Stability of axion-dilaton

Euclidean wormholes

Caroline Jonas
KU Leuven

GenHET meeting in String Theory - 29 April 2024

Based on 2306.11129 and 2312.08971 with Jean-Luc Lehners and George Lavrelashvili

Motivation: Euclidean wormholes

Context: 4D Euclidean path integral approach to quantum gravity $Z \sim \int \mathcal{D} g e^{-S_{\mathrm{E}}[g]}$
\Rightarrow are topology changes allowed?

Motivation: Euclidean wormholes

Context: 4D Euclidean path integral approach to quantum gravity $Z \sim \int \mathcal{D} g e^{-S_{\mathrm{E}}[g]}$ \Rightarrow are topology changes allowed?

$$
\Sigma_{1} \rightarrow \Sigma_{2} \times \Sigma_{3}
$$

Wormholes \equiv extrema of the euclidean action connecting $2 \neq$ asymptotic regions (instanton - anti-instanton pair)
Semi-wormholes interpreted as the production of baby universes
\rightarrow no solution in pure gravity

Motivation: Euclidean wormholes

Context: 4D Euclidean path integral approach to quantum gravity $Z \sim \int \mathcal{D} g e^{-S_{\mathrm{E}}[g]}$ \Rightarrow are topology changes allowed?

$$
\Sigma_{1} \rightarrow \Sigma_{2} \times \Sigma_{3}
$$

Wormholes \equiv extrema of the euclidean action connecting $2 \neq$ asymptotic regions (instanton - anti-instanton pair)
Semi-wormholes interpreted as the production of baby universes
\rightarrow no solution in pure gravity
First explicit solution: supported by an axion-flux [Giddings, Strominger 1988]
\Rightarrow Non-locality \& Non-unitary process made concrete

Paradoxes and puzzles

(1) Initial interpretation: apparent non-unitary processes \rightarrow loss of quantum coherence [Hawking 1987, 1988; Giddings, Strominger 1988; Rubakov et al. 1987]
(2) Coleman's α parameter: [Coleman 1988] remove non-locality by introducing spacetime independent parameters in the path integral

$$
Z=\int\left(\Pi_{i} \mathrm{~d} \alpha_{i}\right) P(\alpha) \int \mathcal{D} g \mathcal{D} \phi e^{-S_{\mathrm{E}}[g, \phi, \lambda-\alpha]}
$$

\rightarrow multiverse picture, $\Lambda_{\mathrm{eff}}=0$, overdensity of wormholes, \ldots

Paradoxes and puzzles

(1) Initial interpretation: apparent non-unitary processes \rightarrow loss of quantum coherence [Hawking 1987, 1988; Giddings, Strominger 1988; Rubakov et al. 1987]
(2) Coleman's α parameter: [Coleman 1988] remove non-locality by introducing spacetime independent parameters in the path integral

$$
Z=\int\left(\Pi_{i} \mathrm{~d} \alpha_{i}\right) P(\alpha) \int \mathcal{D} g \mathcal{D} \phi e^{-S_{\mathrm{E}}[g, \phi, \lambda-\alpha]}
$$

\rightarrow multiverse picture, $\Lambda_{\text {eff }}=0$, overdensity of wormholes, \ldots
(3) More puzzles from AdS/CFT and string theory solutions

- AdS/CFT factorization puzzle Maldacena, Maoz [hep-th/0401024]

$$
\left\langle O_{1} O_{2}\right\rangle=\left\langle O_{1}\right\rangle\left\langle O_{2}\right\rangle+\mathcal{O}\left(e^{-E \tau}\right)
$$

- Coleman's α parameters do not exist in the dual CFT $\operatorname{AdS}_{3} \times S^{3} \times T^{4}$ Arkani-Hamed, Orgera, Polchinski [0705.2768]
- ...

Negative modes of wormhole solutions: a way out?

Wormholes would not be relevant saddle points if they are unstable \equiv if they possess negative modes: action can be lowered by adding perturbations

Negative modes of wormhole solutions: a way out?

