AdS₃ SOLUTIONS WITH (0,5) AND (0,6)SUPERSYMMETRY &

HOLOGRAPHY

NIVERSI

GEN-HET MEETING IN STRING THEORY APRIL 28, 2024

ANAYELI RAMÍREZ

UNIVERSITÀ DI MILANO-BICOCCA

★ AdS₃ spaces play a key role as near horizon geometries

★ AdS₃ spaces play a key role as near horizon geometries

 \star AdS₃ geometries arise as near horizon geometries of 5d extremal BHs

 \star AdS₃ appears in the near horizon limit of black-strings solutions

The embedding of such scenarios into higher dimensions enables one to employ string theory to count the microstates making up the Bekenstein-Hawking entropy a la Strominger-Vafa

 \star AdS₃ spaces play a key role as near horizon geometries

* AdS₃ geometries arise as near horizon geometries of 5d extremal BHs

 \star AdS₃ appears in the near horizon limit of black-strings solutions

Through the AdS-CFT correspondence one might presume that there is a 2d CFT

* 2d CFTs play a prominent role in string theory and provide the best arena to test the AdS/CFT correspondence.

* The conformal group in 2d is infinite dimensional and this makes two dimensional CFTs much more tractable than their higher dimensional counterparts.

The embedding of such scenarios into higher dimensions enables one to employ string theory to count the microstates making up the Bekenstein-Hawking entropy a la Strominger-Vafa

★ The description of conformal defects in higher dimensional CFTs

They are typically understood as operator insertions that realise a deformation of the ambient CFT

Probe brane

approximation:

(Karch, Randall; DeWolfe, Freedman, Ooguri)

M Intersected branes

* The description of conformal defects in higher dimensional CFTs

They are typically understood as operator insertions that realise a deformation of the ambient CFT

Probe brane

approximation:

(Karch, Randall; DeWolfe, Freedman, Oo

M Inters nd branes

The probe brane approximation breaks down when M > > 1, due to their backreaction on the original geometry

* The description of conformal defects in higher dimensional CFTs

They are typically understood as operator insertions that realise a deformation of the ambient CFT

In this scenario:

Defect branes

intersects the original brane system,

which is known to be described by an AdS in the NHL and where the higher dimensional CFT lives

The probe brane approximation breaks down when M > > 1, due to their backreaction on the original geometry

Some of the isometries of the AdS space are broken, producing lower-dimensional AdS backgrounds in the NHL

These are dual to low dimensional CFTs, that retake a defect CFTs interpretation within the higher-dimensional CFTs.

(Hoker, Estes, Gutperle, Krym; Dibitetto, Petri; Faedo, Lozano, Petri; Lozano, Macpherson, Petri, Risco; Anabalon, Chamorro-Burgos, A. Guarino)

There is a broad effort towards classifying supersymmetric remain:

For $\mathcal{N} = (p,q)$ AdS₃ solutions in 10 or 11 dim, where $p + q \leq 8$ (Haupt, Lautz, Papadopoulos)

N _R	1	2	3	4	5	6	7	8
0	PC	PC	Exe	PC	-	-	l s - Exe	Ċl
1	PC	Exe	-	Ι	I	-	I	
2		Exe	-	Exe	-	-		
3			Exe	-	-			
4				l m s Cl - Exe				

* There is a broad effort towards classifying supersymmetric AdS₃ solutions in type II or M-theory, but at this time many gaps

(Macpherson, Tomasiello)

-
Exe
PC
Cl

No examples Some examples Partial classification

Complete classification

There is a broad effort towards classifying supersymmetric remain:

For $\mathcal{N} = (p,q)$ AdS₃ solutions in 10 or 11 dim, where $p + q \leq 8$ (Haupt, Lautz, Papadopoulos)

N_R	1	2	3	4	5	6	7	8	
0	PC	PC	Exe	PC	I	I	l s - Exe	Ċl)
1	PC	Exe	I	-	I	I	-		
2		Exe	I	Exe	I	I			
3			Exe	Ι	-				
4				l m s Cl - Exe					

