Spatially oscillating correlations in strongly-interacting four-fermion model with generalized PT-symmetry

Marc Winstel

[MW, Physical Review D 110, 034008 (2024), arXiv: 2403.07430]

Applications of Field Theory to Hermitian and Non-Hermitian Systems, King's College London

Introduction

- ▶ QCD Phase diagram in $T \mu_B$ plane: A lot of open questions
 - Moat regimes, inhomogeneous chiral phases, quantum pion liquid: Spatial modulations of the order parameter?

The phase diagram of dense QCD

[Fukushima, Hatsuda, Rept. Prog. Phy. 74 (2011), arXiv: 1005.4814.]

Marc Winstel

Generalized \mathcal{PT} -symmetry in QCD at $\mu \neq 0$

- Charge conjugation in Euclidean spacetime $A_{\mu} \rightarrow -A_{\mu}^{T}$; Wilson loop $W \Rightarrow W^{\dagger}$
- At $\mu = 0$: Fermion determinant can be expanded in Wilson loops $\operatorname{tr}_F W$ where $\operatorname{tr}_F W$ and $\operatorname{tr}_F W^{\dagger}$ appear with similar coefficients $\Rightarrow \ln \det[A_{\mu}] \in \mathbb{R}$

see also: talk by M. Ogilvie on Wednesday

[Nishimura, Ogilvie, Pangeni, PRD 90, 045039 (2014) & PRD 91, 054004 (2015)]

Marc Winstel

Generalized \mathcal{PT} -symmetry in QCD at $\mu \neq 0$

- Charge conjugation in Euclidean spacetime $A_{\mu} \rightarrow -A_{\mu}^{T}$; Wilson loop $W \Rightarrow W^{\dagger}$
- At $\mu = 0$: Fermion determinant can be expanded in Wilson loops $\operatorname{tr}_F W$ where $\operatorname{tr}_F W$ and $\operatorname{tr}_F W^{\dagger}$ appear with similar coefficients $\Rightarrow \ln \det[A_{\mu}] \in \mathbb{R}$
- Charge conjugation ${\cal C}$ exchanges ${
 m tr}_F W$ and ${
 m tr}_F W^\dagger$
- At $\mu \neq 0$: Wilson loops $\operatorname{tr}_F W/W^{\dagger}$ with non-trivial winding number n are weighted by $e^{\pm\beta\mu} \Rightarrow$ Broken \mathcal{C} symmetry

see also: talk by M. Ogilvie on Wednesday

[Nishimura, Ogilvie, Pangeni, PRD 90, 045039 (2014) & PRD 91, 054004 (2015)]

Generalized \mathcal{PT} -symmetry in QCD at $\mu \neq 0$

- Charge conjugation in Euclidean spacetime $A_{\mu} \rightarrow -A_{\mu}^{T}$; Wilson loop $W \Rightarrow W^{\dagger}$
- At $\mu = 0$: Fermion determinant can be expanded in Wilson loops $\operatorname{tr}_F W$ where $\operatorname{tr}_F W$ and $\operatorname{tr}_F W^{\dagger}$ appear with similar coefficients $\Rightarrow \ln \det[A_{\mu}] \in \mathbb{R}$
- Charge conjugation ${\cal C}$ exchanges ${
 m tr}_F W$ and ${
 m tr}_F W^\dagger$
- At $\mu \neq 0$: Wilson loops $\operatorname{tr}_F W/W^{\dagger}$ with non-trivial winding number n are weighted by $e^{\pm\beta\mu} \Rightarrow$ Broken \mathcal{C} symmetry
- ▶ But: Invariance under CK operation: $\operatorname{tr}_F W \to \operatorname{tr}_F W^T = \operatorname{tr}_F W$ (K is complex conjugation). This is a \mathcal{PT} -type symmetry!

see also: talk by M. Ogilvie on Wednesday

[Nishimura, Ogilvie, Pangeni, PRD 90, 045039 (2014) & PRD 91, 054004 (2015)]

Generalized $\mathcal{PT}\text{-symmetry:}$ Implications on the Hessian matrix

- Consider a model with homogeneous (thermal) vev's $\langle ec{\phi}
 angle$ and propagators G_{ϕ_j}
- Low momentum representation of (scalar) propagators with Mass / Hessian matrix ${\cal M}$

$$G^{-1}(q^2) = q^2 + \mathcal{M}$$

[Schindler, Schindler, Medina, Ogilvie, PRD 102, 114510 (2020)]

Generalized $\mathcal{PT}\text{-symmetry:}$ Implications on the Hessian matrix

- Consider a model with homogeneous (thermal) vev's $\langle ec{\phi}
 angle$ and propagators G_{ϕ_j}
- Low momentum representation of (scalar) propagators with Mass / Hessian matrix ${\cal M}$

$$G^{-1}(q^2) = q^2 + \mathcal{M}$$

• Conventional, hermitian mass matrix with eigenvalues $\lambda_j \in \mathbb{R} \Rightarrow$ usual exponential decay

[Schindler, Schindler, Medina, Ogilvie, PRD 102, 114510 (2020)]

[Schindler, Schindler, Ogilvie, J. Phys. Conf. Ser. 2038 (2021)]

Generalized \mathcal{PT} -symmetry: Implications on the Hessian matrix

- Consider a model with homogeneous (thermal) vev's $\langle ec{\phi}
 angle$ and propagators G_{ϕ_j}
- \blacktriangleright Low momentum representation of (scalar) propagators with Mass / Hessian matrix ${\cal M}$

$$G^{-1}(q^2) = q^2 + \mathcal{M}$$

- Conventional, hermitian mass matrix with eigenvalues $\lambda_j \in \mathbb{R} \Rightarrow$ usual exponential decay
- With \mathcal{PT} -type symmetry: \mathcal{M} and \mathcal{M}^* with same EVs $\lambda_j \in \mathbb{C}$