Wormholes would not be relevant saddle points if they are unstable \equiv if they possess negative modes: action can be lowered by adding perturbations

Stability analysis of the axion-gravity is tricky:
Rubakov, Shvedov 1996, Alonso, Urbano [1706.07415], Hertog, Truijen, Van Riet [1811.12690],
Loges, Shiu, Sudhir [2203.01956]

Negative modes of wormhole solutions: a way out?

Wormholes would not be relevant saddle points if they are unstable \equiv if they possess negative modes: action can be lowered by adding perturbations

Stability analysis of the axion-gravity is tricky:
Rubakov, Shvedov 1996, Alonso, Urbano [1706.07415], Hertog, Truijen, Van Riet [1811.12690], Loges, Shiu, Sudhir [2203.01956]
\rightarrow with correct gauge-invariant variables and proper axion BC

- no dynamical dof for the axion in the homogeneous sector
- and no negative modes in higher angular harmonics

Upshot: Axion-gravity wormholes are linearly stable

Negative modes of wormhole solutions: a way out?

Wormholes would not be relevant saddle points if they are unstable \equiv if they possess negative modes: action can be lowered by adding perturbations

Stability analysis of the axion-gravity is tricky:
Rubakov, Shvedov 1996, Alonso, Urbano [1706.07415], Hertog, Truijen, Van Riet [1811.12690], Loges, Shiu, Sudhir [2203.01956]
\rightarrow with correct gauge-invariant variables and proper axion BC

- no dynamical dof for the axion in the homogeneous sector
- and no negative modes in higher angular harmonics Upshot: Axion-gravity wormholes are linearly stable
\Rightarrow Could instabilities arise with the inclusion of a dilaton field?

Negative modes of wormhole solutions: a way out?

Wormholes would not be relevant saddle points if they are unstable \equiv if they possess negative modes: action can be lowered by adding perturbations

Stability analysis of the axion-gravity is tricky:
Rubakov, Shvedov 1996, Alonso, Urbano [1706.07415], Hertog, Truijen, Van Riet [1811.12690], Loges, Shiu, Sudhir [2203.01956]
\rightarrow with correct gauge-invariant variables and proper axion BC

- no dynamical dof for the axion in the homogeneous sector
- and no negative modes in higher angular harmonics Upshot: Axion-gravity wormholes are linearly stable
\Rightarrow Could instabilities arise with the inclusion of a dilaton field?

Giddings-Strominger wormholes [Giddings, Strominger 1988]

Axion-gravity with or without a massless dilaton

$$
S_{\mathrm{E}}=\int \mathrm{d}^{4} x \sqrt{g}\left[-\frac{1}{2 \kappa^{2}} R+\frac{1}{12 f^{2}} e^{-\beta \phi \kappa} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi\right]
$$

Giddings-Strominger wormholes [Giddings, Stuminger 198s]

Axion-gravity with or without a massless dilaton

$$
S_{\mathrm{E}}=\int \mathrm{d}^{4} x \sqrt{g}\left[-\frac{1}{2 \kappa^{2}} R+\frac{1}{12 f^{2}} e^{-\beta \phi \kappa} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi\right]
$$

Spherically symmetric \& homogeneous ansatz:

$$
\left\{\begin{array}{l}
\mathrm{d} s^{2}=h\left(t_{\mathrm{E}}\right)^{2} \mathrm{~d} t_{\mathrm{E}}^{2}+a\left(t_{\mathrm{E}}\right)^{2} \mathrm{~d} \Omega_{3}^{2}, \\
\phi=\phi\left(t_{\mathrm{E}}\right), \\
H_{0 i j}=0, H_{i j k}=q \varepsilon_{i j k}^{N} .
\end{array}\right.
$$

Giddings-Strominger Wormholes [Giddings, Strominger 1988]

Axion-gravity with or without a massless dilaton

$$
S_{\mathrm{E}}=\int \mathrm{d}^{4} x \sqrt{g}\left[-\frac{1}{2 \kappa^{2}} R+\frac{1}{12 f^{2}} e^{-\beta \phi \kappa} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi\right]
$$

