

Sub-percent precision: Charting new frontiers in measuring luminosity at colliders

Experimental Particle and Astro-Particle Physics Seminar Universität Zürich, February 19th, 2024

Claudia Seitz

What is luminosity?

Important quantity for a collider at its center-of-mass energy

► Measurement of the number of collisions that can be produced in a detector per cm² and per second

bunch slots every 25ns (or with 40 MHz)

What is luminosity?

- Important quantity for a collider at its center-of-mass energy

number of protons in bunch 1 (n_1)

► Measurement of the number of collisions that can be produced in a detector per cm² and per second

number of protons in bunch 2 (n_2)

 $\sigma_x \sigma_y$ bunch size in x and y

What is luminosity?

- Important quantity for a collider at its center-of-mass energy

number of protons in bunch 1 (n_1)

Simplified calculation for **instantaneous luminosity**:

$$n = 1.1 \times 10^{11}$$

 $t = 25 ns = 25 \times 10^{-6} s$
 $\sigma_x = \sigma_y = 16 microns = 16 \times 10^{-4} cm$

$1 \text{ barn} = 10^{-24} \text{ cm}^2$

> Measurement of the number of collisions that can be produced in a detector per cm² and per second

number of protons in bunch 2 (n_2)

 $\sigma_x \sigma_y$ bunch size in x and y

 $\mathcal{L}=n^2/(t \times S)$ $\approx 10^{34} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}$

Why measure luminosity?

Important quantity for a collider at its center-of-mass energy Integrated luminosity: how many collisions in a dataset

 $N_{obs} = \sigma_{inel}L$

L = integrated luminosity

ATLAS Run2 Preliminary luminosity was 139 ± 2.3 fb⁻¹ (1.7%)

CMS Run2 partial legacy measurement 2016 arxiv:2104.01927 was $36.3 \pm 0.44 \text{ fb}^{-1}$ (1.2%)

Why measure luminosity?

- Important quantity for a collider at its center-of-mass energy
 - Integrated luminosity: how many collisions in a dataset
- ► Goal: provide precision measurement of luminosity for physics analyses
 - Leading systematic uncertainty for some measurements i.e. $t\bar{t}/W/Z$ cross section

Claudia Seitz, DESY

at 13 TeV with 36 fb⁻¹

6

The Large Hadron Collider

- Proton-proton

 (proton-ion) collider
 with a circumference of
 27 km located under the
 Swiss-French border
 near Geneva
- Center-of-mass energy
 13 TeV (recently
 13.6 TeV achieved)
- Over 1200 dipole
 magnets to keep proton
 beams on circular path

Serve
1

Luminosity and LHC beam parameters

► Goal: provide precision measurement of luminosity for physics analyses

- ► From rate of observed events for a given process cross section
 - Example: $Z \rightarrow ll$ cross section known only to a few %

 $N_{obs} = \sigma \mathscr{L} \Delta t$

- Δt = luminosity block (LB ~ 60 s) - \mathcal{L} = instantaneous luminosity

Luminosity and LHC beam parameters

► Goal: provide precision measurement of luminosity for physics analyses

- ► From rate of observed events for a given process cross section
 - Example: $Z \rightarrow ll$ cross section known only to a few %
- ► From LHC machine parameters

► Allows more precise measurements

Claudia Seitz, DESY

 $N_{obs} = \sigma \mathscr{L} \Delta t$

- Δt = luminosity block (LB ~ 60 s) $- \mathcal{L} = instantaneous luminosity$

 $-\mu_b =$ number of inelastic pp collisions per bunch crossing $\sigma_{inel} = inelastic pp cross section$

Can also be expressed by - μ_{vis} = visible interaction rate of a given algorithm or luminometer - σ_{vis} = visible cross section of that algorithm or luminometer

How do LHC beams look like?

2018 beam parameters (physics regime)

- revolution frequency: $f_r = 11246/s$
- #bunches: **n**_b up to 2544
- #protons / bunch: $n_i = (1.1-0.9) \times 10^{11}$
- Width of beams overlap: $\Sigma y > \Sigma x \approx 10-20 \,\mu\text{m}$

11

)+200 empty BCIDs.... individual filled bunches with several empty ones before and after in both beams = indivs

How do LHC beams look like?

