}
$$

[Schindler, Schindler, Medina, Ogilvie, PRD 102, 114510 (2020)]

- ► Consider a model with homogeneous (thermal) vev's $\langle \vec{\phi} \rangle$ and propagators G_{ϕ} .
- \blacktriangleright Low momentum representation of (scalar) propagators with Mass / Hessian matrix M

$$
G^{-1}(q^2) = q^2 + \mathcal{M}
$$

► Conventional, hermitian mass matrix with eigenvalues $\lambda_i \in \mathbb{R} \Rightarrow$ usual exponential decay

[Schindler, Schindler, Medina, Ogilvie, PRD 102, 114510 (2020)]

[Schindler, Schindler, Ogilvie, J. Phys. Conf. Ser. 2038 (2021)]

- ► Consider a model with homogeneous (thermal) vev's $\langle \vec{\phi} \rangle$ and propagators G_{ϕ} .
- \blacktriangleright Low momentum representation of (scalar) propagators with Mass / Hessian matrix M

$$
G^{-1}(q^2) = q^2 + \mathcal{M}
$$

- ► Conventional, hermitian mass matrix with eigenvalues $\lambda_i \in \mathbb{R} \Rightarrow$ usual exponential decay
- With PT -type symmetry: M and \mathcal{M}^* with same EVs $\lambda_i \in \mathbb{C}$

 $M = \Sigma M^* \Sigma \Rightarrow$ Compl. conj. EV pairs

[Schindler, Schindler, Medina, Ogilvie, PRD 102, 114510 (2020)]

[Schindler, Schindler, Ogilvie, J. Phys. Conf. Ser. 2038 (2021)]

Marc Winstel Spatially oscillating correlations in $D = 2 + 1$ [four-fermion model with PT-symmetry](#page-0-0) 3 / 21

- ► Consider a model with homogeneous (thermal) vev's $\langle \vec{\phi} \rangle$ and propagators G_{ϕ} .
- \blacktriangleright Low momentum representation of (scalar) propagators with Mass / Hessian matrix M

$$
G^{-1}(q^2) = q^2 + \mathcal{M}
$$

- ► Conventional, hermitian mass matrix with eigenvalues $\lambda_i \in \mathbb{R} \Rightarrow$ usual exponential decay
- With PT -type symmetry: M and \mathcal{M}^* with same EVs $\lambda_i \in \mathbb{C}$

$$
\mathcal{M} = \Sigma \mathcal{M}^* \Sigma \Rightarrow \text{Compl. conj. EV pairs}
$$

What are the implications?

[Schindler, Schindler, Medina, Ogilvie, PRD 102, 114510 (2020)]

[Schindler, Schindler, Ogilvie, J. Phys. Conf. Ser. 2038 (2021)]

$$
G^{-1}(q^2) = q^2 + \mathcal{M}
$$

PT -type symmetry: What are the implications?

[Schindler, Schindler, Ogilvie, PoS LATTICE2021 (2022)]

Inhomogeneous phase (IP)

§ "Patterned"

- ▶ Long-range order & Translational SSB!
- $\blacktriangleright \langle \phi_i \rangle \sim \langle \bar{\psi} \Gamma_i \psi \rangle = f_{\text{os}}(\mathbf{x})$
- $\blacktriangleright \langle \phi(x)\phi(0)\rangle \sim C_{\rm osc}(x)$

[[]Buballa, Carignano, PPNP 81, 39-96 (2015)]

Quantum pion liquid $(Q \pi L)$

- \blacktriangleright " \mathcal{PT} broken"
- § Disordering through Goldstone modes of chiral SSB???
- $\blacktriangleright \langle \phi_i \rangle \sim \langle \bar{\psi} \Gamma_i \psi \rangle = \text{const.}$

$$
\blacktriangleright C(x) \sim e^{-mx} C_{\rm osc}(x)
$$

[Pisarski et al., PRD 102, 016015 (2020)] [MW, Valgushev, arXiv:2403.18640]

Inhomogeneous phase (IP)

▶ "Patterned"

- § Long-range order & Translational SSB!
- $\blacktriangleright \langle \phi_i \rangle \sim \langle \bar{\psi} \Gamma_i \psi \rangle = f_{\rm os}(\mathbf{x})$
- $\rightarrow \langle \phi(x)\phi(0)\rangle \sim C_{\rm osc}(x)$

