Stability of axion-dilaton Euclidean wormholes

Caroline Jonas KU Leuven

GenHET meeting in String Theory – 29 April 2024

Based on 2306.11129 and 2312.08971 with Jean-Luc Lehners and George Lavrelashvili

Motivation: Euclidean wormholes

Context: 4D Euclidean path integral approach to quantum gravity $Z \sim \int \mathcal{D}g \, e^{-S_{\rm E}[g]}$

 \Rightarrow are **topology changes** allowed?

Motivation: Euclidean wormholes

Context: 4D Euclidean path integral approach to quantum gravity $Z \sim \int \mathcal{D}g \, e^{-S_{\rm E}[g]}$

 \Rightarrow are **topology changes** allowed?

Wormholes \equiv extrema of the euclidean action connecting $2 \neq$ asymptotic regions (instanton – anti-instanton pair) Semi-wormholes interpreted as the production of baby universes

 \rightarrow no solution in pure gravity

Motivation: Euclidean wormholes

Context: 4D Euclidean path integral approach to quantum gravity $Z \sim \int \mathcal{D}g \, e^{-S_{\rm E}[g]}$

 \Rightarrow are **topology changes** allowed?

Wormholes \equiv extrema of the euclidean action connecting $2 \neq$ asymptotic regions (instanton – anti-instanton pair) Semi-wormholes interpreted as the production of baby universes

 \rightarrow no solution in pure gravity

First explicit solution: supported by an axion-flux [Giddings, Strominger 1988]

 \Rightarrow Non-locality & Non-unitary process made concrete

Paradoxes and puzzles

- Initial interpretation: apparent non-unitary processes → loss of quantum coherence [Hawking 1987, 1988; Giddings, Strominger 1988; Rubakov et al. 1987]
- **2** Coleman's α parameter: [Coleman 1988] remove non-locality by introducing spacetime independent parameters in the path integral

$$Z = \int (\Pi_i d\alpha_i) P(\alpha) \int \mathcal{D}g \mathcal{D}\phi \, e^{-S_{\rm E}[g,\phi,\lambda-\alpha]}$$

 \rightarrow multiverse picture, $\Lambda_{\text{eff}} = 0$, overdensity of wormholes,...

Paradoxes and puzzles

- Initial interpretation: apparent non-unitary processes → loss of quantum coherence [Hawking 1987, 1988; Giddings, Strominger 1988; Rubakov et al. 1987]
- **2** Coleman's α parameter: [Coleman 1988] remove non-locality by introducing spacetime independent parameters in the path integral

$$Z = \int (\Pi_i d\alpha_i) P(\alpha) \int \mathcal{D}g \mathcal{D}\phi \, e^{-S_{\rm E}[g,\phi,\lambda-\alpha]}$$

 \rightarrow multiverse picture, $\Lambda_{\rm eff} = 0$, overdensity of wormholes,...

- More puzzles from AdS/CFT and string theory solutions
 - AdS/CFT factorization puzzle Maldacena, Maoz [hep-th/0401024]

$$\langle O_1 O_2 \rangle = \langle O_1 \rangle \langle O_2 \rangle + \mathcal{O}(e^{-E\tau})$$

• Coleman's α parameters do not exist in the dual CFT AdS₃ × $S^3 \times T^4$ Arkani-Hamed, Orgera, Polchinski [0705.2768]

• ...

Negative modes of wormhole solutions: a way out?

Wormholes would not be **relevant saddle points** if they are unstable \equiv if they possess negative modes: action can be lowered by adding perturbations

Stability analysis of the axion-gravity is tricky: Rubakov, Shvedov 1996, Alonso, Urbano [1706.07415], Hertog, Truijen, Van Riet [1811.12690], Loges, Shiu, Sudhir [2203.01956]

Stability analysis of the axion-gravity is tricky: Rubakov, Shvedov 1996, Alonso, Urbano [1706.07415], Hertog, Truijen, Van Riet [1811.12690], Loges, Shiu, Sudhir [2203.01956]