2018 beam parameters (physics regime)

- revolution frequency: $f_r = 11246/s$
- #bunches: n_b up to 2544
- #protons / bunch: $n_i = (1.1-0.9) \times 10^{11}$
- Width of beams overlap: $\Sigma y > \Sigma x \approx 10-20 \,\mu\text{m}$

Each position gets assigned a Bunch Crossing Identifier = BCID

How do LHC beams look like?

2018 beam parameters (physics regime)

- revolution frequency: $f_r = 11246/s$
- #bunches: n_b up to 2544
- #protons / bunch: $n_i = (1.1-0.9) \times 10^{11}$
- Width of beams overlap: $\Sigma y > \Sigma x \approx 10-20 \ \mu m$

Online luminosity measurement

1000

BCID Number

shows the filling scheme

Claudia Seitz, DESY

- ► Online instantaneous luminosity gets reported back to the LHC
- Allows direct comparisons between the different interaction points (IP)

ATLAS Luminosity detectors and algorithms

LUCID

- ► Baseline luminometer for Run 2, Cherenkov light detector with 2x16 PMTs at $z = \pm 17$ m from IP
- Bunch-by-bunch luminosity through hit counting \rightarrow different algorithms in use

2018 JINST 13 P07017

LUCID = *LUminosity Cherenkov Integrating Detector*

ATLAS Luminosity detectors and algorithms

- B) Track counting (TC)
 - ► Counting tracks in the inner detector (ID)
 - Bunch-by-bunch capabilities
 - Bunch-integrated for physics runs
 different track selections in use

ATLAS Luminosity detectors and algorithms

- → luminosity proportional to gap current

ATLAS Luminosity measurement strategy in Run 2

1. vdM calibration

- van der Meer
 scan typically
 performed once
 per year
- Calibration of LUCID
 σ_{vis} in specially
 tailored beam
 conditions

2. Calibration transfer

- Extrapolation of LUCID measurement from vdM regime to physics regime
- Track counting used to correct LUCID
- Cross-checked with Tile measurement for uncertainties

Claudia Seitz, DESY

3. Long-term stability

- Check of Run-to-Run stability throughout each year
- Comparison of run-integrated luminosity of LUCID wrt Tile, EMEC, FCAL

ATLAS Luminosity measurement strategy in Run 2

1. vdM calibration

- van der Meer scan typically performed once per year
- Calibration of LUCID σ_{vis} in specially tailored beam conditions

2. Calibration transfer

- correct LUCID
- measurement for uncertainties

Will discuss today final precision Run 2 results: Eur. Phys. J. C 83 (2023) 982 19

• Extrapolation of LUCID measurement from vdM regime to physics regime

• Track counting used to

• Cross-checked with Tile

3. Long-term stability

• Check of Run-to-Run stability throughout each year

• Comparison of run-integrated luminosity of LUCID wrt Tile, EMEC, FCAL

Van der Meer scans

Method originally developed by Simon van der Meer (vdM) at the Intersecting Storage Ring (ISR)

Specialized beam conditions:

low average pile up ($\mu \sim 0.6$)

isolated bunches

small number of bunches

no crossing angle

Van der Meer scans

- Method originally developed by Simon van der Meer (vdM) at the Intersecting Storage Ring (ISR)
- > Measure visible interaction rate μ_{vis} vs beam separation
- μ_{vis} related to visible cross section $\sigma_{\text{vis}} = \mu_{\text{vis}}^{\text{MAX}} \frac{2\pi \Sigma_x \Sigma_y}{\pi}$

Claudia Seitz, DESY

 $n_1 n_2$

Specialized beam conditions:

low average pile up ($\mu \sim 0.6$)

isolated bunches

small number of bunches

no crossing angle

Bunch current product – n₁n₂

- ► LHC instrumented to measure currents of bunches using current transformers > DC current transformers: integrated current
 - ► Fast beam current transformers: relative bunch population
- 10^{0} ► Needs corrections for: 10^{-1} Shost charge (<2.5%): Circulating unbunched beam 10^{-2} ► Satellite bunches 10^{-3} Bunches in other RF-buckets 10^{-4}