$N_t = 81 L = 80 μ/σ_0 = 0.66$, a $σ_0 = 0.290$

Quantum pion liquid $(Q \pi L)$

- \blacktriangleright " \mathcal{PT} broken"
- § Disordering through Goldstone modes of chiral SSB???
- $\blacktriangleright \langle \phi_i \rangle \sim \langle \bar{\psi} \Gamma_i \psi \rangle = \text{const.}$

$$
\blacktriangleright C(x) \sim e^{-mx} C_{\rm osc}(x)
$$

[Buballa, Carignano, PPNP 81, 39-96 (2015)]

[Pisarski et al., PRD 102, 016015 (2020)] [MW, Valgushev, arXiv:2403.18640]

Inhomogeneous phase (IP)

§ "Patterned"

- § Long-range order & Translational SSB!
- $\blacktriangleright \langle \phi_i \rangle \sim \langle \psi \Gamma_i \psi \rangle = f_{\text{os}}(\mathbf{x})$
- $\blacktriangleright \langle \phi(x)\phi(0)\rangle \sim C_{\rm osc}(x)$

$[Buballa, Carignano, PPNP 81, 39-96 (2015)]$

Quantum pion liquid $(Q \pi L)$

- \blacktriangleright " \mathcal{PT} broken"
- § Disordering through Goldstone modes of chiral SSB???
- $\blacktriangleright \langle \phi_i \rangle \sim \langle \bar{\psi} \Gamma_i \psi \rangle = \text{const.}$

$$
\blacktriangleright C(x) \sim e^{-mx} C_{\rm osc}(x)
$$

[Pisarski et al., PRD 102, 016015 (2020)] [MW, Valgushev, arXiv:2403.18640]

- Inhomogeneous, chiral phase (IP): $\langle \bar{\psi}\psi \rangle = f(\mathbf{x})$
- \blacktriangleright Moat regime: $E^2 = Wp^4 + Zp^2 + m^2 + \mathcal{O}(p^6)$ with $Z < 0$

Recent FRG study

 $[Fu, Pawlowski, Rennecke, PRD 101, 054032 (2020)]$

$1 + 1$ -dimensional Four-Fermion model

[Thies, Urlichs, PRD 67, 125015 (2003)]

- Inhomogeneous, chiral phase (IP): $\langle \bar{\psi}\psi \rangle = f(\mathbf{x})$
- \blacktriangleright Moat regime: $E^2 = Wp^4 + Zp^2 + m^2 + \mathcal{O}(p^6)$ with $Z < 0$

Recent FRG study

 $[Fu, Pawlowski, Rennecke, PRD 101, 054032 (2020)]$

 $1 + 1$ -dimensional Four-Fermion model

[Thies, Urlichs, PRD 67, 125015 (2003)]

- Inhomogeneous, chiral phase (IP): $\langle \bar{\psi}\psi \rangle = f(\mathbf{x})$
- \blacktriangleright Moat regime: $E^2 = Wp^4 + Zp^2 + m^2 + \mathcal{O}(p^6)$ with $Z < 0$

Recent FRG study

 $[Fu, Pawlowski, Rennecke, PRD 101, 054032 (2020)]$

[Thies, Urlichs, PRD 67, 125015 (2003)]

- Inhomogeneous, chiral phase (IP): $\langle \bar{\psi}\psi \rangle = f(\mathbf{x})$
- \blacktriangleright Moat regime: $E^2 = Wp^4 + Zp^2 + m^2 + \mathcal{O}(p^6)$ with $Z < 0$

Recent FRG study

 $[Fu, Pawlowski, Rennecke, PRD 101, 054032 (2020)]$

$1 + 1$ -dimensional Four-Fermion model

[Koenigstein, Pannullo, Rechenberger, MW, Steil, (2022)]

Marc Winstel Spatially oscillating correlations in $D = 2 + 1$ [four-fermion model with PT-symmetry](#page-0-0) 6 / 21

QCD-inspired models: Four-fermion and quark-meson models

- \blacktriangleright Four-quark interactions / quark-meson as low-energy approximation for QCD from $\Lambda \gtrsim 1\text{GeV}$
- § Nambu-Jona-Lasinio-type models / quark-meson models for spontaneous chiral symmetry breaking mechanism; no sign problem !
- ▶ IPs appear in phase diagrams of various of those $models$ [Buballa, Carignano, PPNP 81, 39-96 (2015)]

[[]Nickel, PRD 80, 074025 (2009)]

QCD-inspired models: Four-fermion and quark-meson models

- \blacktriangleright Four-quark interactions / quark-meson as low-energy approximation for QCD from $\Lambda \gtrsim 1\text{GeV}$
- § Nambu-Jona-Lasinio-type models / quark-meson models for spontaneous chiral symmetry breaking mechanism; no sign problem !
- ▶ IPs appear in phase diagrams of various of those $models$ [Buballa, Carignano, PPNP 81, 39-96 (2015)]

[[]Nickel, PRD 80, 074025 (2009)]

BUT: Evidence that IPs are cutoff artifacts from multiple studies!