 $\mathcal{M} = \Sigma \mathcal{M}^* \Sigma \Rightarrow$ Compl. conj. EV pairs

[Schindler, Schindler, Medina, Ogilvie, PRD 102, 114510 (2020)]

[Schindler, Schindler, Ogilvie, J. Phys. Conf. Ser. 2038 (2021)]

Marc Winstel

Generalized \mathcal{PT} -symmetry: Implications on the Hessian matrix

- Consider a model with homogeneous (thermal) vev's $\langle ec{\phi}
 angle$ and propagators G_{ϕ_j}
- \blacktriangleright Low momentum representation of (scalar) propagators with Mass / Hessian matrix ${\cal M}$

$$G^{-1}(q^2) = q^2 + \mathcal{M}$$

- Conventional, hermitian mass matrix with eigenvalues $\lambda_j \in \mathbb{R} \Rightarrow$ usual exponential decay
- With \mathcal{PT} -type symmetry: \mathcal{M} and \mathcal{M}^* with same EVs $\lambda_j \in \mathbb{C}$

$$\mathcal{M} = \Sigma \mathcal{M}^* \Sigma \Rightarrow$$
 Compl. conj. EV pairs

What are the implications?

[Schindler, Schindler, Medina, Ogilvie, PRD 102, 114510 (2020)]

[Schindler, Schindler, Ogilvie, J. Phys. Conf. Ser. 2038 (2021)]

Marc Winstel

$$G^{-1}(q^2) = q^2 + \mathcal{M}$$

$\mathcal{PT}\text{-type}$ symmetry: What are the implications?

Eigenvalues E_i of \mathcal{M}	Position-space propagator behavior	Region
All positive	Exponential decay	Normal
Odd number of $E_i < 0$	Exponential growth	Unstable
Some $E_i = E_j^*$	Sinusoidally-modulated exponential	\mathcal{PT} broken
Even number of $E_i < 0$	Homogeneous solution unstable at some $p \neq 0$	Patterned vacuum

[Schindler, Schindler, Ogilvie, PoS LATTICE2021 (2022)]

Inhomogeneous phase (IP)

"Patterned"

- Long-range order & Translational SSB!
- $\langle \phi_j \rangle \sim \langle \bar{\psi} \Gamma_j \psi \rangle = f_{\rm os}(\mathbf{x})$
- $\blacktriangleright \langle \phi(x)\phi(0)\rangle \sim C_{\rm osc}(x)$

[[]Buballa, Carignano, PPNP 81, 39-96 (2015)]

Quantum pion liquid ($Q\pi L$)

- *"*𝒫𝒜 broken"
- Disordering through Goldstone modes of chiral SSB???
- $\langle \phi_j \rangle \sim \langle \bar{\psi} \Gamma_j \psi \rangle = \text{const.}$

•
$$C(x) \sim e^{-mx} C_{\rm osc}(x)$$

[Pisarski et al., PRD 102, 016015 (2020)] [MW, Valgushev, arXiv:2403.18640]

Inhomogeneous phase (IP)

"Patterned"

- Long-range order & Translational SSB!
- $\langle \phi_j \rangle \sim \langle \bar{\psi} \Gamma_j \psi \rangle = f_{\rm os}(\mathbf{x})$
- $\blacktriangleright \langle \phi(x)\phi(0)\rangle \sim C_{\rm osc}(x)$

$N_t = 81 \; L = 80 \; \mu/\sigma_0 = 0.66, \; a\sigma_0 = 0.290$

Quantum pion liquid ($Q\pi L$)

- ► "PT broken"
- Disordering through Goldstone modes of chiral SSB???
- $\langle \phi_j \rangle \sim \langle \bar{\psi} \Gamma_j \psi \rangle = \text{const.}$

•
$$C(x) \sim e^{-mx} C_{\text{osc}}(x)$$

[Buballa, Carignano, PPNP 81, 39-96 (2015)]

[Pisarski et al., PRD 102, 016015 (2020)] [MW, Valgushev, arXiv:2403.18640]

Inhomogeneous phase (IP)

"Patterned"

- Long-range order & Translational SSB!
- $\langle \phi_j \rangle \sim \langle \bar{\psi} \Gamma_j \psi \rangle = f_{\rm os}(\mathbf{x})$
- $\blacktriangleright \langle \phi(x)\phi(0)\rangle \sim C_{\rm osc}(x)$

[Buballa, Carignano, PPNP 81, 39-96 (2015)]

Quantum pion liquid ($Q\pi L$)

- ► "PT broken"
- Disordering through Goldstone modes of chiral SSB???
- $\langle \phi_j \rangle \sim \langle \bar{\psi} \Gamma_j \psi \rangle = \text{const.}$

•
$$C(x) \sim e^{-mx} C_{\text{osc}}(x)$$

[Pisarski et al., PRD 102, 016015 (2020)] [MW, Valgushev, arXiv:2403.18640]

- Inhomogeneous, chiral phase (IP): $\langle \bar{\psi}\psi
 angle = f(\mathbf{x})$
- Moat regime: $E^2 = Wp^4 + Zp^2 + m^2 + \mathcal{O}(p^6)$ with Z < 0

Recent FRG study

[Fu, Pawlowski, Rennecke, PRD 101, 054032 (2020)]

1 + 1-dimensional Four-Fermion model

[Thies, Urlichs, PRD 67, 125015 (2003)]

- Inhomogeneous, chiral phase (IP): $\langle \bar{\psi}\psi
 angle = f({f x})$
- Moat regime: $E^2 = Wp^4 + Zp^2 + m^2 + \mathcal{O}(p^6)$ with Z < 0

