VLVL: Precision Predictions for Polarized Electroweak Bosons

Rene Poncelet

Longitudinal Vector-Boson-Scattering (VBS)

Radiative corrections to W+ W- → W+ W- in the electroweak standard model A. Denner, T. Hahn hep-ph/9711302

17.1.24 COMETA WG1

Rene Poncelet – IFJ PAN

New physics models

•

VBS at hadron colliders

17.1.24 COMETA WG1

Polarised VBS at HL-LHC

If we want to study unitarisation/EWSB we need to extract the longitudinal component

- only 5-10 % of the total rate

 very challenging
 (remember: 130fb⁻¹ → ~5-7 sigma
 → naive improvement by factor 10 necessary for observation)
- Requires CMS/ATLAS combination and/or new techniques at HL-LHC

ATLAS HL-LHC projection

This talk: How to improve on the theory systematics?

- Improved signal and background modelling
- \rightarrow Effective separation of boson polarisations

How to measure polarized bosons?

- We can't measure boson polarization directly.
- Luckily decay products can be used as a "polarimeter":

W+ decay (W- mirrored around 0)

How to measure polarized bosons?

Angular decomposition of 2-body W decay:

Idea: Suitable projections (or fits) extract fractions of left, right and longitudinal components.

This simple idea suffers from:

- Fiducial phase space requirements on the leptons:
 - → Interferences do not cancel
 - \rightarrow Correspondence between fractions (f_0, f_L, f_R) and angular distributions broken.
- Higher order corrections to decay (QED radiation or QCD in hadronic decays)
 → Decomposition in {A_i} does not hold any more
- Angles in boson rest frame
 → Z rest frame accessible, but W more difficult to reconstruct

The more general solution is to generate polarized events!

Polarized cross sections

$$\frac{\mathrm{d}\sigma}{\mathrm{d}X} = f_L \frac{\mathrm{d}\sigma_L}{\mathrm{d}X} + f_R \frac{\mathrm{d}\sigma_R}{\mathrm{d}X} + f_0 \frac{\mathrm{d}\sigma_0}{\mathrm{d}X} \left(+f_{int.} \frac{\mathrm{d}\sigma_{int.}}{\mathrm{d}X} \right)$$

- Interferences can be handled
- Does not rely on extrapolations to the full phase space
 X can be any observable → lab frame observables
- $\frac{\mathrm{d}\sigma_i}{\mathrm{d}X}$ can be systematically improved (EW and QCD)

Example: W-boson pair production

Polarization definition + single resonant backgrounds

On-shell projections:

- Double-pole approximation (DPA)
- Narrow-width approximation (NWA)

17.1.24 COMETA WG1

Polarized VV @ (N)NLO QCD / NLO EW

Fiducial polarization observables in hadroni	c WZ production: A next-to-leading order QCD+EW study,	Selected results
Anomalous triple gauge boson couplings in	77 production at the LHC and the role of 7 boson polarizations	
Rahama Singh 1810 11657	22 production at the Erre and the role of 2 boson polarizations,	
Polarization observables in WZ production a	at the 13 TeV LHC: Inclusive case.	
Baglio, Le Duc 1910 13746		
Unravelling the anomalous gauge boson cou	uplings in ZW+- production at the LHC and the role of spin-1 polarizations.	
Rahama, Singh 1911 03111		
Polarized electroweak bosons in W+W- pro	duction at the LHC including NLO QCD effects.	
Denner, Pelliccioli 2006,14867		
NLO QCD predictions for doubly-polarized	WZ production at the LHC.	
Denner, Pelliccioli 2010.07149		
NNLO QCD study of polarised W+W- produ	ction at the LHC.	
Poncelet, Popescu 2102,13583		
NLO EW and QCD corrections to polarized Z	Z production in the four-charged-lepton channel at the LHC.	
Denner, Pelliccioli 2107.06579		
Breaking down the entire spectrum of spin of	correlations of a pair of particles involving fermions and gauge bosons.	
Rahama, Singh 2109.09345		
Doubly-polarized WZ hadronic cross section	ns at NLO QCD+EW accuracy.	
Duc Ninh Le, Baglio 2203.01470		
Doubly-polarized WZ hadronic production a	at NLO QCD+EW: Calculation method and further results	
Duc Ninh Le, Baglio, Dao 2208.09232		
NLO QCD corrections to polarised di-boson	production in semi-leptonic final states	
Denner, Haitz, Pelliccioli 2211.09040		
Polarised cross sections for vector boson pr	oduction with SHERPA	
Hoppe, Schönherr, Siegert 2310.14803		
Polarised-boson pairs at the LHC with NLOF	PS accuracy	INLO IF J
Pelliccioli, Zanderighi 2311.05220		
NLO EW corrections to polarised W+W- pro	duction and decay at the LHC	
Denner, Haitz, Pelliccioli 2311.16031		
17.1.24 COMETA WG1	Rene Poncelet – IFJ PAN	1 1

