VH Production

Stephen Jones IPPP, Durham / Royal Society URF

THE ROYAL SOCIETY

Outline

State-of-the-art VH predictions in SM

- Overview of $pp \rightarrow VH$
- Drell-Yan-like contributions
- VHj & Decays & Public Codes
- Gluon-induced contribution to $pp \rightarrow ZH$

Common technical aspects of VH & multiboson

- Numerics and Expansions
- Mass Scheme Uncertainties

Summary

Overview of $pp \rightarrow VH$ @ Fixed-order

Drell-Yan piece (N³LO known)

Brein, Djouadi, Harlander 03; Ferrera, Grazzini, Tramontano 14; Kumara, Mandal, Ravindran 14; Baglio, Duhr, Mistlberger, Szafron 22

 $b\bar{b}$ piece (NNLO known)

Ahmed, Ajjath, Chen, Dhani, Mukherjee, Ravindran 19

Non-Drell-Yan $q\bar{q}$ piece ~1-2% Brein, Harlander, Wiesemann, Zirke 11

Gluon-induced (NLO known) ~10%

Dicus, Kao 88; Kniehl 90; Altenkamp, Dittmaier, Harlander, H. Rzehak, Zirke 12; Wang, Xu, Xu, Yang 21; Chen, Davies, Heinrich, Jones, Kerner, Mishima, Schlenk, Steinhauser 22; Degrassi, Gröber, Vitti, Zhao 22

+ EW corrections (NLO known) ~ -5-10%

Ciccolini, Dittmaier, Krämer 02; Brein, Ciccolini, Dittmaier, Djouadi, Harlander, Krämer 04; Denner, Dittmaier, Kallweit, Mück 12

Overview of $pp \rightarrow VH$ @ Fixed-order

+ EW corrections (NLO known) ~ -5-10%

Ciccolini, Dittmaier, Krämer 02; Brein, Ciccolini, Dittmaier, Djouadi, Harlander, Krämer 04; Denner, Dittmaier, Kallweit, Mück 12

N³LO Drell-Yan $pp \rightarrow VH$

Process	$\sigma^{\rm LO}$ [pb]	$\sigma^{\rm NLO} \ [{\rm pb}]$	K ^{NLO}	$\sigma^{\rm NNLO} \ [\rm pb]$	K ^{NNLO}	$\sigma^{\rm N^3LO} [{\rm pb}]$	K ^{N³LO}
W^+H	$0.758^{+2.43\%}_{-3.13\%}$	$0.883^{+1.38\%}_{-1.20\%}$	1.16	$0.891^{+0.28\%}_{-0.34\%}$	1.18	$0.884^{+0.27\%}_{-0.30\%}$	1.17
W^-H	$0.484^{+2.50\%}_{-3.26\%}$	$0.560^{+1.34\%}_{-1.23\%}$	1.16	$0.564^{+0.27\%}_{-0.34\%}$	1.17	$0.559^{+0.30\%}_{-0.33\%}$	1.16
ZH	$0.678^{+2.40\%}_{-3.11\%}$	$0.786^{+1.33\%}_{-1.16\%}$	1.16	$0.792^{+0.25\%}_{-0.32\%}$	1.17	$0.786^{+0.26\%}_{-0.29\%}$	1.16

N³LO Drell-Yan QCD corrections to $pp \rightarrow VH$ publicly available in code n3loxs Baglio, Duhr, Mistlberger, Szafron 22

Result obtained using N³LO result for off-shell Drell-Yan production of W/Z then attaching the decay $V^* \rightarrow VH$

Behaviour of result broadly similar to Drell-Yan NNLO corrections unusually small

N³LO corrections slightly larger than NNLO corrections and scale bands do not overlap

NNLO VH + jet(s)