 \rightarrow with correct gauge-invariant variables and proper axion BC

- no dynamical dof for the axion in the homogeneous sector
- and no negative modes in higher angular harmonics

Upshot: Axion-gravity wormholes are linearly stable

Stability analysis of the axion-gravity is tricky: Rubakov, Shvedov 1996, Alonso, Urbano [1706.07415], Hertog, Truijen, Van Riet [1811.12690], Loges, Shiu, Sudhir [2203.01956]

 \rightarrow with correct gauge-invariant variables and proper axion BC

- no dynamical dof for the axion in the homogeneous sector
- and no negative modes in higher angular harmonics

Upshot: Axion-gravity wormholes are linearly stable

 \Rightarrow Could instabilities arise with the inclusion of a **dilaton field**?

Stability analysis of the axion-gravity is tricky: Rubakov, Shvedov 1996, Alonso, Urbano [1706.07415], Hertog, Truijen, Van Riet [1811.12690], Loges, Shiu, Sudhir [2203.01956]

 \rightarrow with correct gauge-invariant variables and proper axion BC

- no dynamical dof for the axion in the homogeneous sector
- and no negative modes in higher angular harmonics

Upshot: Axion-gravity wormholes are linearly stable

 \Rightarrow Could instabilities arise with the inclusion of a **dilaton field**?

Axion-gravity with or without a massless dilaton

$$S_{\rm E} = \int \mathrm{d}^4 x \sqrt{g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{12f^2} e^{-\beta\phi\kappa} H_{\mu\nu\rho} H^{\mu\nu\rho} + \frac{1}{2} \nabla_\mu \phi \nabla^\mu \phi \Big]$$

Axion-gravity with or without a massless dilaton

$$S_{\rm E} = \int \mathrm{d}^4 x \sqrt{g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{12f^2} e^{-\beta\phi\kappa} H_{\mu\nu\rho} H^{\mu\nu\rho} + \frac{1}{2} \nabla_\mu \phi \nabla^\mu \phi \Big]$$

Spherically symmetric & homogeneous ansatz:

$$\begin{cases} \mathrm{d}s^2 = h(t_\mathrm{E})^2 \mathrm{d}t_\mathrm{E}^2 + a(t_\mathrm{E})^2 \mathrm{d}\Omega_3^2 \\ \phi = \phi(t_\mathrm{E}) \,, \\ H_{0ij} = 0 \,, \ H_{ijk} = q\varepsilon_{ijk}^N \,. \end{cases}$$

Axion-gravity with or without a massless dilaton

$$S_{\rm E} = \int \mathrm{d}^4 x \sqrt{g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{12f^2} e^{-\beta\phi\kappa} H_{\mu\nu\rho} H^{\mu\nu\rho} + \frac{1}{2} \nabla_\mu \phi \nabla^\mu \phi \Big]$$

Spherically symmetric & homogeneous ansatz:

$$\begin{cases} \mathrm{d}s^2 = h(\mathrm{t_E})^2 \mathrm{d}t_\mathrm{E}^2 + a(\mathrm{t_E})^2 \mathrm{d}\Omega_3^2 \,, \\ \phi = \phi(\mathrm{t_E}) \,, \\ H_{0ij} = 0 \,, \ H_{ijk} = q\varepsilon_{ijk}^N \,. \end{cases}$$

GS solution with a massless dilaton: regular solution $\forall \beta < \beta_c \simeq 1.632...$:

$$\begin{cases} \mathrm{d}s^2 = a_0^2 \cosh(2t_\mathrm{E}) \left(\mathrm{d}t_\mathrm{E}^2 + \mathrm{d}\Omega_3^2 \right), \\ \phi = \frac{1}{\beta} \ln\left[\frac{N^2}{3a_0^4} \cos^2\left(\frac{\beta}{\beta_c} \arccos\frac{1}{\cosh(2t_\mathrm{E})}\right) \right], & \text{with } N^2 = \frac{q^2}{2f^2}, \\ a_0^2 = \frac{N}{\sqrt{3}} \cos\left(\frac{\pi}{2}\frac{\beta}{\beta_c}\right). \end{cases}$$