Polarised nLO+PS: SHERPA

Polarised cross sections for vector boson production with SHERPA Hoppe, Schönherr, Siegert 2310.14803

- New bookkeeping of boson polarizations in SHERPA for LO MEs
- Approximate NLO corrections: nLO+PS

 → Reals+matching are treated exact
 → loop matrix elements unpolarised
- Comparison with multi-jet merged calculations

Comparison with literature

 nLO+PS approximation in fair agreement with full NLO
 → good for polarization fractions

W^+Z	$\sigma^{\rm NLO}$ [fb]	Fraction [%]	K-factor	$\sigma^{\mathrm{nLO+PS}}_{\mathrm{SHERPA}}$ [fb]	Fraction [%]	K-factor
full	35.27(1)		1.81	33.80(4)		
unpol	34.63(1)	100	1.81	33.457(26)	100	1.79
	Laboratory frame					
L-U	8.160(2)	23.563(9)	1.93	7.962(5)	23.796(25)	1.91
T-U	26.394(9)	76.217(34)	1.78	25.432(21)	76.01(9)	1.75
int	0.066(10) (diff)	0.191(29)	2.00	0.064(7)	0.191(22)	2.40(40)
U-L	9.550(4)	27.577(14)	1.73	9.275(16)	27.72(5)	1.72
U-T	25.052(8)	72.342(31)	1.83	24.156(18)	72.20(8)	1.81
int	0.028(10) (diff)	0.081(29)	-0.49	0.026(7)	0.079(22)	-0.471(34)

Polarised NLO+PS: POWHEG

Polarised-boson pairs at the LHC with NLOPS accuracy Pelliccioli, Zanderighi 2311.05220

- NLO QCD + PS in POWHEG-BOX-RES framework
- Study of PS (Pythia8) + hadronisation effects on fractions and differential distributions WW/WZ/ZZ
- Roughly 1-5% effect on distributions but generally small impact on fractions (~1% effects)

state	σ [fb] LHE	ratio [/unp., %] LHE	σ [fb] PS+hadr	ratio [/unp., %] PS+hadr	
Inclusive setup					
full off-shell	$98.36(3)^{+4.8\%}_{-3.9\%}$	101.20	$95.27(3)^{+4.9\%}_{-3.9\%}$	101.28	
unpolarised	$97.20(3)^{+4.8\%}_{-3.9\%}$	100	$94.07(3)^{+4.9\%}_{-3.9\%}$	100	
$\mathbf{L}\mathbf{L}$	$4.499(2)^{+2.8\%}_{-2.3\%}$	$4.63\substack{+0.13 \\ -0.13}$	$4.359(2)^{+2.8\%}_{-2.2\%}$	$4.63\substack{+0.13 \\ -0.13}$	
\mathbf{LT}	$13.151(4)^{+7.0\%}_{-5.7\%}$	$13.53\substack{+0.28 \\ -0.27}$	$12.730(5)^{+7.0\%}_{-5.7\%}$	$13.53_{-0.28}^{+0.28}$	
\mathbf{TL}	$12.724(4)^{+7.3\%}_{-5.9\%}$	$13.09\substack{+0.32 \\ -0.31}$	$12.314(5)^{+7.4\%}_{-5.9\%}$	$13.09_{-0.32}^{+0.31}$	
\mathbf{TT}	$66.88(2)^{+4.0\%}_{-3.3\%}$	$68.81\substack{+0.47 \\ -0.51}$	$64.74(2)^{+4.1\%}_{-3.2\%}$	$68.82\substack{+0.46\\-0.51}$	
interference	-0.058	-0.06	-0.069	-0.06	