Recent FRG study

[Fu, Pawlowski, Rennecke, PRD 101, 054032 (2020)]

1 + 1-dimensional Four-Fermion model

[Thies, Urlichs, PRD 67, 125015 (2003)]

- Inhomogeneous, chiral phase (IP): $\langle \bar{\psi}\psi
 angle = f({f x})$
- Moat regime: $E^2 = Wp^4 + Zp^2 + m^2 + \mathcal{O}(p^6)$ with Z < 0

Recent FRG study

[Fu, Pawlowski, Rennecke, PRD 101, 054032 (2020)]

1 + 1-dimensional Four-Fermion model

[Thies, Urlichs, PRD 67, 125015 (2003)]

- Inhomogeneous, chiral phase (IP): $\langle ar{\psi}\psi
 angle = f({f x})$
- Moat regime: $E^2 = Wp^4 + Zp^2 + m^2 + \mathcal{O}(p^6)$ with Z < 0

Recent FRG study

[Fu, Pawlowski, Rennecke, PRD 101, 054032 (2020)]

1 + 1-dimensional Four-Fermion model

[Koenigstein, Pannullo, Rechenberger, MW, Steil, (2022)]

- \blacktriangleright Four-quark interactions / quark-meson as low-energy approximation for QCD from $\Lambda\gtrsim 1 GeV$
- Nambu-Jona-Lasinio-type models / quark-meson models for spontaneous chiral symmetry breaking mechanism; no sign problem !
- IPs appear in phase diagrams of various of those models [Buballa, Carignano, PPNP 81, 39-96 (2015)]

[[]Nickel, PRD 80, 074025 (2009)]

- \blacktriangleright Four-quark interactions / quark-meson as low-energy approximation for QCD from $\Lambda\gtrsim 1 GeV$
- Nambu-Jona-Lasinio-type models / quark-meson models for spontaneous chiral symmetry breaking mechanism; no sign problem !
- IPs appear in phase diagrams of various of those models [Buballa, Carignano, PPNP 81, 39-96 (2015)]

[[]Nickel, PRD 80, 074025 (2009)]

BUT: Evidence that IPs are cutoff artifacts from multiple studies!

- \blacktriangleright Four-quark interactions / quark-meson as low-energy approximation for QCD from $\Lambda\gtrsim 1 GeV$
- Nambu-Jona-Lasinio-type models / quark-meson models for spontaneous chiral symmetry breaking mechanism; no sign problem !
- IPs appear in phase diagrams of various of those models [Buballa, Carignano, PPNP 81, 39-96 (2015)]

[[]Nickel, PRD 80, 074025 (2009)]

BUT: Evidence that IPs are cutoff artifacts from multiple studies!

[Narayanan, PRD (2021)], [Buballa et al., PRD (2021)], [Pannullo, MW, PRD (2023)], [Pannullo, PRD (2023)], [Koenigstein, Pannullo, PRD (2023)], [Pannullo, MW, Wagner, PRD (2024)]

CRC-TR 211

Regulator dependence of IPs: 2+1-dimensional GN model

Strong regulator dependence of results & IP vanishes when renormalizing the theory !

[Buballa, Kurth, Wagner, MW, PRD 103, 034503 (2020), arXiv: 2012.09588]

• No instability towards IP in general four-fermion model with scalar (S = 0) channels

[Pannullo, MW, PRD 108, 036011 (2023) arXiv:2305.09444]

Strong regularization scheme dependence in non-renorm. NJL model

[Pannullo, MW, Wagner, PRD (2024)]

Marc Winstel

Generic four-fermion model setup

• Study of 2 + 1-dimensional models

$$\mathcal{S}_{\rm FF}[\bar{\psi},\psi] = \int \mathrm{d}^3 x \left\{ \bar{\psi} \left(\vec{\phi} + \gamma_0 \mu \right) \psi - \sum_j \left(\frac{\lambda_j}{2N} \left(\bar{\psi} \, c_j \, \psi \right)^2 \right) \right\}$$

• 4×4 Dirac basis for chiral symmetry, 2 flavors ($\gamma_{45} = i\gamma_4\gamma_5$)

$$(c_j) \in (1, i\gamma_4, i\gamma_5, \gamma_{45}, \vec{\tau}, i\vec{\tau}\gamma_4, i\vec{\tau}\gamma_5, \vec{\tau}\gamma_{45}) \times (1, i\gamma_\mu)$$

Bosonized version

$$S[\bar{\psi},\psi,\vec{\phi}] = \int \mathrm{d}^3x \left\{ N \sum_j \frac{\phi_j^2}{2\lambda_j} + \bar{\psi}Q\psi \right\}, \quad Q = \vec{\phi} + \gamma_0\mu + \sum_j c_j \phi_j,$$

• Integrate out $\bar{\psi}, \psi \Rightarrow S_{\text{eff}}[\vec{\phi}] \sim \ln \text{Det}Q$

$\begin{array}{l} \text{Large-}N \text{ limit } / \text{ Mean-field approximation: No integration about } \vec{\phi} \\ \Rightarrow \Omega \sim \min_{\vec{\phi}} S_{\text{eff}}[\vec{\phi}] \end{array}$

- Global minimization of $S_{\mathrm{eff}}[ec{\phi}(\mathbf{x})]$ using ansatzes / lattice field theory

Large-N limit / Mean-field approximation: No integration about $\vec{\phi} \Rightarrow \Omega \sim \min_{\vec{\phi}} S_{\text{eff}}[\vec{\phi}]$