Spherically symmetric \& homogeneous ansatz:

$$
\left\{\begin{array}{l}
\mathrm{d} s^{2}=h\left(t_{\mathrm{E}}\right)^{2} \mathrm{~d} t_{\mathrm{E}}^{2}+a\left(t_{\mathrm{E}}\right)^{2} \mathrm{~d} \Omega_{3}^{2}, \\
\phi=\phi\left(t_{\mathrm{E}}\right), \\
H_{0 i j}=0, H_{i j k}=q \varepsilon_{i j k}^{N} .
\end{array}\right.
$$

GS solution with a massless dilaton: regular solution $\forall \beta<\beta_{c} \simeq 1.632 \ldots$:

$$
\left\{\begin{aligned}
\mathrm{d} s^{2} & =a_{0}^{2} \cosh \left(2 t_{\mathrm{E}}\right)\left(\mathrm{d} t_{\mathrm{E}}^{2}+\mathrm{d} \Omega_{3}^{2}\right), \\
\phi & =\frac{1}{\beta} \ln \left[\frac{N^{2}}{3 a_{0}^{4}} \cos ^{2}\left(\frac{\beta}{\beta_{c}} \arccos \frac{1}{\cosh \left(2 t_{\mathrm{E}}\right)}\right)\right], \quad \text { with } N^{2}=\frac{q^{2}}{2 f^{2}}, \\
a_{0}^{2} & =\frac{N}{\sqrt{3}} \cos \left(\frac{\pi}{2} \frac{\beta}{\beta_{c}}\right) .
\end{aligned}\right.
$$

Massive dilaton

$$
S_{\mathrm{E}}=\int \mathrm{d}^{4} x \sqrt{g}\left[-\frac{1}{2 \kappa^{2}} R+\frac{1}{12 f^{2}} e^{-\beta \phi \kappa} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi+\frac{m^{2} \phi^{2}}{2}\right]
$$

Boundary solutions:

- regularity at the throat:

$$
\dot{a}(0)=0, \dot{\phi}(0)=0
$$

- asymptotic flat space:

$$
\dot{a}(t \rightarrow \infty)=1, \quad \phi(t \rightarrow \infty)=0
$$

Massive dilaton

$$
S_{\mathrm{E}}=\int \mathrm{d}^{4} x \sqrt{g}\left[-\frac{1}{2 \kappa^{2}} R+\frac{1}{12 f^{2}} e^{-\beta \phi \kappa} H_{\mu \nu \rho} H^{\mu \nu \rho}+\frac{1}{2} \nabla_{\mu} \phi \nabla^{\mu} \phi+\frac{m^{2} \phi^{2}}{2}\right]
$$

Boundary solutions:

- regularity at the throat:

$$
\dot{a}(0)=0, \dot{\phi}(0)=0
$$

- asymptotic flat space:

$$
\dot{a}(t \rightarrow \infty)=1, \quad \phi(t \rightarrow \infty)=0
$$

$$
m=0.01, N=47089 \text { and } \beta=1.58
$$

GS wormhole solution with a massive dilaton

- Andriolo, Shiu, Soler, Van Riet [2205.01119]: solutions exist above $\beta_{c}=1.632 \ldots$
- we find new branches of solutions + solutions with several minima:

GS wormhole solution with a massive dilaton

- Andriolo, Shiu, Soler, Van Riet [2205.01119]: solutions exist above $\beta_{c}=1.632 \ldots$
- we find new branches of solutions + solutions with several minima:

$$
m=0.01, N=47089 \text { and } \beta=1.58
$$

GS wormhole solution with a massive dilaton

- Andriolo, Shiu, Soler, Van Riet [2205.01119]: solutions exist above $\beta_{c}=1.632 \ldots$
- we find new branches of solutions + solutions with several minima:

$$
m=0.01, N=47089 \text { and } \beta=1.58
$$

$$
S_{\mathrm{E}}[\xi]<S_{\mathrm{E}}[T]
$$

GS wormhole solution with a massive dilaton

Branching structure of the GS-like wormhole solutions in the massive dilaton case: $\beta_{c}=1.632 \ldots$