DCCT

1. vdM calibration – van der Meer scans

 vdM analysis determines the visible cross section σ_{vis} for each bunch

► vdM fit extracts

$$\sigma_{vis} =$$

1. vdM calibration – van der Meer scans

 σ_{vis}

- vdM analysis determines the visible cross section σ_{vis} for each bunch
- > vdM fit extracts μ

Cl

$$\lambda_{vis}^{Max} \quad \Sigma_x \quad \Sigma_y$$

Several scans performed \Rightarrow check for scan-to-scan reproducibility

1. vdM calibration – van der Meer scans

 σ_{vis}

- vdM analysis determines the visible cross section σ_{vis} for each bunch
- ► vdM fit extracts

Cl

$$\mu_{vis}^{Max}$$
 Σ_x Σ_y

 \blacktriangleright Several scans performed \Rightarrow check for scan-to-scan reproducibility

► Various corrections to consider

- Orbit drifts beams do not stay still during scans
- Emittance growth and non-factorization beam sizes change with time, transverse profiles in x and y do not factorize
- Length scale and magnetic non-linearity (<u>arXiv:2304.06559v1</u>, A. Chmielińska et al.) - the steering correctors are not perfect

25

Length scale calibration and non-factorization

- Length scale: relation between requested and real beam displacement
 - Calibrated in dedicated 5-point scans in x an y
 - ► True beam displacement measured from beamspot positions reconstructed from tracks

Claudia Seitz, DESY

Length scale calibration and non-factorization

- Length scale: relation between requested and real beam displacement
 - ► Calibrated in dedicated 5-point scans in x an y
 - True beam displacement measured from beamspot positions reconstructed from tracks

Claudia Seitz, DESY

- Non-factorization: vdM formalism assumes that beam profiles in x and y factorize
- Deviation from factorization characterized using primary vertex distribution at each scan step
 - ► Check size, shape, and orientation of luminous region

Beam-Beam effects

During vdM scans two distinct effects exist

► Beam-beam deflection

- ► Each B1 bunch (as a whole) repels the companion B2 bunch → orbits change
- ►Increases the beam separation ∆ by a different amount at each vdM-scan step

Beam-Beam effects

During vdM scans two distinct effects exist

► Beam-beam deflection

- ► Each B1 bunch (as a whole) repels the companion B2 bunch →orbits change
- Increases the **beam separation** Δ by a different amount at each vdM-scan step
- Optical distortion
 - ► Each B1 bunch (de)focuses the companion B2 bunch (& vice-versa)
 - ► Modifies the **beam shapes** by a different amount at each vdM-scan step

Beam-Beam effects

During vdM scans two distinct effects exist

- \blacktriangleright Beam-beam deflection +1.5 to + 2%
 - ► Each B1 bunch (as a whole) repels the companion B2 bunch →orbits change
 - Increases the **beam separation** Δ by a different amount at each vdM-scan step
- ► Optical distortion 1.5 to -1%

► Each B1 bunch (de)focuses the companion B2 bunch (& vice-versa)

► Modifies the **beam shapes** by a different amount at each vdM-scan step

ATLAS Luminosity measurement strategy in Run 2

2. Calibration transfer

- Extrapolation of LUCID measurement from vdM regime to physics regime
- Track counting used to correct LUCID
- Cross-checked with Tile measurement for uncertainties

Claudia Seitz, DESY

ATLAS Luminosity measurement strategy in Run 2

2. Calibration transfer

- Extrapolation of LUCID measurement from vdM regime to physics regime
- Track counting used to correct LUCID
- Cross-checked with Tile measurement for uncertainties

vdM regime isolated bunches

small number of bunches

no crossing angle

- low average pile up ($\mu \sim 0.6$)

Physics regime high pile up ($20 < \mu < 60$) bunch trains

high number of bunches with crossing angle

Could we just count vertices?