- Global minimization of $S_{\mathrm{eff}}[ec{\phi}(\mathbf{x})]$ using ansatzes / lattice field theory
- Stability analysis of homogeneous ground state $\vec{\phi}(\mathbf{x}) = \vec{\phi} = \text{const.}$
 - (+)~ Well tested on 1+1-dim.~ GN model, very reliable in finding inhomogeneous phases (+)~ Implementable in multiple works

Large-N limit / Mean-field approximation: No integration about $\vec{\phi} \Rightarrow \Omega \sim \min_{\vec{\phi}} S_{\text{eff}}[\vec{\phi}]$

- Global minimization of $S_{\rm eff}[\vec{\phi}({\bf x})]$ using ansatzes / lattice field theory
- Stability analysis of homogeneous ground state $\vec{\phi}(\mathbf{x}) = \vec{\phi} = \text{const.}$
 - (+) Well tested on 1+1-dim. GN model, very reliable in finding inhomogeneous phases (+) Implementable in multiple works
 - $-)\,$ Does not work when there is an energy barrier between true ground state and ${ar \phi}$
 - -) Less info about ground state: Only momentum ${f q}$ with most negative curvature

Large-N limit / Mean-field approximation: No integration about $\vec{\phi} \Rightarrow \Omega \sim \min_{\vec{\phi}} S_{\text{eff}}[\vec{\phi}]$

- Global minimization of $S_{\rm eff}[\vec{\phi}({\bf x})]$ using ansatzes / lattice field theory
- Stability analysis of homogeneous ground state $\vec{\phi}(\mathbf{x}) = \vec{\phi} = \text{const.}$
 - (+) Well tested on 1+1-dim. GN model, very reliable in finding inhomogeneous phases (+) Implementable in multiple works
 - -) Does not work when there is an energy barrier between true ground state and $ar{\phi}$
 - -) Less info about ground state: Only momentum ${f q}$ with most negative curvature

$$\phi_j(x) = \bar{\phi}_j + \delta\phi_j(\mathbf{x})$$

• First non-vanishing correction expressed by Hessian matrix (analog of mass matrix \mathcal{M})

$$\frac{S_{\text{eff}}^{(2)}}{N} = \frac{\beta}{2} \int \frac{\mathrm{d}^2 q}{(2\pi)^2} \, \vec{\delta \phi}^T(-\mathbf{q}) H(|\mathbf{q}|) \vec{\delta \phi}(\mathbf{q}), \quad H_{\phi_j \phi_k}(q) = \left(\frac{\delta_{j,k}}{\lambda_j}\right) + \frac{1}{\beta} \sum_p \operatorname{tr}\left[S(p+(0,\vec{q})) \, c_j \, S(p) \, c_k\right]$$

- \blacktriangleright Free fermion propagator S with mass $M^2(\bar{\phi}_j)$ at fixed μ and T
- Eigenvalues of Hessian \Rightarrow Bosonic two-point functions $\Gamma_{\varphi_j}^{(2)}(q) = \left(\langle \varphi_j \varphi_j \rangle_c \right)^{-1}$
- Inhomogeneous phase: $\Gamma^{(2)}(q) < 0$ for $q \neq 0$ Moat: $Z = \frac{d^2\Gamma^{(2)}}{dq^2}(q=0) < 0$
- Quantum pion liquid: $\Gamma^{(2)}(q=0) \in \mathbb{C}$ but appear in complex-conjugate pairs!

1 + 1-dimensional GN model: Two-point function

$$S[\bar{\psi},\psi] = \int_{0}^{\beta} \mathrm{d}\tau \int \mathrm{d}x \left\{ \bar{\psi} \left(\tilde{\phi} + \gamma_{0}\mu \right)\psi - \frac{\lambda}{2N} \left(\bar{\psi}\psi \right)^{2} \right\} \xrightarrow{\text{Bosonize}} S[\bar{\psi},\psi,\sigma] = \int \mathrm{d}^{2}x \left\{ \frac{\sigma^{2}}{2\lambda} + \bar{\psi} \left(\tilde{\phi} + \gamma_{0}\mu + \sigma \right)\psi \right\}$$

 $T/\Sigma_0 = 0.15$

[Koenigstein, Pannullo, Rechenberger, MW, Steil, (2022)]

- $\mu = 1.2$ corresponds to a Moat regime
- $\mu = 0.8$ corresponds to the IP

Marc Winstel

$$S_{\rm mix}[\bar{\psi},\psi] = \int_0^\beta \mathrm{d}\tau \int \mathrm{d}^2 x \left\{ \bar{\psi} \left(\tilde{\phi} + \gamma_3 \mu \right) \psi - \left[\frac{\lambda_S}{2N} \left(\bar{\psi} \psi \right)^2 + \frac{\lambda_V}{2N} \left(\bar{\psi} \,\mathrm{i}\gamma_\nu \,\psi \right)^2 \right] \right\}$$

Bosonization similar to before

$$S[\bar{\psi},\psi,\sigma,\omega_{\nu}] = \int \mathrm{d}^{3}x \left[\bar{\psi} \left(\partial \!\!\!/ + \mathrm{i}\gamma_{\nu}\omega_{\nu} + \gamma_{0}\mu + \sigma \right) \psi + \frac{\omega_{\nu}\omega_{\nu}}{2\lambda_{V}} + \frac{\sigma^{2}}{2\lambda_{S}} \right]$$

Homogeneous condensation:

• $\bar{\omega}_j = 0$ & $\omega_0 \sim i \langle \psi^{\dagger} \psi \rangle / N$ purely imaginary; shift in chemical potential $\bar{\mu} = \mu + i \bar{\omega}_0$

- Charge symmetry breaking at $\mu \neq 0$: $\mathcal{C}\omega_0 = -\omega_0$, but $\mathcal{C}\mathcal{K}$ invariance as in QCD!
- Complex saddle points $(\sigma, \omega_{\nu}) = (\bar{\sigma}, i\bar{n}\delta_{0,\nu})!$
- The following results are generic for all models with local $\left(\bar{\psi} \Gamma \psi \right)^2$ in D=2+1

[MW, PRD 110, 034008 (2024)]

Marc Winstel

In general: Broken phase enlarged by vector coupling

Marc Winstel

Homogeneous phase diagram: Chiral condensate

Now to the interesting object $H_{\phi_j\phi_k}$! Mixing effect $H_{\sigma\omega_0} \sim \bar{\Sigma} \Rightarrow$ New physics in broken phase!