Massive dilaton

$$S_{\rm E} = \int {\rm d}^4 x \sqrt{g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{12f^2} e^{-\beta\phi\kappa} H_{\mu\nu\rho} H^{\mu\nu\rho} + \frac{1}{2} \nabla_{\mu}\phi \nabla^{\mu}\phi + \frac{m^2\phi^2}{2} \Big]$$

Boundary solutions:

- $\circ~$ regularity at the throat: $\dot{a}(0)=0\,,~\dot{\phi}(0)=0$
- $\circ\,$ asymptotic flat space:

$$\dot{a}(t \to \infty) = 1, \ \phi(t \to \infty) = 0$$

Massive dilaton

$$S_{\rm E} = \int {\rm d}^4 x \sqrt{g} \Big[-\frac{1}{2\kappa^2} R + \frac{1}{12f^2} e^{-\beta\phi\kappa} H_{\mu\nu\rho} H^{\mu\nu\rho} + \frac{1}{2} \nabla_{\mu}\phi \nabla^{\mu}\phi + \frac{m^2\phi^2}{2} \Big]$$

Boundary solutions:

 $\circ~$ regularity at the throat: $\dot{a}(0)=0\,,~\dot{\phi}(0)=0$

m = 0.01, N = 47089 and $\beta = 1.58$

- Andriolo, Shiu, Soler, Van Riet [2205.01119]: solutions exist above $\beta_c = 1.632...$
- we find new branches of solutions + solutions with several minima:

- Andriolo, Shiu, Soler, Van Riet [2205.01119]: solutions exist above $\beta_c = 1.632...$
- we find new branches of solutions + solutions with several minima:

m = 0.01, N = 47089 and $\beta = 1.58$

- Andriolo, Shiu, Soler, Van Riet [2205.01119]: solutions exist above $\beta_c = 1.632...$
- we find new branches of solutions + solutions with several minima:

m = 0.01, N = 47089 and $\beta = 1.58$

Branching structure of the GS-like wormhole solutions in the massive dilaton case: $\beta_c = 1.632...$

Perturbative stability via the Sturm-Liouville problem

Perturbative stability \rightarrow negative modes of the quadratic part of the action:

$$S_{\rm E}[\bar{x}+X] \simeq S_{\rm E}[\bar{x}] + \frac{1}{2} \left. \frac{\delta^2 S_{\rm E}}{\delta x^2} \right|_{\bar{x}} X^2.$$

Perturbative stability \rightarrow negative modes of the quadratic part of the action:

$$S_{\rm E}[\bar{x} + X] \simeq S_{\rm E}[\bar{x}] + \frac{1}{2} \left. \frac{\delta^2 S_{\rm E}}{\delta x^2} \right|_{\bar{x}} X^2.$$

For a certain gauge-invariant quantity \mathcal{R} , we will get:

$$S^{(2)} = \frac{1}{2} \int \mathrm{d}^4 x \sqrt{g} \left(\frac{\dot{\phi}^2}{Q(a,\phi)} \dot{\mathcal{R}}^2 + U(a,\phi) \mathcal{R}^2 \right)$$

Perturbative stability \rightarrow negative modes of the quadratic part of the action:

$$S_{\rm E}[\bar{x}+X] \simeq S_{\rm E}[\bar{x}] + \frac{1}{2} \left. \frac{\delta^2 S_{\rm E}}{\delta x^2} \right|_{\bar{x}} X^2.$$

For a certain gauge-invariant quantity \mathcal{R} , we will get:

$$S^{(2)} = \frac{1}{2} \int \mathrm{d}^4 x \sqrt{g} \left(\frac{\dot{\phi}^2}{Q(a,\phi)} \dot{\mathcal{R}}^2 + U(a,\phi) \mathcal{R}^2 \right)$$

Associated to the eigenvalue equation (EoM for \mathcal{R})

$$-\frac{1}{a^3}\frac{\mathrm{d}}{\mathrm{d}t_{\mathrm{E}}}\left(a^3\frac{\dot{\phi}^2}{Q}\dot{\mathcal{R}}\right) + U\mathcal{R} = \lambda w(t_{\mathrm{E}})\mathcal{R}$$