σ [fb]	$\sigma^{ m LO}$	$\sigma_{\rm DY}^{\rm NLO}$	$\sigma^{ m NLO}_{{ m DY}+R_I}$	$\sigma_{ m DY}^{ m NNLO}$	$\sigma^{\rm NNLO}$
$W^-H + \ge 1$ jet	$12.30^{+1.24}_{-1.09}$	$15.18 {}^{+0.52}_{-0.56}$	$15.40 {}^{+0.57}_{-0.59}$	$15.37^{+0.03}_{-0.12}$	$15.59 {}^{+0.05}_{-0.15}$
W^-H+1 jet	$12.30^{+1.24}_{-1.09}$	$10.13 {}^{+0.45}_{-0.83}$	$10.35{}^{+0.41}_{-0.78}$	$8.61^{+0.44}_{-0.47}$	$8.82^{+0.40}_{-0.43}$

NNLO QCD including Drell-Yan type and toploop induced contributions Gauld, Gehrmann-De Ridder, Glover, Huss, Majer 19, 20, 21

Flat $\mathcal{O}(1\%)$ corrections for DY corrections to inclusive jet production within scale uncertainty

Corrections $\mathcal{O}(-10\%)$ for exclusive jet production (residual TH uncertainty $\mathcal{O}(5\%)$)

Top-loop induced contributions are small for WHj but larger for ZHj (gluon fusion contribution), have biggest impact for $p_{T,Z} > 150 \text{ GeV}$

NNLO+PS $W(H \rightarrow b\overline{b}) + b$ mass effects

WH production with $H \rightarrow b\bar{b}$ @ NNLO + PS Astill, Bizon, Re, Zanderighi 18

+ NNLO with bottom mass effects + Anomalous couplings / SMEFT Behring, Bizon, Caola, Melnikov, Röntsch 20; Bizoń, Caola, Melnikov, Raoul Röntsch 21

Allows application of realistic jet algorithms for b jets (important for TH vs EXP)

Including b mass increases $\sigma_{\rm tot}$ by +6.3 % (+7.7 % for boosted $\sigma_{\rm fid}$)

Rescaling massive NLO works for some distributions (e.g. $p_{t,H(b\bar{b})}$ but not $m_{H(b\bar{b})}$),

Results rely on use of flavour jet algorithms, saw a lot of theoretical development recently Caletti, Larkoski, Marzani, Reichelt 22; Czakon, Mitov, Poncelet 22; Caola, Grabarczyk, Hutt, Salam, Scyboz, Thaler 23

POWHEG/MiNNLO/GENEVA for $pp \rightarrow VH$

QCD+EW (NLO with PS)

Granata, Lindert, Oleari, Pozzorini 17

GENEVA (NNLL'+NNLO with PS)

Alioli, Broggio, Kallweit, Lim, Rottoli 19

MiNNLO (NNLO with PS) also with decays

 $pp \rightarrow l^+ l^- b \overline{b}, pp \rightarrow \nu_l \overline{\nu}_l b \overline{b}, pp \rightarrow l^\pm \nu_l b \overline{b}$ Zanoli, Chiesa, Re, Wiesemann, Zanderighi 21

Minnlo SMEFT $pp \rightarrow ZH \rightarrow l^+l^-b\overline{b}$

Haisch, Scott, Wiesemann, Zanderighi, Zanoli 22

$pp ightarrow W^+H ightarrow e^+ u_e b ar{b}$						
σ [fb]	inclusive	fiducial-YR				
MiNLO'	$54.04^{+6.6\%}_{-3.6\%}$	$20.13^{+2.3\%}_{-3.1\%}$				
MiNNLO _{PS}	$57.44_{-0.8\%}^{+1.7\%}$	$21.27^{+1.3\%}_{-1.3\%}$				
$pp ightarrow W^- H ightarrow e^- ar{ u}_e b ar{b}$						
σ [fb]	inclusive	fiducial-YR				
MiNLO'	$33.82^{+6.6\%}_{-3.6\%}$	$13.07^{+2.4\%}_{-3.3\%}$				
MiNNLO _{PS}	$35.87^{+1.5\%}_{-0.7\%}$	$13.77^{+1.5\%}_{-1.6\%}$				
$pp ightarrow ZH ightarrow e^+e^-bar{b}$						
σ [fb]	inclusive	fiducial-YR				
MiNLO'	$14.88^{+6.7\%}_{-3.7\%}$	$5.21^{+2.2\%}_{-3.0\%}$				
$\mathrm{MiNNLO}_{\mathrm{PS}}~(\mathrm{no}~gg \to ZH)$	$15.79^{+1.8\%}_{-0.9\%}$	$5.48^{+1.2\%}_{-1.2\%}$				
MiNNLO _{PS} (with $gg \to ZH$)	$16.99^{+3.6\%}_{-2.3\%}$	$6.07^{+3.4\%}_{-2.0\%}$				