- \blacktriangleright Four-quark interactions / quark-meson as low-energy approximation for QCD from $\Lambda \gtrsim 1\text{GeV}$
- § Nambu-Jona-Lasinio-type models / quark-meson models for spontaneous chiral symmetry breaking mechanism; no sign problem !
- ▶ IPs appear in phase diagrams of various of those $models$ [Buballa, Carignano, PPNP 81, 39-96 (2015)]

[[]Nickel, PRD 80, 074025 (2009)]

BUT: Evidence that IPs are cutoff artifacts from multiple studies!

[Narayanan, PRD (2021)], [Buballa et al., PRD (2021)], [Pannullo, MW, PRD (2023)], [Pannullo, PRD (2023)], [Koenigstein, Pannullo, PRD (2023)], [Pannullo, MW, Wagner, PRD (2024)]

Regulator dependence of IPs: 2+1-dimensional GN model

Strong regulator dependence of results $\&$ IP vanishes when renormalizing the theory !

[Buballa, Kurth, Wagner, MW, PRD 103, 034503 (2020), arXiv: 2012.09588]

 \blacktriangleright No instability towards IP in general four-fermion model with scalar $(S = 0)$ channels

[Pannullo, MW, PRD 108, 036011 (2023) arXiv:2305.09444]

▶ Strong regularization scheme dependence in non-renorm. NJL model

[Pannullo, MW, Wagner, PRD (2024)]

Marc Winstel Spatially oscillating correlations in $D = 2 + 1$ [four-fermion model with PT-symmetry](#page-0-0) **6** / 21

Generic four-fermion model setup

Study of $2 + 1$ -dimensional models

$$
\mathcal{S}_{\text{FF}}[\bar{\psi}, \psi] = \int d^3x \left\{ \bar{\psi} \left(\vec{\phi} + \gamma_0 \mu \right) \psi - \sum_j \left(\frac{\lambda_j}{2N} \left(\bar{\psi} c_j \psi \right)^2 \right) \right\}
$$

▶ 4 \times 4 Dirac basis for chiral symmetry, 2 flavors ($\gamma_{45} = i\gamma_4\gamma_5$)

$$
(c_j) \in (1, i\gamma_4, i\gamma_5, \gamma_{45}, \vec{\tau}, i\vec{\tau}\gamma_4, i\vec{\tau}\gamma_5, \vec{\tau}\gamma_{45}) \times (1, i\gamma_\mu)
$$

▶ Bosonized version

$$
S[\bar{\psi}, \psi, \vec{\phi}] = \int d^3x \left\{ N \sum_j \frac{\phi_j^2}{2\lambda_j} + \bar{\psi} Q \psi \right\}, \quad Q = \vec{\phi} + \gamma_0 \mu + \sum_j c_j \phi_j,
$$

Integrate out $\bar{\psi}, \psi \Rightarrow S_{\text{eff}}[\vec{\phi}] \sim \ln \text{Det} Q$

Large-N limit / Mean-field approximation: No integration about $\vec{\phi}$ $\Rightarrow \Omega \sim \min_{\vec{\phi}} S_{\text{eff}}[\vec{\phi}]$

▶ Global minimization of $S_{\text{eff}}[\vec{\phi}(\mathbf{x})]$ using ansatzes / lattice field theory

Large-N limit / Mean-field approximation: No integration about $\vec{\phi}$ $\Rightarrow \Omega \sim \min_{\vec{x}} S_{\text{eff}}[\vec{\phi}]$

- ► Global minimization of $S_{\text{eff}}[\vec{\phi}(\mathbf{x})]$ using ansatzes / lattice field theory
- ► Stability analysis of homogeneous ground state $\vec{\phi}(\mathbf{x}) = \vec{\phi} = \text{const.}$
	- $(+)$ Well tested on $1 + 1$ -dim. GN model, very reliable in finding inhomogeneous phases $(+)$ Implementable in multiple works

Large-N limit / Mean-field approximation: No integration about $\vec{\phi}$ $\Rightarrow \Omega \sim \min_{\vec{\phi}} S_{\text{eff}}[\vec{\phi}]$

- ► Global minimization of $S_{\text{eff}}[\vec{\phi}(\mathbf{x})]$ using ansatzes / lattice field theory
- ► Stability analysis of homogeneous ground state $\vec{\phi}(\mathbf{x}) = \vec{\phi} = \text{const.}$
	- Well tested on $1 + 1$ -dim. GN model, very reliable in finding inhomogeneous phases $(+)$ Implementable in multiple works
	- $\bar{p}(\boldsymbol{-})$ Does not work when there is an energy barrier between true ground state and $\vec{\bar{\phi}}$ Less info about ground state: Only momentum q with most negative curvature