Perturbation ansatz and quadratic order action

Lorentzian conformal time η ansatz:

$$\begin{cases} \mathrm{d}s^2 = a^2(\eta) \left[-(1+2A(\eta,x^i)) \,\mathrm{d}\eta^2 + (1-2\Psi(\eta,x^i)) \,\mathrm{d}\Omega_3^2 \right], \\ \phi = \phi(\eta) + \Phi(\eta,x^i), \\ H_{0ij} = 0 + \varepsilon_{ijk}^N \delta^{kl} \partial_l W(\eta,x^i), \\ H_{ijk} = q \varepsilon_{ijk}^N \left(1 + Y(\eta,x^i) \right). \end{cases}$$

 $\star\,$ axion perturbations $W\!,\,Y$ non dynamical in the homogeneous sector $\nabla^2=0$

* a good gauge-invariant variable is $\mathcal{R} = \Psi + \frac{\mathcal{H}}{\phi'} \Phi$.

Quadratic part of the Euclidean action in physical time $t_{\rm E}$ (d $t_{\rm E} = -ia(\eta) d\eta$)

$$\begin{split} S_{\rm E}^{(2)} &= \frac{1}{2} \int_0^\infty dt_{\rm E} \int d^3x \sqrt{\gamma} a^3 \left(\frac{\dot{\phi}^2}{Q} \dot{\mathcal{R}}^2 + U \mathcal{R}^2 \right) - \int d^3x \sqrt{\gamma} a^3 \frac{\dot{\phi}^2}{Q} \left. \mathcal{R} \dot{\mathcal{R}} \right|_{t_{\rm E}=0}^{t_{\rm E}=+\infty} \\ \text{with } Q &= H^2 - \kappa^2 \dot{\phi}^2 / 6 \text{ and } U = \frac{-2}{a^2 Q^2} \left[\frac{V \dot{\phi}^2}{3} \left(1 - 3 \frac{N^2}{a^4} e^{-\beta\phi} \right) + V_{,\phi} \dot{\phi} H \left(1 - \frac{N^2}{a^4} e^{-\beta\phi} \right) \right. \\ &+ \left(\frac{4}{3a^2} \dot{\phi}^2 - \beta H \dot{\phi} \left(V - \frac{2}{a^2} \right) \right) \frac{N^2}{a^4} e^{-\beta\phi} \right]. \end{split}$$

Associated eigenvalue equation:

$$-\frac{1}{a^3}\frac{\mathrm{d}}{\mathrm{d}t_{\mathrm{E}}}\left(a^3\frac{\dot{\phi}^2}{Q}\dot{\mathcal{R}}\right) + U\mathcal{R} = \lambda \boldsymbol{w}(t_{\mathrm{E}})\mathcal{R}$$

Analysing the asymptotic and throat limits:

- $\dot{\phi}^2/Q$ and U regular at the origin and asymptotically $\Rightarrow w(t_{\rm E}) = \dot{\phi}^2/Q$ is well-suited.
- $\dot{\mathcal{R}}(t_{\rm E} \to \infty) = 0$ and $\dot{\mathcal{R}}(0) = 0$ set the surface term to 0.

 \Rightarrow We look for eigenmodes with BC: $\dot{\mathcal{R}}(0) = 0$, $\mathcal{R}(0) = 1$, $\dot{\mathcal{R}}(\infty) \to 0$, $\mathcal{R}(\infty) \to 0$

Associated eigenvalue equation:

$$-\frac{1}{a^3}\frac{\mathrm{d}}{\mathrm{d}t_{\mathrm{E}}}\left(a^3\frac{\dot{\phi}^2}{Q}\dot{\mathcal{R}}\right) + U\mathcal{R} = \lambda \boldsymbol{w}(t_{\mathrm{E}})\mathcal{R}$$

Analysing the asymptotic and throat limits:

- $\dot{\phi}^2/Q$ and U regular at the origin and asymptotically $\Rightarrow w(t_{\rm E}) = \dot{\phi}^2/Q$ is well-suited.
- $\dot{\mathcal{R}}(t_{\rm E} \to \infty) = 0$ and $\dot{\mathcal{R}}(0) = 0$ set the surface term to 0.