Overview of $pp \rightarrow ZH$ (II)

The $gg \rightarrow ZH$ channel contributes to $pp \rightarrow ZH$ starting at NNLO in QCD

However due the large gluon-gluon luminosity at the LHC it contributes significantly (~10%) to the total cross section

ZH in Gluon Fusion

Full leading order (loop induced) Dicus, Kao 88; Kniehl 90

NLO in the limit of $m_t \to \infty$ ($K \approx 2$)

Altenkamp, Dittmaier, Harlander, H. Rzehak, Zirke 12

Virtual Corrections:

 $1/m_t^8$ Expansion + Padé approx Hasselhuhn, Luthe, Steinhauser 17 $1/m_t^{10}$ & m_t^{32} Expansion + Padé approx Davies, Mishima, Steinhauser 20

Numerical

Chen, Heinrich, SPJ, Kerner, Klappert, Schlenk 20

 p_T^4 Expansion

Alasfar, Degrassi, Giardino, Gröber, Vitti 21

 $p_T^4 + m_t^{12}$ Expansion + Padé approx

Bellafronte, Degrassi, Giardino, Gröber, Vitti 22

NLO results:

small m_z , m_h Expansion Wang, Xu, Xu, Yang 21

Numerical + m_t Expansion Chen, Davies, Heinrich, SPJ, Kerner, Mishima, Schlenk, Steinhauser 22

 $p_T + m_t$ Expansion

Degrassi, Gröber, Vitti, Zhao 22

Inclusive Cross Section $gg \rightarrow ZH$

Wang et al. 21: $\sqrt{s} = 13$ TeV

$\mu_r = \mu_f$	$\sigma^{gg}_{ m LO}$	$\sigma^{gg}_{ m NLO}$	$\sigma^{\rm w/o\ gg}_{pp \to ZH}$	$\sigma_{pp \to ZH}$
$M_{ZH}/3$	73.56(7)	129.4(3)	784.0(7)	913.4(7)
M_{ZH}	51.03(5)	101.7(2)	781.1(7)	882.9(7)
$3M_{ZH}$	36.62(4)	80.4(2)	780.7(8)	861.1(8)

Chen et al. 22: $\mu_R = \mu_F = m_{ZH}$

\sqrt{s}	LO [fb]	NLO [fb]
$13 { m TeV}$	$52.42^{+25.5\%}_{-19.3\%}$	$103.8(3)^{+16.4\%}_{-13.9\%}$
$13.6 { m TeV}$	$58.06^{+25.1\%}_{-19.0\%}$	$114.7(3)^{+16.2\%}_{-13.7\%}$
$14 { m TeV}$	$61.96^{+24.9\%}_{-18.9\%}$	$122.2(3)^{+16.1\%}_{-13.6\%}$