Large-N limit / Mean-field approximation: No integration about $\vec{\phi}$ $\Rightarrow \Omega \sim \min_{\vec{\phi}} S_{\text{eff}}[\vec{\phi}]$

- ► Global minimization of $S_{\text{eff}}[\vec{\phi}(\mathbf{x})]$ using ansatzes / lattice field theory
- ► Stability analysis of homogeneous ground state $\vec{\phi}(\mathbf{x}) = \vec{\phi} = \text{const.}$
	- Well tested on $1 + 1$ -dim. GN model, very reliable in finding inhomogeneous phases $(+)$ Implementable in multiple works
	- $\bar{p}(\boldsymbol{-})$ Does not work when there is an energy barrier between true ground state and $\vec{\bar{\phi}}$ Less info about ground state: Only momentum q with most negative curvature

$$
\phi_j(x) = \bar{\phi}_j + \delta \phi_j(\mathbf{x})
$$

First non-vanishing correction expressed by Hessian matrix (analog of mass matrix \mathcal{M})

$$
\frac{S_{\text{eff}}^{(2)}}{N} = \frac{\beta}{2} \int \frac{\mathrm{d}^2 q}{(2\pi)^2} \vec{\delta \phi}^T(-\mathbf{q}) H(|\mathbf{q}|) \vec{\delta \phi}(\mathbf{q}), \quad H_{\phi_j \phi_k}(q) = \left(\frac{\delta_{j,k}}{\lambda_j}\right) + \frac{1}{\beta} \sum_p \text{tr}\left[S(p + (0, \vec{q})) c_j S(p) c_k\right]
$$

- ▶ Free fermion propagator S with mass $M^2(\bar{\phi}_j)$ at fixed μ and T
- ► Eigenvalues of Hessian \Rightarrow Bosonic two-point functions $\Gamma_{\varphi_j}^{(2)}(q) = \left(\langle \varphi_j \varphi_j\rangle_c \right)^{-1}$
- Inhomogeneous phase: $\Gamma^{(2)}(q) < 0$ for $q \neq 0$ Moat: $Z = \frac{d^2 \Gamma^{(2)}}{dq^2}$ $\frac{q_1(z)}{dq^2}(q=0) < 0$
- ► Quantum pion liquid: $\Gamma^{(2)}(q=0) \in \mathbb{C}$ but appear in complex-conjugate pairs!

$1 + 1$ -dimensional GN model: Two-point function

$$
S[\bar{\psi}, \psi] = \int_0^{\beta} d\tau \int dx \left\{ \bar{\psi} \left(\bar{\phi} + \gamma_0 \mu \right) \psi - \frac{\lambda}{2N} \left(\bar{\psi} \psi \right)^2 \right\} \xrightarrow{\text{Bosonize}} S[\bar{\psi}, \psi, \sigma] = \int d^2x \left\{ \frac{\sigma^2}{2\lambda} + \bar{\psi} \left(\bar{\phi} + \gamma_0 \mu + \sigma \right) \psi \right\}
$$

 $T/\Sigma_0 = 0.15$

[Koenigstein, Pannullo, Rechenberger, MW, Steil, (2022)]

- \blacktriangleright $\mu = 1.2$ corresponds to a Moat regime
- $\mu = 0.8$ corresponds to the IP
Marc Winstel

Spatially oscillating correlations in $D = 2 + 1$ [four-fermion model with PT-symmetry](#page-0-0) 12 / 21 $/$ 21

 \overline{a}

$$
S_{\rm mix}[\bar{\psi}, \psi] = \int_0^\beta d\tau \int d^2x \left\{ \bar{\psi} \left(\vec{\phi} + \gamma_3 \mu \right) \psi - \left[\frac{\lambda_S}{2N} \left(\bar{\psi} \psi \right)^2 + \frac{\lambda_V}{2N} \left(\bar{\psi} i \gamma_\nu \psi \right)^2 \right] \right\}
$$

- ▶ Bosonization similar to before $S[\bar{\psi}, \psi, \sigma, \omega_{\nu}] = \int d^3x$ « $\bar{\psi}$ \mathcal{L} $\partial \hspace{-.05cm} / \hspace{.05cm} +\, \mathrm{i} \gamma_\nu \omega_\nu + \gamma_0 \mu + \sigma$ ˘ $\psi + \frac{\omega_{\nu}\omega_{\nu}}{2}$ $\frac{\omega_\nu \omega_\nu}{2 \lambda_V} + \frac{\sigma^2}{2 \lambda_\mu}$ $2\lambda_S$
- § Homogeneous condensation:

 $\bullet~\bar\omega_j=0$ & $\omega_0\sim$ i $\langle\psi^\dagger\psi\rangle/N$ purely imaginary; shift in chemical potential $\bar\mu=\mu+{\rm i}\bar\omega_0$

- ► Charge symmetry breaking at $\mu \neq 0$: $\mathcal{C}\omega_0 = -\omega_0$, but \mathcal{CK} invariance as in QCD!
- ► Complex saddle points $(σ, ων) = (σ, iπδ_{0,ν})!$
- ► The following results are generic for all models with local $\left({\bar \psi} \Gamma \psi \right)^2$ in $D=2+1$

[MW, PRD 110, 034008 (2024)]

In general: Broken phase enlarged by vector coupling

Marc Winstel Spatially oscillating correlations in $D = 2 + 1$ [four-fermion model with PT-symmetry](#page-0-0) 14 / 21

Homogeneous phase diagram: Chiral condensate

Now to the interesting object $H_{\phi_j\phi_k}!$ Mixing effect $H_{\sigma\omega_0} \sim \bar{\Sigma} \Rightarrow$ New physics in broken phase!

[MW, PRD 110, 034008 (2024)]

Mean-field stability analysis: Diagonalize Hessian $H_{\phi_j\phi_k}(q)$

- ▶ Symmetric phase: No IP & no moat regime
- ▶ Exponentially decaying propagators, "normal" symmetric phase

Mean-field stability analysis: Diagonalize Hessian $H_{\phi_j\phi_k}(q)$

- ► Broken phase: $\Gamma_{\phi_i}^{(2)}$ $\stackrel{(2)}{\phi_j} \in \mathbb{C}$ with $\Gamma^{(2)*}_{\phi_j}$ $\binom{(2)*}{\phi_j} = \Gamma^{(2)}_{\phi_k}$ $\frac{2}{\phi_k}$!
- § Low momentum expansion of inverse propagators

$$
\text{Poles are } q^2 = -\Gamma_{\phi}^{(2)}(q=0) \left(\frac{\mathrm{d}^2 \Gamma_{\phi}^{(2)}}{\mathrm{d}q^2} |_{q=0} \right)^{-1} \in \mathbb{C}
$$
\n
$$
\Rightarrow \langle \phi(x)\phi(0) \rangle \sim \mathrm{e}^{-mx} \sin(px)
$$

Only σ and ω_0 studied

Mean-field stability analysis: Diagonalize Hessian $H_{\phi_j\phi_k}(q)$

- ► Broken phase: $\Gamma_{\phi_i}^{(2)}$ $\stackrel{(2)}{\phi_j} \in \mathbb{C}$ with $\Gamma^{(2)*}_{\phi_j}$ $\binom{(2)*}{\phi_j} = \Gamma^{(2)}_{\phi_k}$ $\frac{2}{\phi_k}$!
- § Low momentum expansion of inverse propagators

$$
\text{Poles are } q^2 = -\Gamma_{\phi}^{(2)}(q=0) \left(\frac{d^2 \Gamma_{\phi}^{(2)}}{dq^2} |_{q=0} \right)^{-1} \in \mathbb{C}
$$
\n
$$
\Rightarrow \langle \phi(x)\phi(0) \rangle \sim e^{-mx} \sin(px)
$$

Quantum pion liquid, PT broken!

Only σ and ω_0 studied

Static Hessian: Complex-conjugate eigenvalues

Static Hessian at zero temperature

Scales of the oscillation

Frequency roughly of same order as m in large parts of the $Q_{\pi}L$

Marc Winstel Spatially oscillating correlations in $D = 2 + 1$ [four-fermion model with PT-symmetry](#page-0-0) 19 / 21 (21)

Observation of quantum pion liquid $(Q \pi L)$

- ▶ Spatially oscillating correlators $C(x) \sim e^{-mx} \sin(kx)$ in NJL-type models $(D = 2 + 1)$ [MW, PRD 110, 034008 (2024)]
	- \bullet Related to \mathcal{CK} invariance of FF model
	- ' Mixing between scalar and vector mesons; Competing attractive and repulsive interactions
	- Similar effects reported in Polyakov-Loop quark-meson model with ω

[Haensch, Rennecke, von Smekal, PRD 110, 036018(2024) arXiv:2308.16244]