Number of vertices does not scale linearly with µ due to vertex-merging

Claudia Seitz, DESY

But: number of tracks grows ~ linearly with μ

use "track counting"

Interlude: Track counting

Different track selections in use with varying efficiency and fake rates

Selection A baseline measurement for Run 2

Claudia Seitz, DESY

Criterion	Selection A	Selection B	Selection C
<i>p</i> _T [GeV]	> 0.9	> 0.9	> 0.9
$ \eta $	< 1.0	< 2.5	< 1.0
$N_{\rm hits}^{\rm Si}$	≥ 9	≥ 9 if $ \eta < 1.65$	≥ 10
		else ≥ 11	
$N_{\rm holes}^{\rm Pix}$	≤ 1	= 0	≤ 1
$ d_0 /\sigma_{d_0}$	< 7	< 7	< 7

Stability monitored with $Z \rightarrow \mu\mu$ events, measured the track selection efficiency

Date in 2018

2. Calibration transfer

- > LUCID overestimates luminosity at high μ
 - Use track counting to derive correction factor
- Caveat: track counting is only relativ measurement
 - Track counting normalized to LUCID in headon part of vdM fill
 - ►µ−correction derived in long physics run with natural luminosity decay
 - ► $\mathcal{O}(10\%)$ at $\langle \mu \rangle$ of 45

2. Calibration transfer

Luminosity fraction \cong *time in year*

Claudia Seitz, DESY

Data is divided into periods with similar conditions

Startup, bulk, 8b4e running in 2017

Result: Corrected LUCID luminosity L_{corr} for each LB in each physics run

2. Calibration transfer uncertainty

- > LUCID correction assumes that track counting is perfectly linear from vdM to physics regime
 - Check this assumption with alternative Tile data measurement
 - Sophisticated activation corrections to Tile data need to be applied

2. Calibration transfer uncertainty

► Check double ratio of $R_{Tile-e/TC}$ in physics vs vdM conditions as a function of $\langle \mu \rangle$ and the number of bunches

Yellow band covers scatter calibration transfer uncertainty i.e. 0.5 %

. . . .

ATLAS Luminosity measurement strategy in Run 2

3. Long-term stability

- Check of Run-to-Run stability throughout each year
- Comparison of run-integrated luminosity of LUCID wrt Tile, EMEC, FCAL

Luminosity measurements needs to be monitored throughout the year by comparing corrected LUCID L_{corr} with calorimeter measurements

Claudia Seitz, DESY

3. Long term stability

► Calorimeter anchoring

- Calorimeter measurements are not calibrated in vdM fill
 - ⇒ need to be "anchored" to track counting in physics run close to vdM fill
- ► Using average of 10 runs around vdM fill
- ► RMS of run-to-run variations assigned as uncertainty $\Rightarrow 0.1\%$ to 0.3% per year

3. Long term stability

Long-term stability

- the whole data taking year
- > Target: uncertainty on the integrated luminosity not individual runs \Rightarrow 0.1 to 0.2% per year uncertainty

Comparison of run-integrated luminosity of LUCID wrt Tile, EMEC, FCAL throughout

Take largest mean from EMEC, FCal, Tile to define long-term stability uncertainty

Z-counting

- between CMS and ATLAS
- > To check inter-year calibration compare L_Z/L_{ATLAS}

 $\blacktriangleright Z \rightarrow ee$ and $Z \rightarrow \mu\mu$ counting can be used to relative luminosity measurements and comparisons

> Absolute measurement not precise enough -> PDF uncertainties on Z-cross section too large