Find good agreement between groups when same inputs used

NLO corrections are very large $(K \approx 2)$

Currently in process of updating Higgs WG recommendation using these results

Degrassi et al. 22: $\sqrt{s} = 13$ TeV, $\mu_R = \mu_F = m_{ZH}/2$

Top-mass scheme	LO [fb]	$\sigma_{LO}/\sigma_{LO}^{OS}$	NLO [fb]	$\sigma_{NLO}/\sigma_{NLO}^{OS}$	$K = \sigma_{NLO} / \sigma_{LO}$
On-Shell	$64.01^{+27.2\%}_{-20.3\%}$	-	$118.6^{+16.7\%}_{-14.1\%}$	-	1.85
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/4$	$59.40^{+27.1\%}_{-20.2\%}$	0.928	$113.3^{+17.4\%}_{-14.5\%}$	0.955	1.91
$\overline{\mathrm{MS}}, \mu_t = m_t^{\overline{\mathrm{MS}}}(m_t^{\overline{\mathrm{MS}}})$	$57.95^{+26.9\%}_{-20.1\%}$	0.905	$111.7^{+17.7\%}_{-14.6\%}$	0.942	1.93
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}/2$	$54.22^{+26.8\%}_{-20.0\%}$	0.847	$107.9^{+18.4\%}_{-15.0\%}$	0.910	1.99
$\overline{\mathrm{MS}}, \mu_t = M_{ZH}$	$49.23^{+26.6\%}_{-19.9\%}$	0.769	$103.3^{+19.6\%}_{-15.6\%}$	0.871	2.10

Comparison Numeric/Small m_t Expansion

The amplitude can be expanded around small m_t , m_h , m_z Known to (m_z^4, m_h^4, m_t^{32})

Davies, Mishima, Steinhauser 20; Mishima 18; Chen, Davies, Heinrich, SPJ, Kerner, Mishima, Schlenk, Steinhauser 22

Find acceptable agreement for $p_{T,Z} \ge 150$ GeV (<2.8% difference)

Comparison Small p_T / Small m_t Expansion

Merging pT and HE Expansions at NLO

Improve the convergence of a series expansion by matching the coefficients of the **Pade approximant** [m/n] [e.g. Fleisher, Tarasov ('94)]

$$f(x) \stackrel{x \to 0}{\simeq} c_0 + c_1 x + \dots + c_q x^q \qquad f(x) \simeq [m/n](x) = \frac{a_0 + a_1 x + \dots + a_m x^m}{1 + b_1 x + \dots + b_n x^n} \quad (q = m + n)$$

[Bellafronte, Degrassi, Giardino, Gröber, MV -2103.06225]

For each FF we merged the following results

- pT exp improved by [1/1] Padé
- HE exp improved by [6/6] Padé
- Padé results are stable and comparable in the region $|\hat{t}| \sim 4m_t^2 \rightarrow \text{can switch without loss of}$ accuracy (% level or below)
- Evaluation time for a phase-space point below 0.1 $s \Rightarrow$ suitable for Monte Carlo

Slide: Marco Vitti (20th Workshop of the LHC Higgs Working Group)

Real Emission Diagrams

There is some **freedom** regarding which real diagrams we include in gg vs $q\bar{q}$ Must be careful not to double count when combining all channels for $pp \rightarrow ZH$

Diagrams included in all works ($n_f = 5 + \text{massive top in loop}$) + crossings

We require:

- 1) A closed fermion loop
- 2) A Z-boson or Goldstone boson coupled to that loop

Real Emission Diagrams (II)

Diagrams excluded in Wang et al./Chen et al., included in Degrassi et al

Left class of diagrams: separately UV/IR finite & gauge invariant Previously studied in detail See e.g. Brein, Harlander, Wiesemann, Zirke 12

Right class of diagrams: belongs to real corrections to Drell-Yan (i.e. $q\bar{q}$) Included in DY calculations Brein, Djouadi, Harlander 03;

Brein, Djouadi, Harlander 03; Ferrera, Grazzini, Tramontano 14; See also: Kumara, Mandal, Ravindran 14

Invariant Mass $gg \rightarrow ZH$

NLO/LO somewhat flat except at ZH and $t\bar{t}$ production thresholds

Large rise at high- m_{ZH} due to real diagrams with Z radiated from external quark line (Z-rad)

Z Transverse Momentum

 $p_{T,Z}$: Large NLO corrections, rising sharply at large $p_{T,Z}$ Placing cuts on soft H emission only slightly tames growth