- E Regimes with spatially modulations very relevant in QCD at $\mu \neq 0$ (PT symmetry!)
	- \cdot CK symmetry as generalized PT symmetry Results relevant in other contexts?
	- All mechanisms from above also apply to QCD at $\mu \neq 0$

- \triangleright \bigcirc π L seems stable against quantum fluctuations compared to inhomogeneous phase $[MW, Valgushev, arXiv:2403.18640 (2024) &$ in preparation]
- \triangleright O π L: How to get realistic estimates for the ratio between decay rates and frequency?
- ► Dilepton production rate as a experimental observable, $\pi^+ + \pi^- \rightarrow \gamma \rightarrow l^+ + l^-$: Spike at threshold given by non-trivial minimum of the dispersion

[Hayashi, Tsue, arXiv: 2407.08523], [Nussinov, Ogilvie, Pannullo, Pisarski, Rennecke, Schindler, Winstel, Valgushev, in preparation]

§ Think of more characteristic heavy ion collision observables for the moat regime & other spatially modulated regimes !

 $N_t = 81$ L = 80 μ/σ₀ = 0.66, aσ₀ = 0.290

- ▶ QCD Dyson-Schwinger setup with gluon propagator fitted to quenched lattice data
- ▶ Perturbative quark-loop effects
- \Rightarrow Chiral density wave is self-consistent solution of DSE

- \triangleright Stability analysis of 2PI effective action in rainbow ladder approximation
- Below certain temperature: $\langle \bar{\psi}\psi \rangle = 0$ is unstable with respect to IP
- ▶ Analysis can only be trusted on left spinodal where $\langle \bar{\psi}\psi \rangle = \text{const.} \neq 0$

[Müller, Buballa, Wambach, PL B 727 , 240 (2013)]

[Motta et al., arXiv:2406.00205 (2024)]

Marc Winstel Spatially oscillating correlations in $D = 2 + 1$ [four-fermion model with PT-symmetry](#page-0-0) 22 / 21

$$
S[\bar{\psi}, \psi, \vec{\phi}] = \int d^3x \left\{ N \sum_j \frac{\phi_j^2}{2\lambda} + \bar{\psi} Q \psi \right\}, \quad Q = \vec{\phi} + \gamma_0 \mu + \sum_j c_j \phi_j,
$$

▶ Curvature is diagonalizable

$$
\Gamma_{\phi_j}^{(2)}\left(M^2,\mu,T,q^2\right) = \frac{1}{\lambda} - \ell_1\left(M^2,\mu,T\right) + L_{2,\phi_j}(M^2,\mu,T,q^2)
$$

Marc Winstel Spatially oscillating correlations in $D = 2 + 1$ [four-fermion model with PT-symmetry](#page-0-0) 23 / 21

$$
S[\bar{\psi}, \psi, \vec{\phi}] = \int d^3x \left\{ N \sum_j \frac{\phi_j^2}{2\lambda} + \bar{\psi} Q \psi \right\}, \quad Q = \vec{\phi} + \gamma_0 \mu + \sum_j c_j \phi_j,
$$

 \blacktriangleright Curvature is diagonalizable

$$
\Gamma^{(2)}_{\phi_j}\left(M^2,\mu,T,q^2\right) = \frac{1}{\lambda} - \ell_1\left(M^2,\mu,T\right) + L_{2,\phi_j}(M^2,\mu,T,q^2)
$$

▶ Momentum dependence fully contained in $L_{2,\phi_j}(M^2,\mu,T,q^2)$

$$
S[\bar{\psi}, \psi, \vec{\phi}] = \int d^3x \left\{ N \sum_j \frac{\phi_j^2}{2\lambda} + \bar{\psi} Q \psi \right\}, \quad Q = \vec{\phi} + \gamma_0 \mu + \sum_j c_j \phi_j,
$$

 \blacktriangleright Curvature is diagonalizable

$$
\Gamma^{(2)}_{\phi_j}\left(M^2,\mu,T,q^2\right) = \frac{1}{\lambda} - \ell_1\left(M^2,\mu,T\right) + L_{2,\phi_j}(M^2,\mu,T,q^2)
$$

§ For each combination of the 16 interaction channels we find:

$$
S[\bar{\psi}, \psi, \vec{\phi}] = \int d^3x \left\{ N \sum_j \frac{\phi_j^2}{2\lambda} + \bar{\psi} Q \psi \right\}, \quad Q = \vec{\phi} + \gamma_0 \mu + \sum_j c_j \phi_j,
$$

 \blacktriangleright Curvature is diagonalizable

$$
\Gamma^{(2)}_{\phi_j}\left(M^2,\mu,T,q^2\right) = \frac{1}{\lambda} - \ell_1\left(M^2,\mu,T\right) + L_{2,\phi_j}(M^2,\mu,T,q^2)
$$