[MW, PRD 110, 034008 (2024)]

Mean-field stability analysis: Diagonalize Hessian $H_{\phi_i\phi_k}(q)$

- Symmetric phase: No IP & no moat regime
- Exponentially decaying propagators, "normal" symmetric phase

Mean-field stability analysis: Diagonalize Hessian $H_{\phi_i\phi_k}(q)$

- Broken phase: $\Gamma_{\phi_j}^{(2)} \in \mathbb{C}$ with $\Gamma_{\phi_j}^{(2)*} = \Gamma_{\phi_k}^{(2)}!$
- Low momentum expansion of inverse propagators

► Poles are
$$q^2 = -\Gamma_{\phi}^{(2)}(q=0) \left(\frac{\mathrm{d}^2\Gamma_{\phi}^{(2)}}{\mathrm{d}q^2}|_{q=0}\right)^{-1} \in \mathbb{C}$$

 $\Rightarrow \langle \phi(x)\phi(0) \rangle \sim \mathrm{e}^{-mx}\sin(px)$

Only σ and ω_0 studied

Mean-field stability analysis: Diagonalize Hessian $H_{\phi_i\phi_k}(q)$

- Broken phase: $\Gamma_{\phi_j}^{(2)} \in \mathbb{C}$ with $\Gamma_{\phi_j}^{(2)*} = \Gamma_{\phi_k}^{(2)}!$
- Low momentum expansion of inverse propagators

► Poles are
$$q^2 = -\Gamma_{\phi}^{(2)}(q=0) \left(\frac{\mathrm{d}^2\Gamma_{\phi}^{(2)}}{\mathrm{d}q^2}|_{q=0}\right)^{-1} \in \mathbb{C}$$

 $\Rightarrow \langle \phi(x)\phi(0) \rangle \sim \mathrm{e}^{-mx}\sin(px)$

Quantum pion liquid, \mathcal{PT} broken!

Only σ and ω_0 studied

Static Hessian: Complex-conjugate eigenvalues

Static Hessian at zero temperature

Marc Winstel

Scales of the oscillation

Frequency roughly of same order as m in large parts of the $Q\pi L$

Marc Winstel

Observation of quantum pion liquid ($Q\pi L$)

- Spatially oscillating correlators $C(x) \sim e^{-mx} \sin(kx)$ in NJL-type models (D = 2 + 1)[MW, PRD 110, 034008 (2024)]
 - Related to \mathcal{CK} invariance of FF model
 - Mixing between scalar and vector mesons; Competing attractive and repulsive interactions
 - Similar effects reported in Polyakov-Loop quark-meson model with ω

[Haensch, Rennecke, von Smekal, PRD 110, 036018(2024) arXiv:2308.16244]

- Regimes with spatially modulations very relevant in QCD at $\mu \neq 0$ (\mathcal{PT} symmetry!)
 - CK symmetry as generalized PT symmetry Results relevant in other contexts?
 - All mechanisms from above also apply to QCD at $\mu \neq 0$

- QπL seems stable against quantum fluctuations compared to inhomogeneous phase
 [MW, Valgushev, arXiv:2403.18640 (2024) & in preparation]
- $Q\pi L$: How to get realistic estimates for the ratio between decay rates and frequency?
- ▶ Dilepton production rate as a experimental observable, $\pi^+ + \pi^- \rightarrow \gamma \rightarrow l^+ + l^-$: Spike at threshold given by non-trivial minimum of the dispersion

[Hayashi, Tsue, arXiv: 2407.08523], [Nussinov, Ogilvie, Pannullo, Pisarski, Rennecke, Schindler, Winstel, Valgushev, in preparation]

Think of more characteristic heavy ion collision observables for the moat regime & other spatially modulated regimes !

 $N_t = 81 L = 80 \mu/\sigma_0 = 0.66, a\sigma_0 = 0.290$

- QCD Dyson-Schwinger setup with gluon propagator fitted to quenched lattice data
- Perturbative quark-loop effects
- $\Rightarrow \mbox{ Chiral density wave is self-consistent} \\ \mbox{ solution of DSE }$

- Stability analysis of 2PI effective action in rainbow ladder approximation
- \blacktriangleright Below certain temperature: $\left<\bar\psi\psi\right>=0$ is unstable with respect to IP
- Analysis can only be trusted on left spinodal where $\langle \bar{\psi}\psi \rangle = {\rm const.} \neq 0$

[Müller, Buballa, Wambach, PL B 727, 240 (2013)]

[Motta et al., arXiv:2406.00205 (2024)]

$$S[\bar{\psi},\psi,\vec{\phi}] = \int \mathrm{d}^3x \left\{ N \sum_j \frac{\phi_j^2}{2\lambda} + \bar{\psi}Q\psi \right\}, \quad Q = \not{\theta} + \gamma_0\mu + \sum_j c_j \phi_j,$$

$$\Gamma_{\phi_j}^{(2)}\left(M^2, \mu, T, q^2\right) = \frac{1}{\lambda} - \ell_1\left(M^2, \mu, T\right) + \frac{L_{2,\phi_j}(M^2, \mu, T, q^2)}{L_{2,\phi_j}(M^2, \mu, T, q^2)}$$