Perturbative stability via the Sturm-Liouville problem

Perturbative stability \rightarrow negative modes of the quadratic part of the action:

$$
S_{\mathrm{E}}[\bar{x}+X] \simeq S_{\mathrm{E}}[\bar{x}]+\left.\frac{1}{2} \frac{\delta^{2} S_{\mathrm{E}}}{\delta x^{2}}\right|_{\bar{x}} X^{2}
$$

Perturbative stability via the Sturm-Liouville problem

Perturbative stability \rightarrow negative modes of the quadratic part of the action:

$$
S_{\mathrm{E}}[\bar{x}+X] \simeq S_{\mathrm{E}}[\bar{x}]+\left.\frac{1}{2} \frac{\delta^{2} S_{\mathrm{E}}}{\delta x^{2}}\right|_{\bar{x}} X^{2}
$$

For a certain gauge-invariant quantity \mathcal{R}, we will get:

$$
S^{(2)}=\frac{1}{2} \int \mathrm{~d}^{4} x \sqrt{g}\left(\frac{\dot{\phi}^{2}}{Q(a, \phi)} \dot{\mathcal{R}}^{2}+U(a, \phi) \mathcal{R}^{2}\right)
$$

Perturbative stability via the Sturm-Liouville problem

Perturbative stability \rightarrow negative modes of the quadratic part of the action:

$$
S_{\mathrm{E}}[\bar{x}+X] \simeq S_{\mathrm{E}}[\bar{x}]+\left.\frac{1}{2} \frac{\delta^{2} S_{\mathrm{E}}}{\delta x^{2}}\right|_{\bar{x}} X^{2} .
$$

For a certain gauge-invariant quantity \mathcal{R}, we will get:

$$
S^{(2)}=\frac{1}{2} \int \mathrm{~d}^{4} x \sqrt{g}\left(\frac{\dot{\phi}^{2}}{Q(a, \phi)} \dot{\mathcal{R}}^{2}+U(a, \phi) \mathcal{R}^{2}\right)
$$

Associated to the eigenvalue equation (EoM for \mathcal{R})

$$
-\frac{1}{a^{3}} \frac{\mathrm{~d}}{\mathrm{~d} t_{\mathrm{E}}}\left(a^{3} \frac{\dot{\phi}^{2}}{Q} \dot{\mathcal{R}}\right)+U \mathcal{R}=\lambda w\left(t_{\mathrm{E}}\right) \mathcal{R}
$$

Perturbation ansatz and quadratic order action

Lorentzian conformal time η ansatz:

$$
\left\{\begin{array}{l}
\mathrm{d} s^{2}=a^{2}(\eta)\left[-\left(1+2 A\left(\eta, x^{i}\right)\right) \mathrm{d} \eta^{2}+\left(1-2 \Psi\left(\eta, x^{i}\right)\right) \mathrm{d} \Omega_{3}^{2}\right] \\
\phi=\phi(\eta)+\Phi\left(\eta, x^{i}\right) \\
H_{0 i j}=0+\varepsilon_{i j k}^{N} \delta^{k l} \partial_{l} W\left(\eta, x^{i}\right) \\
H_{i j k}=q \varepsilon_{i j k}^{N}\left(1+Y\left(\eta, x^{i}\right)\right)
\end{array}\right.
$$

* axion perturbations W, Y non dynamical in the homogeneous sector $\nabla^{2}=0$
* a good gauge-invariant variable is $\mathcal{R}=\Psi+\frac{\mathcal{H}}{\phi^{\prime}} \Phi$.