- ▶ For each combination of the 16 interaction channels we find:
	- r each combination of the 10 interaction channels we find:
• $L_{2,\phi_j} = L_{2,+} = -\left(4M^2 + \mathbf{q}^2\right)\ell_2(\mathbf{q}^2)$ known from GN model no instabilities

$$
S[\bar{\psi}, \psi, \vec{\phi}] = \int d^3x \left\{ N \sum_j \frac{\phi_j^2}{2\lambda} + \bar{\psi} Q \psi \right\}, \quad Q = \vec{\phi} + \gamma_0 \mu + \sum_j c_j \phi_j,
$$

▶ Curvature is diagonalizable

$$
\Gamma^{(2)}_{\phi_j}\left(M^2,\mu,T,q^2\right) = \frac{1}{\lambda} - \ell_1\left(M^2,\mu,T\right) + L_{2,\phi_j}(M^2,\mu,T,q^2)
$$

- ▶ For each combination of the 16 interaction channels we find:
	- r each combination of the 10 interaction channels we find:
• $L_{2,\phi_j} = L_{2,+} = -\left(4M^2 + \mathbf{q}^2\right)\ell_2(\mathbf{q}^2)$ known from GN model no instabilities
	- \bullet $L_{2,\phi_j} = L_{2,-} = -{\bf q}^2\ell_2({\bf q}^2)$ also monotonically increasing no instabilities

$$
S[\bar{\psi}, \psi, \vec{\phi}] = \int d^3x \left\{ N \sum_j \frac{\phi_j^2}{2\lambda} + \bar{\psi} Q \psi \right\}, \quad Q = \vec{\phi} + \gamma_0 \mu + \sum_j c_j \phi_j,
$$

▶ Curvature is diagonalizable

$$
\Gamma^{(2)}_{\phi_j}\left(M^2,\mu,T,q^2\right) = \frac{1}{\lambda} - \ell_1\left(M^2,\mu,T\right) + L_{2,\phi_j}(M^2,\mu,T,q^2)
$$

- ▶ For each combination of the 16 interaction channels we find:
	- r each combination of the 10 interaction channels we find:
• $L_{2,\phi_j} = L_{2,+} = -\left(4M^2 + \mathbf{q}^2\right)\ell_2(\mathbf{q}^2)$ known from GN model no instabilities
	- \bullet $L_{2,\phi_j} = L_{2,-} = -{\bf q}^2\ell_2({\bf q}^2)$ also monotonically increasing no instabilities
- ► Remember: $\Gamma^{(2)}(q \neq 0) < 0$ necessary for IP

Momentum dependence of two point function $L_{2,+}/L_{2,-}$

▶ $L_{2,+}/L_{2,-}$ are monotonically increasing functions of q for all M

[Pannullo, MW, PRD 108, 036011 (2023) arXiv:2305.09444]

Marc Winstel Spatially oscillating correlations in $D = 2 + 1$ [four-fermion model with PT-symmetry](#page-0-0) 24 / 21 24

Momentum dependence of two point function $L_{2,+}/L_{2,-}$ **CRC-TR**

• $L_{2,+}/L_{2,-}$ are monotonically increasing functions of q for all M

No IP and no moat regime in all models containing (some of) these 16 interaction channels $\bar{\psi}c_j\phi_j\psi$ ` ˘

$$
(c_j)_{j=1,\ldots,16} = (1, i\gamma_4, i\gamma_5, \gamma_{45}, \vec{\tau}, i\vec{\tau}\gamma_4, i\vec{\tau}\gamma_5, \vec{\tau}\gamma_{45})
$$

[Pannullo, MW, PRD 108, 036011 (2023) arXiv:2305.09444]

Marc Winstel Spatially oscillating correlations in $D = 2 + 1$ [four-fermion model with PT-symmetry](#page-0-0) 24 / 21

IPs and moat regime absent also for Yukawa versions of these models

[Pannullo, MW, PRD 108, 036011 (2023) arXiv:2305.09444]

Marc Winstel Spatially oscillating correlations in $D = 2 + 1$ [four-fermion model with PT-symmetry](#page-0-0) 25 / 21 $25 / 21$

Examples (II): Multiple chemical potentials

With multiple chemical potentials the analysis is straightforward only for a limited number of interaction channels

[Pannullo, MW, PRD 108, 036011 (2023) arXiv:2305.09444]

- At larger $T: H(0)$ has real eigenvalues, but $H(q \neq 0)$ develops compl. conj. eigenvalue pairs
- \blacktriangleright Caused by mixing of spatial vector components ω_i
- ▶ Interpretation of this phenomenon unclear so far