17.1.24 COMETA WG1

NNLO QCD polarized WW production

NNLO QCD study of polarised W+W- production at the LHC, Poncelet, Popescu 2102.13583

Technical aspects:

- Implementation of NNLO QCD in c++ sector-improved residue subtraction framework [1408.2500,1907.12911]
- Massive b-quarks \rightarrow get rid of top production ($pp \rightarrow b\bar{b}W^+W^-$ enters at NNLO)
- NNPDF31 and a fixed renormalisation scale: $\mu_R = \mu_F = m_W$

Fiducial phase space

Measurement of fiducial and differential W+W- production crosssections at sqrt(s) = 13 TeV with the ATLAS detector ATLAS 1905.04242

- Leptons: $p_T(\ell) \ge 27 \text{ GeV}$ $|y(\ell)| < 2.5$ $m(\ell \bar{\ell}) > 55 \text{ GeV}$
- Missing transverse momentum: $p_{T,\text{miss}} = p_T(\nu_e + \bar{\nu}_\mu) \ge 20 \text{ GeV}$
- Jet-veto: $p_T(j) > 35 \text{ GeV}$ |y(j)| < 4.5

17.1.24 COMETA WG1

Doubly polarised cross sections

	NLO	NNLO	K_{NNLO}	LI	NNLO+LI
off-shell	$(220.060)^{+1.8\%}_{-2.3\%}$	$225.4(4)^{+0.6\%}_{-0.6\%}$	1.024	$13.8(2)^{+25.5\%}_{-18.7\%}$	$239.1(4)^{+1.5\%}_{-1.2\%}$
unpol. (nwa)	$221.85(8)^{+1.8\%}_{-2.3\%}$	$227.3(6)^{+0.6\%}_{-0.6\%}$	1.025	$13.68(3)^{+25.5\%}_{-18.7\%}$	$241.0(6)^{+1.5\%}_{-1.1\%}$
unpol. (dpa)	$214.55(7)^{+1.8\%}_{-2.3\%}$	$219.4(4)^{+0.6\%}_{-0.6\%}$	1.023	$13.28(3)^{+25.5\%}_{-18.7\%}$	$232.7(4)^{+1.4\%}_{-1.1\%}$
W_L^+ (dpa)	$57.48(3)^{+1.9\%}_{-2.6\%}$	$59.3(2)^{+0.7\%}_{-0.7\%}$	1.032	$2.478(6)^{+25.5\%}_{-18.3\%}$	$61.8(2)^{+1.0\%}_{-0.8\%}$
W_L^- (dpa)	$63.69(5)^{+1.9\%}_{-2.6\%}$	$65.4(3)^{+0.8\%}_{-0.8\%}$	1.026	$2.488(6)^{+25.5\%}_{-18.3\%}$	$67.9(3)^{+0.9\%}_{-0.8\%}$
W_T^+ (dpa)	$152.58(9)^{+1.7\%}_{-2.1\%}$	$155.7(6)^{+0.7\%}_{-0.6\%}$	1.020	$11.19(2)^{+25.5\%}_{-18.8\%}$	$166.9(6)^{+1.6\%}_{-1.3\%}$
W_T^- (dpa)	$156.41(7)^{+1.7\%}_{-2.1\%}$	$159.7(6)^{+0.5\%}_{-0.6\%}$	1.021	$11.19(2)^{+25.5\%}_{-18.8\%}$	$170.9(6)^{+1.7\%}_{-1.3\%}$
$W_L^+ W_L^-$ (dpa)	$9.064(6)^{+3.0\%}_{-3.0\%}$	$9.88(3)^{+1.3\%}_{-1.3\%}$	1.090	$0.695(2)^{+25.5\%}_{-18.8\%}$	$10.57(3)^{+2.9\%}_{-2.4\%}$
$W_L^+ W_T^-$ (dpa)	$48.34(3)^{+1.9\%}_{-2.5\%}$	$49.4(2)^{+0.9\%}_{-0.7\%}$	1.021	$1.790(5)^{+25.5\%}_{-18.3\%}$	$51.2(2)^{+0.6\%}_{-0.8\%}$
$W_T^+ W_L^-$ (dpa)	$54.11(5)^{+1.9\%}_{-2.5\%}$	$55.5(4)^{+0.6\%}_{-0.7\%}$	1.025	$1.774(5)^{+25.5\%}_{-18.3\%}$	$57.2(4)^{+0.7\%}_{-0.7\%}$
$W_T^+ W_T^-$ (dpa)	$106.26(4)^{+1.6\%}_{-1.9\%}$	$108.3(3)^{+0.5\%}_{-0.5\%}$	1.019	$9.58(2)^{+25.5\%}_{-18.9\%}$	$117.9(3)^{+2.1\%}_{-1.6\%}$