Marc Winstel

$$S[\bar{\psi},\psi,\vec{\phi}] = \int \mathrm{d}^3x \left\{ N \sum_j \frac{\phi_j^2}{2\lambda} + \bar{\psi}Q\psi \right\}, \quad Q = \not{\theta} + \gamma_0\mu + \sum_j c_j \phi_j,$$

$$\Gamma_{\phi_j}^{(2)}\left(M^2, \mu, T, q^2\right) = \frac{1}{\lambda} - \ell_1\left(M^2, \mu, T\right) + L_{2,\phi_j}(M^2, \mu, T, q^2)$$

• Momentum dependence fully contained in $L_{2,\phi_i}(M^2,\mu,T,q^2)$

$$S[\bar{\psi},\psi,\vec{\phi}] = \int \mathrm{d}^3x \left\{ N \sum_j \frac{\phi_j^2}{2\lambda} + \bar{\psi}Q\psi \right\}, \quad Q = \vec{\phi} + \gamma_0\mu + \sum_j c_j \phi_j,$$

$$\Gamma^{(2)}_{\phi_j}\left(M^2,\mu,T,q^2
ight) = rac{1}{\lambda} - \ell_1\left(M^2,\mu,T
ight) + L_{2,\phi_j}(M^2,\mu,T,q^2)$$

▶ For each combination of the 16 interaction channels we find:

$$S[\bar{\psi},\psi,\vec{\phi}] = \int \mathrm{d}^3x \left\{ N \sum_j \frac{\phi_j^2}{2\lambda} + \bar{\psi}Q\psi \right\}, \quad Q = \vec{\phi} + \gamma_0\mu + \sum_j c_j \phi_j,$$

$$\Gamma_{\phi_j}^{(2)}\left(M^2, \mu, T, q^2\right) = \frac{1}{\lambda} - \ell_1\left(M^2, \mu, T\right) + L_{2,\phi_j}(M^2, \mu, T, q^2)$$

- ▶ For each combination of the 16 interaction channels we find:
 - $L_{2,\phi_j} = L_{2,+} = -(4M^2 + \mathbf{q}^2) \ell_2(\mathbf{q}^2)$ known from GN model no instabilities

$$S[\bar{\psi},\psi,\vec{\phi}] = \int \mathrm{d}^3x \left\{ N \sum_j \frac{\phi_j^2}{2\lambda} + \bar{\psi}Q\psi \right\}, \quad Q = \vec{\phi} + \gamma_0\mu + \sum_j c_j \phi_j,$$

$$\Gamma_{\phi_j}^{(2)}\left(M^2, \mu, T, q^2\right) = \frac{1}{\lambda} - \ell_1\left(M^2, \mu, T\right) + L_{2,\phi_j}(M^2, \mu, T, q^2)$$

- For each combination of the 16 interaction channels we find:
 - $L_{2,\phi_j} = L_{2,+} = -(4M^2 + \mathbf{q}^2) \ell_2(\mathbf{q}^2)$ known from GN model no instabilities
 - $L_{2,\phi_i} = L_{2,-} = -\mathbf{q}^2 \ell_2(\mathbf{q}^2)$ also monotonically increasing no instabilities

$$S[\bar{\psi},\psi,\vec{\phi}] = \int \mathrm{d}^3x \left\{ N \sum_j \frac{\phi_j^2}{2\lambda} + \bar{\psi}Q\psi \right\}, \quad Q = \vec{\phi} + \gamma_0\mu + \sum_j c_j \phi_j,$$

$$\Gamma_{\phi_j}^{(2)}\left(M^2, \mu, T, q^2\right) = \frac{1}{\lambda} - \ell_1\left(M^2, \mu, T\right) + L_{2,\phi_j}(M^2, \mu, T, q^2)$$

- ▶ For each combination of the 16 interaction channels we find:
 - L_{2,φj} = L_{2,+} = (4M² + q²) l₂(q²) known from GN model no instabilities
 L_{2,φj} = L_{2,-} = -q² l₂(q²) also monotonically increasing no instabilities
- ▶ Remember: $\Gamma^{(2)}(q \neq 0) < 0$ necessary for IP

Momentum dependence of two point function $L_{2,+}/L_{2,-}$

• $L_{2,+}/L_{2,-}$ are monotonically increasing functions of q for all M

[Pannullo, MW, PRD 108, 036011 (2023) arXiv:2305.09444]

Marc Winstel

Momentum dependence of two point function $L_{2,+}/L_{2,-}$

 \blacktriangleright $L_{2,+}/L_{2,-}$ are monotonically increasing functions of q for all M

No IP and no moat regime in all models containing (some of) these 16 interaction channels $\bar{\psi}c_j\phi_j\psi$

$$(c_j)_{j=1,\dots,16} = (1, \mathrm{i}\gamma_4, \mathrm{i}\gamma_5, \gamma_{45}, \vec{\tau}, \mathrm{i}\vec{\tau}\gamma_4, \mathrm{i}\vec{\tau}\gamma_5, \vec{\tau}\gamma_{45})$$

[Pannullo, MW, PRD 108, 036011 (2023) arXiv:2305.09444]