 $p_{T,H}$: **Extremely** large pathological NLO corrections, rising very sharply at large $p_{T,H}$ Placing cuts on soft Z emission tames growth somewhat

Very important to include higher order corrections in this region

Transverse Momentum: Z vs H

The different behaviour of $p_{T,Z}$ and $p_{T,H}$ was observed previously in $gg \rightarrow ZH + j$

Hespel, Maltoni, Vryonidou 15; Les Houches 19

Traced to configurations where Higgs recoils against a hard jet, with a soft Z

One observation

Maltoni et al. attributed this *t*-channel gluon exchange

If we apply an eikonal approximation to such diagrams, the enhancement of soft Z bosons can be understood

(Soft Z emission) : $\frac{p^{\mu}}{}$ $p \cdot p_Z$ (Soft *H* emission) : $\frac{m_t}{\dots}$ $p \cdot p_H$ Ratio for large radiator (transverse) momentum $\sim p_T/m_t \gg 1$

Numerically Computing $2 \rightarrow 2$ Amplitudes

Expansions for $2 \rightarrow 2$ Amplitudes

VV, VH, HH virtual $2 \rightarrow 2$ amplitudes often share the same master integrals after expansion, can combine up these expansions to cover the phase-space

Low invariant mass:

expand in $1/m_t^2$ known to NNLO Grigo, Hoff, Steinhauser 15, ... **Around Peak:** threshold expansion Gröber, Maier, Rauh 17, ... High energy: known at NLO Davies, Mishima, Steinhauser, Wellmann 18, 19, ... Small p_T or t: known at NLO Alasfar, Degrassi, Giardino Groeber, Vitti 21; Davies, Mishima, Schönwald, Steinhauser 23, ...

Slide: Marco Vitti (20th Workshop of the LHC Higgs Working Group)

Mass Scheme Uncertainty

Comparing to $gg \rightarrow HH$, we see a different high-energy behaviour

$$A_i^{\text{fin}} = a_s A_i^{(0),\text{fin}} + a_s^2 A_i^{(1),\text{fin}} + \mathcal{O}(a_s^3)$$
 with $a_s = \alpha_s / 4\pi$

 Davies, Mishima, Steinhauser, Wellmann 18;
 Baglio, Campanario, Glaus, Mühlleitner, Ronca, Spira, Streicher 20

$$\begin{split} A_{i}^{(0)} &\sim m_{t}^{2} f_{i}(s, t) \\ A_{i}^{(1)} &\sim 6 C_{F} A_{i}^{(0)} \log \left[\frac{m_{t}^{2}}{s} \right] \end{split}$$

LO: m_t^2 from y_t^2 NLO: leading $\log(m_t^2)$ from mass c.t. converting to $\overline{\text{MS}}$ gives $\log \left[\mu_t^2/s\right]$ motivating scale choice of $\mu_t^2 \sim s$ **ZH** Davies, Mishima, Steinhauser 20

$$\begin{split} A_i^{(0)} &\sim m_t^2 f_i(s,t) \; \log^2 \left[\frac{m_t^2}{s} \right] \\ A_i^{(1)} &\sim \frac{(C_A - C_F)}{6} A_i^{(0)} \; \log^2 \left[\frac{m_t^2}{s} \right] \end{split}$$

LO: one m_t from y_t NLO: leading $log(m_t^2)$ not coming from mass c.t. (C_A)

Similar power-suppressed mass logarithms have been studied in single *H* Liu, Penin 18; Anastasiou, Penin 20; Liu, Modi, Penin 22; Liu, Neubert, Schnubel, Wang 22; Schnubel 23

Conclusion

Fixed Order

- $pp \rightarrow WH$: dominant pieces known to N3LO/NNLO accuracy
- $pp \rightarrow ZH$: largest theoretical uncertainty still from gluon-induced contribution
- NLO EW corrections available

Public MC/ Parton Shower Codes

- Available at NNLO + PS accuracy for all processes and with relevant decays
- Also available in SMEFT, useful for global analyses/combined constraints

Future...