Small LL contribution, with large corrections (→ polarization frame)

17.1.24 COMETA WG1

Polarised di-boson production

- Longitudinal contribution largest around production threshold.
- At high energy W effectively massless
 → transverse polarised

What next?

- Generic frameworks are in place to compute NLO QCD/EW (+PS) and NNLO QCD
- Technically frameworks can handle any combination of V and H
 - WW/ZZ/WZ, WA/ZA, WH/ZH
- Final-states: mostly fully-leptonic, rarer: semi-leptonic, full-hadronic?
- Generation of polarised samples for HighTEA [2304.05993] https://www.precision.hep.phy.cam.ac.uk/hightea/
 - Tool far fast+easy differential cross section evaluation at NNLO
 - Flexible observable definitions (→ good to study new ideas)
 - Easy PDF/scale variation
 - Study of correlations/ratios between difference di-boson processes

Take home messages

- Higher-order corrections are vital to pin down polarization fractions and to minimize theory systematics
- NLO QCD/EW (+PS) are the state-of-the-art for polarized di-boson processes
 → WW is available at NNLO QCD
- Future/mid-term goals:
 - fixed-order: completion of di-boson processes @ NNLO QCD (+ NLO EW)
 → Comparisons between NNLO QCD and NLO+PS calculations
 - event-generators: NNLO QCD/EW-effects, SMEFT

Backup

17.1.24 COMETA WG1

EWSB

The reason is the EWSB in the SM:

• Higgs potential and minimum:

$$\mathcal{L}_{\rm EW} = -\frac{1}{4} (W^i_{\mu\nu})^2 - \frac{1}{4} (B^i_{\mu\nu})^2 + (D_\mu\phi)^2 - V(\phi^{\dagger}\phi)$$

$$V(\phi^{\dagger}\phi) = -\mu^2(\phi^{\dagger}\phi)^2 + \lambda(\phi^{\dagger}\phi)^4 \qquad \phi = U(\pi^i) \left(\begin{array}{c} 0\\ \frac{v+H}{\sqrt{2}} \end{array}\right) \qquad \text{VEV:} \quad \phi^{\dagger}\phi = \frac{\mu^2}{2\lambda} \equiv \frac{v^2}{2}$$