Quadratic part of the Euclidean action in physical time $t_{\mathrm{E}}\left(\mathrm{d} t_{\mathrm{E}}=-i a(\eta) \mathrm{d} \eta\right)$

$$
\begin{aligned}
& S_{\mathrm{E}}^{(2)}=\frac{1}{2} \int_{0}^{\infty} d t_{\mathrm{E}} \int d^{3} x \sqrt{\gamma} a^{3}\left(\frac{\dot{\phi}^{2}}{Q} \dot{\mathcal{R}}^{2}+U \mathcal{R}^{2}\right)-\left.\int d^{3} x \sqrt{\gamma} a^{3} \frac{\dot{\phi}^{2}}{Q} \mathcal{R} \dot{\mathcal{R}}\right|_{t_{\mathrm{E}}=0} ^{t_{\mathrm{E}}=+\infty} \\
& \text { with } Q=H^{2}-\kappa^{2} \dot{\phi}^{2} / 6 \text { and } U=\frac{-2}{a^{2} Q^{2}}\left[\frac{V \dot{\phi}^{2}}{3}\left(1-3 \frac{N^{2}}{a^{4}} e^{-\beta \phi}\right)+V_{, \phi} \dot{\phi} H\left(1-\frac{N^{2}}{a^{4}} e^{-\beta \phi}\right)\right. \\
&\left.+\left(\frac{4}{3 a^{2}} \dot{\phi}^{2}-\beta H \dot{\phi}\left(V-\frac{2}{a^{2}}\right)\right) \frac{N^{2}}{a^{4}} e^{-\beta \phi}\right] .
\end{aligned}
$$

Associated eigenvalue equation:

$$
-\frac{1}{a^{3}} \frac{\mathrm{~d}}{\mathrm{~d} t_{\mathrm{E}}}\left(a^{3} \frac{\dot{\phi}^{2}}{Q} \dot{\mathcal{R}}\right)+U \mathcal{R}=\lambda w\left(t_{\mathrm{E}}\right) \mathcal{R}
$$

Analysing the asymptotic and throat limits:

- $\dot{\phi}^{2} / Q$ and U regular at the origin and asymptotically $\Rightarrow w\left(t_{\mathrm{E}}\right)=\dot{\phi}^{2} / Q$ is well-suited.
- $\dot{\mathcal{R}}\left(t_{\mathrm{E}} \rightarrow \infty\right)=0$ and $\dot{\mathcal{R}}(0)=0$ set the surface term to 0 .
\Rightarrow We look for eigenmodes with BC: $\dot{\mathcal{R}}(0)=0, \mathcal{R}(0)=1, \dot{\mathcal{R}}(\infty) \rightarrow 0, \mathcal{R}(\infty) \rightarrow 0$

Associated eigenvalue equation:

$$
-\frac{1}{a^{3}} \frac{\mathrm{~d}}{\mathrm{~d} t_{\mathrm{E}}}\left(a^{3} \frac{\dot{\phi}^{2}}{Q} \dot{\mathcal{R}}\right)+U \mathcal{R}=\lambda w\left(t_{\mathrm{E}}\right) \mathcal{R}
$$

Analysing the asymptotic and throat limits:

- $\dot{\phi}^{2} / Q$ and U regular at the origin and asymptotically $\Rightarrow w\left(t_{\mathrm{E}}\right)=\dot{\phi}^{2} / Q$ is well-suited.
- $\dot{\mathcal{R}}\left(t_{\mathrm{E}} \rightarrow \infty\right)=0$ and $\dot{\mathcal{R}}(0)=0$ set the surface term to 0 .
\Rightarrow We look for eigenmodes with $\mathrm{BC}: \dot{\mathcal{R}}(0)=0, \mathcal{R}(0)=1, \dot{\mathcal{R}}(\infty) \rightarrow 0, \mathcal{R}(\infty) \rightarrow 0$

Conclusions and outlook

Current status:

- Better understanding of axion-dilaton GS-like wormhole solutions phase space of solutions, connection to massless case, perturbative stability of homogeneous sector (also inhomogeneous sector, see Hertog, Maenaut, Missoni, Tielemans, Van Riet, to appear)
- new puzzles related to oscillating solutions \rightarrow lower Euclidean action
- bifurcating structure appearance of additional negative mode \rightarrow new symmetry?