1. vdM calibration 0.7-0.99%

2. Calibration transfer 0.5%

Claudia Seitz, DESY

3. Long-term stability

0.2% - 0.3 %

*correlated

Data sample	2015	2016	2017	2018	Comb
Integrated luminosity [fb ⁻¹]	3.24	33.40	44.63	58.79	140.07
Total uncertainty [fb ⁻¹]	0.04	0.30	0.50	0.64	1.17
Uncertainty contributions [%]:					
Statistical uncertainty	0.07	0.02	0.02	0.03	0.01
Fit model*	0.14	0.08	0.09	0.17	0.12
Background subtraction*	0.06	0.11	0.19	0.11	0.13
FBCT bunch-by-bunch fractions*	0.07	0.09	0.07	0.07	0.07
Ghost-charge and satellite bunches*	0.04	0.04	0.02	0.09	0.05
DCCT calibration*	0.20	0.20	0.20	0.20	0.20
Orbit-drift correction	0.05	0.02	0.02	0.01	0.01
Beam position jitter	0.20	0.22	0.20	0.23	0.13
Non-factorisation effects*	0.60	0.30	0.10	0.30	0.24
Beam-beam effects*	0.27	0.25	0.26	0.26	0.26
Emittance growth correction*	0.04	0.02	0.09	0.02	0.04
Length scale calibration	0.03	0.06	0.04	0.04	0.03
Inner detector length scale*	0.12	0.12	0.12	0.12	0.12
Magnetic non-linearity	0.37	0.07	0.34	0.60	0.27
Bunch-by-bunch $\sigma_{ m vis}$ consistency	0.44	0.28	0.19	0.00	0.09
Scan-to-scan reproducibility	0.09	0.18	0.71	0.30	0.26
Reference specific luminosity	0.13	0.29	0.30	0.31	0.18
Subtotal vdM calibration	0.96	0.70	0.99	0.93	0.65
Calibration transfer*	0.50	0.50	0.50	0.50	0.50
Calibration anchoring	0.22	0.18	0.14	0.26	0.13
Long-term stability	0.23	0.12	0.16	0.12	0.08
Total uncertainty [%]	1.13	0.89	1.13	1.10	0.83

1. vdM calibration 0.7-0.99%

Luminosity measurement for full Run 2 ATLAS pp dataset finalized 140.1 \pm 1.2 fb⁻¹ corresponds to 0.83% uncertainty

► Highest precision achieved at the LHC

Claudia Seitz, DESY

2. Calibration transfer 0.5%

3. Long-term stability

0.2% - 0.3 %

*C	orr	elc	itea	l
*C	orr	elc	itea	l

Data sample	2015	2016	2017	2018	Comb
Integrated luminosity [fb ⁻¹]	3.24	33.40	44.63	58.79	140.07
Total uncertainty [fb ⁻¹]	0.04	0.30	0.50	0.64	1.17
Uncertainty contributions [%]:					
Statistical uncertainty	0.07	0.02	0.02	0.03	0.01
Fit model*	0.14	0.08	0.09	0.17	0.12
Background subtraction*	0.06	0.11	0.19	0.11	0.13
FBCT bunch-by-bunch fractions*	0.07	0.09	0.07	0.07	0.07
Ghost-charge and satellite bunches*	0.04	0.04	0.02	0.09	0.05
DCCT calibration*	0.20	0.20	0.20	0.20	0.20
Orbit-drift correction	0.05	0.02	0.02	0.01	0.01
Beam position jitter	0.20	0.22	0.20	0.23	0.13
Non-factorisation effects*	0.60	0.30	0.10	0.30	0.24
Beam-beam effects*	0.27	0.25	0.26	0.26	0.26
Emittance growth correction*	0.04	0.02	0.09	0.02	0.04
Length scale calibration	0.03	0.06	0.04	0.04	0.03
Inner detector length scale*	0.12	0.12	0.12	0.12	0.12
Magnetic non-linearity	0.37	0.07	0.34	0.60	0.27
Bunch-by-bunch $\sigma_{ m vis}$ consistency	0.44	0.28	0.19	0.00	0.09
Scan-to-scan reproducibility	0.09	0.18	0.71	0.30	0.26
Reference specific luminosity	0.13	0.29	0.30	0.31	0.18
Subtotal vdM calibration	0.96	0.70	0.99	0.93	0.65
Calibration transfer*	0.50	0.50	0.50	0.50	0.50
Calibration anchoring	0.22	0.18	0.14	0.26	0.13
Long-term stability	0.23	0.12	0.16	0.12	0.08
Total uncertainty [%]	1.13	0.89	1.13	1.10	0.83