Marc Winstel

Model	Used channels \boldsymbol{c}_j	Field basis $\vec{\varphi}_j$ diagonalizing $S^{(2)}_{\text{eff}}$	Mom dependent L _{2.+}	entum lence of φ_j $L_{2,-}$	Symmetry groups
GN	1	σ	σ	-1	$U_{I_4}(N) \times$
					$U_{\gamma_{45}}(N) \times \mathbb{Z}_{\gamma_5}(2) \times$
					$SU_{\vec{\tau}}(2) \times P_4 \times P_5$
NJL	$1, i \vec{\tau} \gamma_4, i \vec{\tau} \gamma_5$	$\sigma, \vec{\pi}_4, \vec{\pi}_5$	σ	$\vec{\pi}_{4}, \vec{\pi}_{5}$	$U_{I_4}(N) \times U_{\gamma_{45}}(N) \times$
					$\mathrm{SU}_{A,\gamma_4}(2N) \times$
					$SU_{A,\gamma_5}(2N) \times$
					$SU_{\vec{\tau}}(2) \times P_4 \times P_5$
χHGN_P	$1, i\gamma_4, i\gamma_5, \gamma_{45}$	$\sigma, \eta_4, \eta_5, \eta_{45}$ (for	σ, η_{45}	η_4, η_5	$U_{\gamma}(2N) \times SU_{\vec{r}}(2) \times$
		$\bar{\eta}_{45} = 0$)			$P_4 imes P_5$
PSFF	$1, i\gamma_4, i\gamma_5, \gamma_{45},$	$\sigma, \eta_4, \eta_5, \eta_{45}$	$\sigma,\eta_{45},ec{\varsigma},ec{\pi}_{45}$	$\eta_4, \eta_5, \vec{\pi}_4, \vec{\pi}_5$	$U_{\gamma}(2N) \times SU_{\vec{\tau}}(2) \times$
	$\vec{ au}, i\vec{ au}\gamma_4, i\vec{ au}\gamma_5, i\vec{ au}\gamma_{45}$	$\vec{a}_0, \vec{\pi}_4, \vec{\pi}_5, \vec{\pi}_{45}$ (for			$P_4 imes P_5$
		$\bar{\eta}_{45} = \vec{\pi}_{45} = 0$)			

IPs and moat regime absent also for Yukawa versions of these models

[Pannullo, MW, PRD 108, 036011 (2023) arXiv:2305.09444]

Examples (II): Multiple chemical potentials

Used channels c_j	Bosonic auxiliary	Non-zero chemical	Field basis $\vec{\varphi}_j$ diagonalizing $S_{\text{eff}}^{(2)}$	Momentum dependence of $\Gamma_{\varphi_j}^{(2)}$	Underlying symmetry group
fields ϕ_j	fields ϕ_j	potentials		$f(M^2, \mu) = L_{2,+}(M^2, \mu, T, q^2)$	
$1, \gamma_{45}$	σ, η_{45}	$\mu_L = \mu + \mu_{45}$ $\mu_R = \mu - \mu_{45}$	$\phi_L = (\sigma + \eta_{45})$ $\phi_R = (\sigma - \eta_{45})$	$f(ar{\phi}_L^2,\mu_L) \ f(ar{\phi}_R^2,\mu_R)$	$\begin{array}{c} \mathrm{U}_{\mathrm{I}_4}(N) \times \mathrm{U}_{\gamma_{45}}(N) \times \\ \mathbb{Z}_{\gamma_5}(2) \times \mathrm{SU}_{7}(2) \times \\ P_4 \times P_5 \end{array}$
$1, au_3$	$\sigma, a_{0,3}$	$\begin{array}{l} \mu_{\uparrow} = \mu + \mu_{I} \\ \mu_{\downarrow} = \mu - \mu_{I} \end{array}$	$\begin{array}{l} \phi_{\uparrow} = (\sigma + \varsigma_3) \\ \phi_{\downarrow} = (\sigma - \varsigma_3) \end{array}$	$f(ar{\phi}_{\uparrow}^2,\mu_{\uparrow})\ f(ar{\phi}_{\downarrow}^2,\mu_{\downarrow})$	$\begin{array}{c} \mathrm{U}_{\mathbb{I}_4}(N) \times \mathrm{U}_{\gamma_{45}}(N) \times \\ \mathbb{Z}_{\gamma_5}(2) \times \mathrm{U}_{\tau_3}(1) \times \\ P_4 \times P_5 \end{array}$
$1, \tau_3\gamma_{45}$	$1, \tau_3 \gamma_{45}$ $\sigma, \pi_{45,3}$	$\mu_{L,\uparrow} = \mu_L + \mu_I$ $\mu_{L,\downarrow} = \mu_L - \mu_I$ $\mu_{R,\uparrow} = \mu_R + \mu_I$	$\varphi_+ = (\sigma + \pi_{45,3})$	$egin{array}{l} f(ar{arphi}_+^2,\mu_{L,\uparrow})\ +f(ar{arphi}_+^2,\mu_{R,\downarrow}) \end{array}$	$ \begin{array}{c} \mathbf{U}_{\mathbf{I}_4}(N) \times \mathbf{U}_{\gamma_{45}}(N) \times \\ \mathbb{Z}_{\gamma_5}(2) \times \mathbf{U}_{\tau_3}(1) \times \\ P_4 \times P_5 \end{array} $
		$\mu_{R,\downarrow} = \mu_R - \mu_I$	$\varphi = (\sigma - \pi_{45,3})$	$\begin{array}{c} f(\bar{\varphi}_{-}^2,\mu_{L,\downarrow}) \\ +f(\bar{\varphi}_{-}^2,\mu_{R,\uparrow}) \end{array}$	
$1,\tau_3,\gamma_{45}$	$\sigma, a_{0,3}, \eta_{45}$	$\mu_{L,\uparrow}, \ \mu_{L,\downarrow}, \ \mu_{R,\uparrow}, \ \mu_{R,\downarrow}$	$\phi_L = (\sigma + \eta_{45})$	$ \begin{array}{l} f((\bar{\phi}_L + \bar{a}_{0,3})^2, \mu_{L,\uparrow}) \\ + f(\bar{\phi}_L - \bar{a}_{0,3})^2, \mu_{L,\downarrow}) \end{array} $	$ \begin{array}{c} \mathbf{U}_{\mathbf{I}_{4}}(N) \times \mathbf{U}_{\gamma_{45}}(N) \times \\ \mathbb{Z}_{\gamma_{5}}(2) \times \mathbf{U}_{\gamma_{3}}(1) \times \\ \end{array} $
			$\phi_R = (\sigma - \eta_{45})$	$ f((\bar{\phi}_R + \bar{a}_{0,3})^2, \mu_{R,\uparrow}) + f(\bar{\phi}_R - \bar{a}_{0,3})^2, \mu_{R,\downarrow}) $	14×15
			$a_{0,3}$	$\Gamma^{(2)}_{\phi_L} + \Gamma^{(2)}_{\phi_R}$	