Complex-conjugate eigenvalues for $q \neq 0$

$$
k_{\max} = \max_{j,q} \left(\operatorname{Im} \Gamma^{(2)}_{\phi_j}(q) \right)
$$

$$
\text{Static case}-k_0=\operatorname{max}_j \operatorname{Im} \Gamma^{(2)}_{\phi_j}(0)
$$

$$
k_{\max} = \max_{j,q} \left(\operatorname{Im} \Gamma_{\phi_j}^{(2)}(q) \right)
$$

$$
q_B = \min_{q \in C} C = \{ q \in [0, \infty) | \text{Im}\Gamma_{\phi_j}^{(2)}(q) \neq 0 \}
$$

2+1-dimensional GN model : Search for inhomogeneities

- ▶ Lattice field theory: Stability analysis & brute for minimization
- § At finite lattice spacing: inhomogeneous groundstates
- § Thus: Do we also find an inhomogeneous phase in the continuum?

[Buballa, Kurth, Wagner, MW, PRD 103, 034503 (2020), arXiv: 2012.09588]. [Pannullo, Wagner, MW, Symmetry 14, 265 (2022), arXiv:2112.11183]

Chiral/Isospin imbalance in the Gross-Neveu model

[Pannullo, Wagner, MW, Symmetry 14, 265 (2022), arXiv:2112.11183]

Marc Winstel Spatially oscillating correlations in $D = 2 + 1$ [four-fermion model with PT-symmetry](#page-0-0) 30 / 21

$$
L_{\text{eff}} = \frac{Z}{2} \left(\partial_j \vec{\phi} \right)^2 + \frac{1}{2M^2} \left(\sum_j \partial_j^2 \vec{\phi} \right)^2 + \frac{m^2}{2} \vec{\phi}^2 + \frac{\lambda N}{4} (\vec{\phi}^2)^2
$$

- Earge-N limit easily solvable with constraint field approach, $\lambda N \& M$ is fixed [Pisarski, Tsvelsik, Valgushev, PRD 102 , 016015 (2020)] [Moshe, Zinn-Justin, Phys. Rept. 385 , $69 - 228$ (2003)]
- \blacktriangleright Vary only m^2 and Z
- ► Theory in 3 + 1 dim. at nonzero T: Consider only static mode $E_n = 2\pi T n$ for $n = 0$
- ▶ Natural ansatz for ground state: The chiral spiral

$$
\vec{\phi} = \phi_0 \left(\cos(k_0 z), \sin(k_0 z), \phi_\perp = \vec{0} \right)^T
$$

▶ As expected: $k_0 \neq 0$ is solution for classical EoM

Solve theory in Large- N limit with chiral spiral ansatz

"Quantum spin liquid" (QSL)

- \triangleright Disordering of chiral spiral (IP) via fluctuation of transverse modes ϕ_{\perp}
- \blacktriangleright Transverse modes \equiv Goldstone modes of $O(N)$ symmetry breaking

Solve theory in Large- N limit with chiral spiral ansatz

"Quantum spin liquid" (QSL)

- \triangleright Disordering of chiral spiral (IP) via fluctuation of transverse modes ϕ_{\perp}
- \blacktriangleright Transverse modes \equiv Goldstone modes of $O(N)$ symmetry breaking

Solve theory in Large- N limit with chiral spiral ansatz

"Quantum spin liquid" (QSL)

- \triangleright Disordering of chiral spiral (IP) via fluctuation of transverse modes ϕ_{\perp}
- \blacktriangleright Transverse modes \equiv Goldstone modes of $O(N)$ symmetry breaking

 $\mathsf{QSL}:\langle \phi^i(x)\phi^j(0)\rangle|_{x\to\infty}\sim \delta^{ij}\mathrm{e}^{-m_r}c_1\cos(m_ix)!$

Large- N phase diagram

Marc Winstel Spatially oscillating correlations in $D = 2 + 1$ [four-fermion model with PT-symmetry](#page-0-0) 33 / 21

Correlators are (discrete) rotationally symmetric, study $C(\mathbf{x}) = C((x, 0, 0))$

Correlators are (discrete) rotationally symmetric, study $C(\mathbf{x}) = C((x, 0, 0))$

• $m^2 = 0.0, Z \in [-1.0, 1.0]$ Resulting regimes (QSL /OSP) almost independent of $N (= 1, 2, 4, 8, 10)$

- ▶ Mechanism through disordering with transverse modes cannot be the full picture
- \blacktriangleright Lacking a (local) order parameter to fully map out regime in (Z, m^2) plane