1. vdM calibration 0.7-0.99%

Luminosity measurement for full Run 2 ATLAS pp dataset finalized

140.1 \pm 1.2 fb⁻¹ corresponds to 0.83% uncertainty

- ► Highest precision achieved at the LHC
- Dominant uncertainties
 - ► vdM calibration
 - ► beam-beam effects
 - ► non-factorization
- magnetic-non linearity
- scan-to-scan reproducibility
- calibration transfer uncertainty
- Crucial inputs for ongoing Run 3 measurement and ultimate sub-percent precision goal for HL-LHC

Claudia Seitz, DESY

2. Calibration transfer 0.5%

3. Long-term stability

0.2% - 0.3 %

*correlated

	Data sample	2015	2016	2017	2018	Comb.
	Integrated luminosity [fb ⁻¹]	3.24	33.40	44.63	58.79	140.07
	Total uncertainty [fb ⁻¹]	0.04	0.30	0.50	0.64	1.17
	Uncertainty contributions [%]:					
	Statistical uncertainty	0.07	0.02	0.02	0.03	0.01
	Fit model*	0.14	0.08	0.09	0.17	0.12
	Background subtraction*	0.06	0.11	0.19	0.11	0.13
	FBCT bunch-by-bunch fractions*	0.07	0.09	0.07	0.07	0.07
	Ghost-charge and satellite bunches*	0.04	0.04	0.02	0.09	0.05
	DCCT calibration*	0.20	0.20	0.20	0.20	0.20
	Orbit-drift correction	0.05	0.02	0.02	0.01	0.01
	Beam position jitter	0.20	0.22	0.20	0.23	0.13
->	Non-factorisation effects*	0.60	0.30	0.10	0.30	0.24
-	Beam-beam effects*	0.27	0.25	0.26	0.26	0.26
	Emittance growth correction*	0.04	0.02	0.09	0.02	0.04
	Length scale calibration	0.03	0.06	0.04	0.04	0.03
	Inner detector length scale*	0.12	0.12	0.12	0.12	0.12
->	Magnetic non-linearity	0.37	0.07	0.34	0.60	0.27
	Bunch-by-bunch $\sigma_{\rm vis}$ consistency	0.44	0.28	0.19	0.00	0.09
->	Scan-to-scan reproducibility	0.09	0.18	0.71	0.30	0.26
	Reference specific luminosity	0.13	0.29	0.30	0.31	0.18
	Subtotal vdM calibration	0.96	0.70	0.99	0.93	0.65
->	Calibration transfer*	0.50	0.50	0.50	0.50	0.50
	Calibration anchoring	0.22	0.18	0.14	0.26	0.13
	Long-term stability	0.23	0.12	0.16	0.12	0.08
	Total uncertainty [%]	1.13	0.89	1.13	1.10	0.83

BACKUP

Calibration transfer uncertainty – activation correction

- > LUCID correction assumes that track counting is perfectly linear from vdM to physics regime Check this assumption with alternative Tile data measurement Tile data needs complicated treatment and corrections
- Residual activation from any high-lumi running just before vdM fill can swamp Tile signal with $\mathcal{O}(10\%)$ \Rightarrow Needs delicate pedestal subtraction

> PMT response non-linear with luminosity at the 0.5-1.0 % level at high $\langle \mu \rangle$ \Rightarrow Calibrated out 'in situ' with laser pulses into the PMTs during LHC abort gap

2023 – things are only gonna get better

Preliminary

139 ± 2.3fb⁻¹ (1.7%)