Future prospects:

- better suited variables to avoid the negative Q problem \rightarrow stability of oscillating solutions?
- different types of asymptotic boundaries / boundary conditions for the axion
\star axion-gravity in de Sitter Aguilar-Gutierrez et al. [2306.13951]
* AdS wormholes in axion-scalar-gravity Petzios, Papadoulaki [2403.17046]
- uplift to 10D asymptotically AdS as in Loges, Shiu, Van Riet [2302.03688]

Coleman's α parameters: removing bilocality

For a detailed explanation: Preskill 1989, Arkani-Hamed, Orgera, Polchinski [0705.2768]
or Hebecker, Mikhail, Soler [1807.00824]
Partition function for one wormhole:

$$
Z_{1, w}=\int \mathcal{D} g \mathcal{D} \phi e^{-S[g, \phi]}\left(\int \mathrm{d}^{4} x \sqrt{g(x)} \int \mathrm{d}^{4} y \sqrt{g(y)} e^{-S_{w}[x, y, g, \phi]}\right)
$$

Approximating S_{w} with bilocal operators: $S_{w}[x, y, g, \phi]=S_{w}+\sum_{i, j} \tilde{\Delta}_{i j} \mathcal{O}_{i}(x) \mathcal{O}_{j}(y)$. In the dilute gas approx (N wormholes independent of one another, with length of the throat \gg its diameter), the sum exponentiate as in the instanton limit:
$Z_{w}=\int \mathcal{D} g \mathcal{D} \phi e^{-S[g, \phi]+I}$ with

$$
I=\frac{1}{2} \int \mathrm{~d}^{4} x \sqrt{g} \int \mathrm{~d}^{4} y \sqrt{g} \sum_{i, j} \Delta_{i j} \mathcal{O}_{i}(x) \mathcal{O}_{j}(y), \quad \Delta_{i j} \propto e^{-S_{w}}
$$

This can be rewritten in a local expression by integrating over spacetime independent parameters α_{i} :

$$
e^{I}=\prod_{i}\left(\int \mathrm{~d} \alpha_{i}\right) e^{-\frac{1}{2} \sum_{i, j} \alpha_{i} \Delta_{i j}^{-1} \alpha_{j}} e^{\sum_{i} \alpha_{i} \int \mathrm{~d}^{4} x \sqrt{g} \mathcal{O}_{i}(x)}
$$

Coleman's α parameters: multiverse interpretation

Since $S[g, \lambda]=\sum_{i} \lambda_{i} \int \mathrm{~d}^{4} x \sqrt{g} \mathcal{O}_{i}(x)$ where λ_{i} are the coupling constants, the effect of the wormholes is to shift them $\lambda_{i} \rightarrow \lambda_{i}-\alpha_{i}$. Then the partition function reads

$$
Z(\alpha)=\int \mathcal{D} \alpha G(\alpha)\left[\int \mathcal{D} g e^{-S[g, \lambda-\alpha]}\right], \quad G(\alpha)=e^{-\frac{1}{2} \sum_{i, j} \alpha_{i} \Delta_{i j}^{-1} \alpha_{j}}
$$

Multiverse interpretation: each baby universe state correspond to a specific set of fixed α 's:

- Each species of baby universe labeled by $i \Rightarrow a_{i}^{\dagger}, a_{i}:\left[a_{i}, a_{i}^{\dagger}\right]=1$
- $S_{\mathrm{EFT}}=S_{0}+\sum_{i} A_{i} \int \mathrm{~d}^{4} x \mathcal{L}_{i}$, with $A_{i}=a_{i^{*}}^{\dagger}+a_{i}: A_{i}|\alpha\rangle=\alpha_{i}|\alpha\rangle$
- $\left[H, A_{i}\right]=0 \Rightarrow$ different $|\alpha\rangle=$ different superselection sectors of the EFT
- On a $|\alpha\rangle$ - eigenstate: $S_{\mathrm{EFT}}=S_{0}+\sum_{i} \alpha_{i} \int \mathrm{~d}^{4} x \mathcal{L}_{i}: \alpha_{i}$ are the coupling constants