With multiple chemical potentials the analysis is straightforward only for a limited number of interaction channels

[Pannullo, MW, PRD 108, 036011 (2023) arXiv:2305.09444]

Marc Winstel

- At larger T: H(0) has real eigenvalues, but H(q ≠ 0) develops compl. conj. eigenvalue pairs
- Caused by mixing of spatial vector components ω_j
- Interpretation of this phenomenon unclear so far

Complex-conjugate eigenvalues for $q \neq 0$

$$k_{\max} = \max_{j,q} \left(\operatorname{Im} \Gamma_{\phi_j}^{(2)}(q) \right)$$

Static case –
$$k_0=\max_j {
m Im} \Gamma^{(2)}_{\phi_j}(0)$$

Complex-conjugate eigenvalues for $q \neq 0$

$$k_{\max} = \max_{j,q} \left(\operatorname{Im} \Gamma_{\phi_j}^{(2)}(q) \right)$$

$$q_B = \min_{q \in C}, C = \{q \in [0, \infty) | \operatorname{Im} \Gamma_{\phi_i}^{(2)}(q) \neq 0\}$$

2+1-dimensional GN model : Search for inhomogeneities

- Lattice field theory: Stability analysis & brute for minimization
- At finite lattice spacing: inhomogeneous groundstates
- Thus: Do we also find an inhomogeneous phase in the continuum?

[Buballa, Kurth, Wagner, MW, PRD 103, 034503 (2020), arXiv: 2012.09588], [Pannullo, Wagner, MW, Symmetry 14, 265 (2022), arXiv:2112.11183]

Marc Winstel

Chiral/Isospin imbalance in the Gross-Neveu model

Stability analysis on the lattice of GN model with μ_{45} or μ_I

[Pannullo, Wagner, MW, Symmetry 14, 265 (2022), arXiv:2112.11183]

Marc Winstel

$$L_{\rm eff} = \frac{Z}{2} \left(\partial_j \vec{\phi} \right)^2 + \frac{1}{2M^2} \left(\sum_j \partial_j^2 \vec{\phi} \right)^2 + \frac{m^2}{2} \vec{\phi}^2 + \frac{\lambda N}{4} (\vec{\phi}^2)^2$$

- Large-N limit easily solvable with constraint field approach, λN & M is fixed [Pisarski, Tsvelsik, Valgushev, PRD 102, 016015 (2020)] [Moshe, Zinn-Justin, Phys. Rept. 385, 69 – 228 (2003)]
- Vary only m^2 and Z
- Theory in 3 + 1 dim. at nonzero T: Consider only static mode $E_n = 2\pi T n$ for n = 0
- Natural ansatz for ground state: The chiral spiral

$$\vec{\phi} = \phi_0 \left(\cos(k_0 z), \sin(k_0 z), \phi_\perp = \vec{0} \right)^T$$

• As expected: $k_0 \neq 0$ is solution for classical EoM

Marc Winstel

Solve theory in Large-N limit with chiral spiral ansatz

"

- Disordering of chiral spiral (IP) via fluctuation of transverse modes φ_⊥
- Transverse modes \equiv Goldstone modes of O(N)symmetry breaking

$$\mathsf{QSL}: \langle \phi^i(x)\phi^j(0)\rangle|_{x\to\infty} \sim \delta^{ij} \mathrm{e}^{-m_r} c_1 \cos(m_i x)!$$

Solve theory in Large-N limit with chiral spiral ansatz

"

- Disordering of chiral spiral (IP) via fluctuation of transverse modes φ_⊥
- Transverse modes \equiv Goldstone modes of O(N)symmetry breaking

$$\mathsf{QSL}: \langle \phi^i(x)\phi^j(0)\rangle|_{x\to\infty} \sim \delta^{ij} \mathrm{e}^{-m_r} c_1 \cos(m_i x)!$$

Solve theory in Large-N limit with chiral spiral ansatz

"Quantum spin liquid" (QSL)

- Disordering of chiral spiral (IP) via fluctuation of transverse modes φ_⊥
- Transverse modes \equiv Goldstone modes of O(N)symmetry breaking

$$\mathsf{QSL}: \langle \phi^i(x)\phi^j(0)\rangle|_{x\to\infty} \sim \delta^{ij} \mathrm{e}^{-m_r} c_1 \cos(m_i x)!$$

Large-N phase diagram

▶ $m^2 = 0.0, Z \in [-1.0, 1.0]$ Resulting regimes (QSL /OSP) almost independent of N(=1, 2, 4, 8, 10)

- Mechanism through disordering with transverse modes cannot be the full picture
- \blacktriangleright Lacking a (local) order parameter to fully map out regime in (Z,m^2) plane

Marc Winstel