- Higgs WG recommendation for $gg \rightarrow ZH$
- Incorporate NLO $gg \rightarrow ZH$ corrections into public codes for $pp \rightarrow ZH$
- Handling mass scheme uncertainties in Higgs processes (?)
- Further EW corrections necessary (?)

Thank you for listening!

Backup

Mass Scheme Uncertainty

Can assess impact of changing top quark mass renormalisation scheme for $p_{T,H} \ge 140 \text{ GeV} \& p_{T,Z} \ge 150 \text{ GeV}$ using full B + full R + expanded virtuals

HH: Baglio, Campanario, Glaus, Mühllleitner, Spira, Streicher 18 + Ronca 20, 21; $t\bar{t}$: Catani, Devoto, Grazzini, Kallweit, Mazzitelli 20; $t\bar{t}H$: Martin, Moch, Saibel 21 $t\bar{t}j$: Alioli, Fuster, Garzelli, Gavardi, Irles, Melini, Moch, Uwer, Voß 22; Various: Les Houches 19

Convert $m_t \rightarrow \overline{m_t}(\overline{m_t})$ using 4-loops, then use RGE at 5-loops with $n_f = 6$ Gives $m_t = 173.21 \text{ GeV} \rightarrow \overline{m_t}(\overline{m_t}) = 163.39 \text{ GeV}$

Chetyrkin, Kuhn, Steinhauser 00; Herren, Steinhauser 18

Go from OS to $\overline{\text{MS}}$ mass counter term using:

$$m_t \to \overline{m_t}(\mu_t) \left(1 + \frac{\alpha_s(\mu_R)}{4\pi} C_F \left\{ 4 + 3\log\left[\frac{\mu_t^2}{\overline{m_t}(\mu_t)^2}\right] \right\} \right)$$

Study 3 different renormalisation scales:

$$\mu_t = m_{ZH},$$

$$\mu_t = H_T = \sum_{i=H,Z} \sqrt{m_i^2 + p_{T,i}^2} + \sum_k |p_{T,k}|$$

$$\mu_t = \overline{m_t}(\overline{m_t})$$

Mass Scheme Uncertainty

Observations @ $m_{ZH} = 1$ TeV

Large difference between different schemes LO: OS result ~2.9x $\overline{\text{MS}}$ result NLO: Difference reduced ~1.9x

Scale $\mu_t = \overline{m}_t(\overline{m}_t)$ most similar to OS (OS is 1.4x) Scale $\mu_t = m_{ZH}$ differs most from OS (OS is 1.9x) If taken as a theoretical uncertainty, is much larger than scale uncertainty

Comparison to Expansion (Small m_h, m_z)

Can expand in only m_h , m_z and retain full m_t dependence Wang, Xu, Xu, Yang 21 Integrals appearing in the expansion (scales s, t, m_t^2) are known

Caron-Huot, Henn 14; Becchetti, Bonciani 18; Xu, Yang 18; Wang, Wang, Xu, Xu, Yang 20;

Expansion shows good agreement with numerical result No breakdown near top threshold

Authors obtained NLO results for $gg \rightarrow ZH$ Virtuals: small m_h, m_z expansion Reals: GoSam Cullen et al. 11, 14

We find agreement with their total cross section result and uncertainty

(2% difference ascribed to different choice of PDFs and masses)

Comparison to Large m_t Expansion

The amplitude has been expanded around large- m_t and computed analytically Hasselhuhn, Luthe, Steinhauser 17; Davies, Mishima, Steinhauser 20

Let us compare our result to the Born

$$\mathcal{V}_n = rac{\mathcal{B}}{\mathcal{B}_n} \widetilde{\mathcal{V}}_n + \mathcal{V}^{1\mathrm{PR}}$$

Per mille level agreement far below top quark threshold: $\mathcal{V}_4/\mathcal{V}=0.9989$

Expansion breaks down at threshold, observe that it differs from our result

Observation: n = 1 apparently worse than n = 0