Data sample	2015+16	2017	2018	Comb.	Data sample	2015	2016	2017	2018	Comb.
Integrated luminosity (fb ⁻¹)	36.2	44.3	58.5	139.0	Integrated luminosity [fb ⁻¹]	3.24	33.40	44.63	58.79	140.07
Total uncertainty (fb^{-1})	0.8	1.0	1.2	2.4	Total uncertainty [fb ⁻¹]	0.04	0.30	0.50	0.64	1.17
Uncertainty contributions (%):					Uncertainty contributions [%]:					
DCCT calibration ^{\dagger}	0.2	0.2	0.2	0.1	Statistical uncertainty	0.07	0.02	0.02	0.03	0.01
FBCT bunch-by-bunch fractions	0.1	0.1	0.1	0.1	Fit model*	0.14	0.08	0.09	0.17	0.12
Ghost-charge correction*	0.0	0.0	0.0	0.0	Background subtraction*	0.06	0.11	0.19	0.11	0.13
Satellite correction [†]	0.0	0.0	0.0	0.0	FBCT bunch-by-bunch fractions*	0.07	0.09	0.07	0.07	0.07
Scan curve fit model ^{\dagger}	0.5	0.4	0.5	0.4	Ghost-charge and satellite bunches*	0.04	0.04	0.02	0.09	0.05
Background subtraction	0.2	0.2	0.2	0.1	DCCT calibration*	0.20	0.20	0.20	0.20	0.20
Orbit-drift correction	0.1	0.2	0.1	0.1	Orbit-drift correction	0.05	0.02	0.02	0.01	0.01
Beam position jitter [†]	0.3	0.3	0.2	0.2	Beam position jitter	0.20	0.22	0.20	0.23	0.13
Beam-beam effects*	0.3	0.3	0.2	0.3	Non-factorisation effects*	0.60	0.30	0.10	0.30	0.24
Emittance growth correction*	0.2	0.2	0.2	0.2	Beam-beam effects*	0.27	0.25	0.26	0.26	0.26
Non-factorization effects*	0.4	0.2	0.5	0.4	Emittance growth correction*	0.04	0.02	0.09	0.02	0.04
Length-scale calibration	0.3	0.3	0.4	0.2	Length scale calibration	0.03	0.06	0.04	0.04	0.03
ID length scale*	0.1	0.1	0.1	0.1	Inner detector length scale*	0.12	0.12	0.12	0.12	0.12
Bunch-by-bunch $\sigma_{\rm vis}$ consistency	0.2	0.2	0.4	0.2	Magnetic non-linearity	0.37	0.07	0.34	0.60	0.27
Scan-to-scan reproducibility	0.5	1.2	0.6	0.5	Bunch-by-bunch σ_{vis} consistency	0.44	0.28	0.19	0.00	0.09
Reference specific luminosity	0.2	0.2	0.4	0.2	Scan-to-scan reproducibility	0.09	0.18	0.71	0.30	0.26
Subtotal for absolute vdM calibration	1.1	1.5	1.2	-	Reference specific luminosity	0.13	0.29	0.30	0.31	0.18
Calibration transfer [†]	1.6	1.3	1.3	1.3	Subtotal vdM calibration	0.96	0.70	0.99	0.93	0.65
Afterglow and beam-halo subtraction*	0.1	0.1	0.1	0.1	Calibration transfer*	0.50	0.50	0.50	0.50	0.50
Long-term stability	0.7	1.3	0.8	0.6	Calibration anchoring	0.20	0.18	0.14	0.26	0.13
Tracking efficiency time-dependence	0.6	0.0	0.0	0.2	Long-term stability	0.22	0.10	0.14	0.12	0.08
Total uncertainty (%)	2.1	2.4	2.0	1.7	Total uncertainty [%]	1 1 3	0.12	1 13	1 10	0.00
• • •	1			1		1.15	0.09	1.13	1.10	0.05

Many similar size uncertainty \Rightarrow needs a lot of work to improve on all fronts

140.1 ±1.2 fb⁻¹ (0.83%)

Calibration transfer to higher pile up

- \blacktriangleright Calibration may depend on μ due to non-linearity of method vs μ
 - \blacktriangleright Achieving linearity with μ not trivial at high μ !
- > Example event counting:
 - Probability to observe at least one "event" in bunch crossing (BC)

$$P_{OR} = \frac{N_{OR}}{N_{BC}} = 1 - e^{-\mu_{vis}}$$

 \blacktriangleright At high μ suffers from "zero-star" Detector efficiency may also depe

$\mu_{vis} = \epsilon \mu$	1-P _{OR} (%)	Number of 0s/LI
0.5	61.7	5 x 10
5	0.7	6 x 1
15	3x10-5	2 x 1
30	9x10-12	0.7

vation"	You need something that
end on µ	scales linearly with µ!