Loss of unitarity elegantly explained by the $|\alpha\rangle$ - eigenstate:

$$
|\Psi\rangle=\left|\Psi_{\mathrm{EFT}}\right\rangle \times\left|\Psi_{\mathrm{BU}}\right\rangle \longrightarrow\left|\Psi^{\prime}\right\rangle=\sum_{i} c_{i}\left|\Psi_{\mathrm{EFT}}^{i}\right\rangle \times\left|\Psi_{\mathrm{BU}}^{i}\right\rangle
$$

\rightarrow tracing out the baby universe state:

$$
\left|\Psi_{\mathrm{EFT}}\right\rangle\left\langle\Psi_{\mathrm{EFT}}\right| \longrightarrow \sum_{i}\left|c_{i}\right|^{2}\left|\Psi_{\mathrm{EFT}}^{i}\right\rangle\left\langle\Psi_{\mathrm{EFT}}^{i}\right|
$$

Using Coleman's α parameters: $\left|\Psi_{\mathrm{BU}}\right\rangle=|\alpha\rangle$ and $\left[H, A_{i}\right]=0 \Rightarrow|\alpha\rangle$ is invariant under time evolution and each $\left\{\alpha_{i}\right\}-$ set defines a well-defined and unitary EFT.

Statistical prediction of the effective coupling constant:

- Coleman's calculation that $\Lambda_{\text {eff }}=0$ Coleman 1988
- FKS catastrophe (overdensity of wormholes) calculated similarly for $\mathcal{O}(x)=R^{2}$. Fischler, Kaplunovsky, Susskind 1989

Massive dilaton potential

All GS-like solutions for the massive dilaton case: $\beta_{c}=1.632 \ldots$

Expanding baby-universe solutions

One example - $\beta=1.2, N=30000, m=0.01$

Stability of massless dilaton solutions

$\beta=1$ massless dilaton solutions:

Potential and kinetic term positive throughout \rightarrow Perturbatively stable

Stability of massive dilaton solutions

(a) $\beta=\sqrt{2}$

(c) $\beta=1.58$

(d) $\beta=1.64$

Example with one negative mode

$\beta=1.579, m^{2} N=2.2, \phi_{0} \approx 3.477 \rightarrow U<0$ initially

Example with one negative mode

Nodal Theorem:

\# nodes of solution to the zero eigenvalue equation $=\#$ negative modes

$$
-\frac{1}{a^{3}} \frac{\mathrm{~d}}{\mathrm{~d} t_{\mathrm{E}}}\left(a^{3} \frac{\dot{\phi}^{2}}{Q} \dot{\mathcal{R}}_{\circ}\right)+U \cdot \mathcal{R}_{\circ}=0, \text { with } \mathcal{R}_{\circ}(0)=1, \dot{\mathcal{R}}_{\circ}(0)=0 .
$$

$\beta=1.579, m^{2} N=2.2, \phi_{0} \approx 3.477:$

(a) Even zero eigenmode with one node

(b) Corresponding negative mode with $\lambda \approx-10.36$

Negative Q problem

Negative kinetic term \rightarrow presence of a ghost (infinitely many negative modes)

- Similar problems for certain Euclidean bounce solutions [Rubakov et al. 1985]/ CDL bounces [Coleman, De Luccia 1980]: tunneling negative modes with on top an infinite tower with much higher frequency.
- Negative mode problem: much studied for the last 30 years but no solution so far [Gratton, Turok, Lavrelashvili, Rubakov, Tinyakov, Lee, Weinberg, ...]
- Physical or mathematical problem? \rightarrow location of the singularity can be shifted by a canonical transformation / in Hamiltonian treatment Q is singular for all wormhole solutions
\Rightarrow solved by finding suitable variables?
NB: "expanding" wormhole solutions all have $Q=H^{2}-\kappa^{2} \dot{\phi}^{2} / 6$ negative when $\dot{a}=0 \rightarrow$ stability cannot be analysed here