• Goldstone bosons can be absorbed via gauge transformation (unitary gauge). This gives rise to massive gauge bosons:

$$\phi = U^{-1}(\pi^{i})\phi, \qquad W_{\mu} = U^{-1}W_{\mu}U - \frac{\imath}{g_{W}}U^{-1}\partial_{\mu}U$$
$$|D_{\mu}\phi|^{2} \ni \frac{v^{2}}{8} \left[2g_{W}^{2}W_{\mu}^{+}W^{-\mu} + (g_{W}W_{\mu}^{3} - g_{W}'B_{\mu})^{2}\right] \implies M_{W} = \frac{1}{2}vg_{W}, \quad M_{Z} = \frac{M_{W}}{\cos\theta_{W}}$$

• Restores renormalizability and unitarity

NWA vs. DPA

17.1.24 COMETA WG1

Interference and off-shell effects

Large off-shell effect from single-resonant contributions

Large interference effects through phase space constraints Rene Poncelet – IFJ PAN

17.1.24 COMETA WG1

Polarised W+jet cross sections

Why looking at polarised W+jet with leptonic decays?

- The EW part is simple:
 - no non-resonant backgrounds
 - neutrino momentum approx. accessible (missing ET)
- Large cross section → precise measurements

Goals:

- Use W+j data to extract the longitudinal polarisation fraction (done before by exp.)
 → understand impact of NNLO QCD corrections (reduced scale dependence)
- Study inclusive (in terms of W decay products) and fiducial phase spaces
 → How does the sensitivity to longitudinal Ws depend on this?
 Which observables have small interference/off-shell effects?
- Are there any differences between W+ and W-? From PDFs and the fact that we cut on the charged lepton?

Setup: LHC @ 13 TeV

Polarised W+j production at the LHC: a study at NNLO QCD accuracy, Pellen, Poncelet, Popescu 2109.14336

Inclusive phase space:

• At least one jet with $|y(j)| \le 2.4$ and $p_T(j) \ge 30 \text{ GeV}$

Fiducial phase space:

Measurement of the differential cross sections for the associated production of a W boson and jets in proton-proton collisions at \sqrt{s}=13 TeV, CMS 1707.05979

- Lepton cuts: $p_T(\ell) \ge 25 \; {
 m GeV}$, $|\eta(\ell)| \le 2.5$ and $\Delta R(\ell,j) > 0.4$
- Transverse mass of the W: $M_T(W) = \sqrt{m_W^2 + p_T^2(W)} \ge 50 \text{ GeV}$

Technical aspects:

- NNPDF31 and dynamical scale choice: $\mu_R = \mu_F = \frac{1}{2} \left(m_T(W) + \sum p_T(j) \right)$
- Implementation in STRIPPER framework (NNLO QCD subtractions) [1408.2500]
 - Narrow-Width-Approximation and OSP/Pole-Approximation
 - Matrix elements from: AvH[1503.08612], OpenLoops2 [1907.13071](cross checks with Recola [1605.01090]) and VVamp [1503.04812]

Example: lepton transverse momentum

Perturbative corrections

Charge differences

Off-shell/Interference effects

W+jet : fit to CMS data

Fit to actual data, here $|y(j_1)|$

→ dominated by experimental uncertainties (no correlations available)

17.1.24 COMETA WG1

W+jet: mock-data fit

Fit to mock-data (based on NNLO QCD and 250 fb⁻¹ stats): → extreme case to see effect of scale dependence reduction

 $\cos(\ell, j_1)$

17.1.24 COMETA WG1

Extraction of polarisation fractions

Identified 4 observables (ranges) with
→ Small interference effects (<2%)
→ Small off-shell effects (<2%)
→ Shape differences between L and T

- $\Delta \phi(\ell, j_1) \ge 0.3$
- $25 \text{ GeV} \le p_T(\ell) < 70 \text{ GeV}$
- $\cos(\theta_{\ell}^*) \ge -0.75$
- $|y(j_1)| \leq 2$

Loop induced gg \rightarrow WW contributions

With top-quark loops in gg LI

Without top-quark loops in gg LI