 \Rightarrow We look for eigenmodes with BC: $\dot{\mathcal{R}}(0) = 0$, $\mathcal{R}(0) = 1$, $\dot{\mathcal{R}}(\infty) \to 0$, $\mathcal{R}(\infty) \to 0$

Conclusions and outlook

Current status:

- Better understanding of axion-dilaton GS-like wormhole solutions phase space of solutions, connection to massless case, perturbative stability of homogeneous sector (also inhomogeneous sector, see Hertog, Maenaut, Missoni, Tielemans, Van Riet, to appear)
- $\bullet\,$ new puzzles related to oscillating solutions \rightarrow lower Euclidean action
- **bifurcating structure** appearance of additional negative mode → new symmetry?

Future prospects:

- better suited variables to avoid the negative Q problem
 → stability of oscillating solutions?
- different types of asymptotic boundaries / boundary conditions for the axion
 - * axion-gravity in de Sitter Aguilar-Gutierrez et al. [2306.13951]
 - $\star\,$ AdS wormholes in axion-scalar-gravity Petzios, Papadoulaki [2403.17046]
- uplift to 10D asymptotically AdS as in Loges, Shiu, Van Riet [2302.03688]

Coleman's α parameters: removing bilocality column 1988

For a detailed explanation: Preskill 1989, Arkani-Hamed, Orgera, Polchinski [0705.2768] or Hebecker, Mikhail, Soler [1807.00824]

Partition function for one wormhole:

$$Z_{1,w} = \int \mathcal{D}g \mathcal{D}\phi \, e^{-S[g,\phi]} \left(\int \mathrm{d}^4 x \sqrt{g(x)} \int \mathrm{d}^4 y \sqrt{g(y)} e^{-S_w[x,y,g,\phi]} \right).$$

Approximating S_w with bilocal operators: $S_w[x, y, g, \phi] = S_w + \sum_{i,j} \tilde{\Delta}_{ij} \mathcal{O}_i(x) \mathcal{O}_j(y)$. In the dilute gas approx (N wormholes independent of one another, with length of

The the dilate gas approx (1) wormholes independent of one about, with length the throat \gg its diameter), the sum exponentiate as in the instanton limit: $Z_w = \int \mathcal{D}g \mathcal{D}\phi \, e^{-S[g,\phi]+I}$ with

$$I = \frac{1}{2} \int d^4x \sqrt{g} \int d^4y \sqrt{g} \sum_{i,j} \Delta_{ij} \mathcal{O}_i(x) \mathcal{O}_j(y), \quad \Delta_{ij} \propto e^{-S_w}.$$

This can be rewritten in a local expression by integrating over spacetime independent parameters α_i :

$$e^{I} = \prod_{i} \left(\int d\alpha_{i} \right) e^{-\frac{1}{2} \sum_{i,j} \alpha_{i} \Delta_{ij}^{-1} \alpha_{j}} \sum_{e = i} \alpha_{i} \int d^{4}x \sqrt{g} \mathcal{O}_{i}(x)$$

Coleman's α parameters: multiverse interpretation

Since $S[g, \lambda] = \sum_{i} \lambda_i \int d^4x \sqrt{g} \mathcal{O}_i(x)$ where λ_i are the coupling constants, the effect of the wormholes is to shift them $\lambda_i \to \lambda_i - \alpha_i$. Then the partition function reads

$$Z(\alpha) = \int \mathcal{D}\alpha \, G(\alpha) \left[\int \mathcal{D}g \, e^{-S[g,\lambda-\alpha]} \right], \quad G(\alpha) = e^{-\frac{1}{2}\sum_{i,j} \alpha_i \Delta_{ij}^{-1} \alpha_j}.$$

Multiverse interpretation: each baby universe state correspond to a specific set of fixed α 's:

• Each species of baby universe labeled by $i \Rightarrow a_i^{\dagger}, a_i : [a_i, a_i^{\dagger}] = 1$

•
$$S_{\text{EFT}} = S_0 + \sum_i A_i \int d^4 x \, \mathcal{L}_i$$
, with $A_i = a_{i^*}^{\dagger} + a_i$: $A_i |\alpha\rangle = \alpha_i |\alpha\rangle$

• $[H, A_i] = 0 \Rightarrow$ different $|\alpha\rangle$ = different superselection sectors of the EFT

• On a $|\alpha\rangle$ - eigenstate: $S_{\text{EFT}} = S_0 + \sum_i \alpha_i \int d^4x \,\mathcal{L}_i$: α_i are the coupling constants

Loss of unitarity elegantly explained by the $|\alpha\rangle$ - eigenstate:

$$\left|\Psi\right\rangle = \left|\Psi_{\rm EFT}\right\rangle \times \left|\Psi_{\rm BU}\right\rangle \longrightarrow \left|\Psi'\right\rangle = \sum_{i} c_{i} \left|\Psi_{\rm EFT}^{i}\right\rangle \times \left|\Psi_{\rm BU}^{i}\right\rangle$$

 \rightarrow tracing out the baby universe state:

$$\left|\Psi_{\rm EFT}\right\rangle \left\langle \Psi_{\rm EFT}\right| \longrightarrow \sum_{i} \left|c_{i}\right|^{2} \left|\Psi_{\rm EFT}^{i}\right\rangle \left\langle \Psi_{\rm EFT}^{i}\right|.$$

Using Coleman's α parameters: $|\Psi_{\rm BU}\rangle = |\alpha\rangle$ and $[H, A_i] = 0 \Rightarrow |\alpha\rangle$ is invariant under time evolution and each $\{\alpha_i\}$ - set defines a well-defined and unitary EFT.

Statistical prediction of the effective coupling constant:

- Coleman's calculation that $\Lambda_{\rm eff} = 0$ Coleman 1988
- FKS catastrophe (overdensity of wormholes) calculated similarly for $\mathcal{O}(x) = R^2$. Fischler, Kaplunovsky, Susskind 1989

Massive dilaton potential $V(\phi) = m^2 \phi^2/2$

All GS-like solutions for the massive dilaton case: $\beta_c = 1.632...$

Expanding baby-universe solutions

One example - $\beta = 1.2$, N = 30000, m = 0.01

Stability of massless dilaton solutions

$\beta=1$ massless dilaton solutions:

Potential and kinetic term positive throughout \rightarrow Perturbatively stable

Stability of massive dilaton solutions

Example with one negative mode

Example with one negative mode

Nodal Theorem:

nodes of solution to the zero eigenvalue equation = # negative modes

$$-\frac{1}{a^3}\frac{\mathrm{d}}{\mathrm{d}t_{\mathrm{E}}}\left(a^3\frac{\dot{\phi}^2}{Q}\dot{\mathcal{R}}_\circ\right) + U\cdot\mathcal{R}_\circ = 0\,, \text{ with } \mathcal{R}_\circ(0) = 1, \ \dot{\mathcal{R}}_\circ(0) = 0\,.$$

 $\beta = 1.579, \ m^2 N = 2.2, \ \phi_0 \approx 3.477$:

Negative kinetic term \rightarrow presence of a ghost (infinitely many negative modes)

- Similar problems for certain Euclidean bounce solutions [Rubakov et al. 1985]/ CDL bounces [Coleman, De Luccia 1980]: tunneling negative modes with on top an infinite tower with much higher frequency.
- Negative mode problem: much studied for the last 30 years but no solution so far [Gratton, Turok, Lavrelashvili, Rubakov, Tinyakov, Lee, Weinberg, ...]
- Physical or mathematical problem? \rightarrow location of the singularity can be shifted by a canonical transformation / in Hamiltonian treatment Q is singular for all wormhole solutions

\Rightarrow solved by finding suitable variables?

NB: "expanding" wormhole solutions all have $Q = H^2 - \kappa^2 \dot{\phi}^2/6$ negative when $\dot{a} = 0 \rightarrow$ stability cannot be analysed here