*There is a broad effort towards classifying supersymmetric AdS₃ solutions in type II or M-theory, but at this time many gaps

– Exe PC Cl

No examples

(Macpherson, Tomasiello)

Some examples

Partial classification

Complete classification

Two maximal cases are completely classified

(D'Hoker et.al. and Mapherson) (Legramandi, Lo Monaco and Mapherson)

remain:

For $\mathcal{N} = (p,q)$ AdS₃ solutions in 10 or 11 dim, where $p + q \leq 8$ (Haupt, Lautz, Papadopoulos)

N _R	1	2	3	4	5	6	7	8
0	PC	PC	Exe	PC	I	I	l s - Exe	Ċl
1	PC	Exe	-	Ι	I	I	I	
2		Exe	-	Exe	-	1		
3			Exe	_	I			
4				l m s Cl Exe				

Canonical example: Near horizon of D1-D5 system.

* There is a broad effort towards classifying supersymmetric AdS₃ solutions in type II or M-theory, but at this time many gaps

(Macpherson, Tomasiello)

-	1000
Exe	
PC	
Cl	

No examples Some examples Partial classification Complete classification

 $AdS_3 \times S^3 \times CY_2$ realising small (4,4) superconformal symmetry

Symmetric Product Orbifold

(Giveon, Kutasov and Seiberg) (Eberhardt, Gaberdiel, Gopakumar)

* There is a broad effort towards classifying supersymmetric AdS₃ solutions in type II or M-theory, but at this time many gaps remain:

For $\mathcal{N} = (p,q)$ AdS₃ solutions in 10 or 11 dim, where $p + q \leq 8$ (Haupt, Lautz, Papadopoulos)

Notably, most known solutions rely on $\mathcal{N} = (p,q)$ or (0,q)with $p, q \leq 4$ supersymmetry

Canonical example: Near horizon of D1-D5 system.

Symmetric Product Orbifold

4	5	6	7	8
PO	-	-	l s - Exe	Cl
-	-	-	1	
Exe	-	_		
-	-			
l m c Cl Exe				

(Macpherson, Tomasiello)

_	
Exe	
PC	
Cl	

No examples Some examples Partial classification Complete classification

 $AdS_3 \times S^3 \times CY_2$ realising small (4,4) superconformal symmetry

(Giveon, Kutasov and Seiberg) (Eberhardt, Gaberdiel, Gopakumar)

* There is a broad effort towards classifying supersymmetric AdS₃ solutions in type II or M-theory, but at this time many gaps remain:

For $\mathcal{N} = (p,q)$ AdS₃ solutions in 10 or 11 dim, where $p + q \leq 8$ (Haupt, Lautz, Papadopoulos) (Macpherson, Tomasiello) 8 4 PC Exe No examples Some examples Exe Exe Partial classification PC Complete classification Cl ____ l m ٥ _ Exe

N _R	1	2	3
0	PC	PC	Exe
1	PC	Exe	Ι
2		Exe	1
3			Exe
4			

Notably, most known solutions rely on $\mathcal{N} = (p,q)$ or (0,q)with $p, q \leq 4$ supersymmetry

Canonical example: Near horizon of D1-D5 system.

 $AdS_3 \times S^3 \times CY_2$ realising small (4,4) superconformal symmetry (Giveon, Kutasov and Seiberg) Symmetric Product Orbifold (Eberhardt, Gaberdiel, Gopakumar)

This sector has been relatively unexplored so far

remain:

For $\mathcal{N} = (p,q)$ AdS₃ solutions in 10 or 11 dim, where $p + q \leq 8$ (Haupt, Lautz, Papadopoulos)

N _R	1	2	3	3 4		6	7	8
0	PC	PC	Exe	PC	PC	PC	l s - Exe	Cl
1	PC	Exe	I	-	-	-	-	
2		Exe	-	Exe	-	-		
3			Exe	-	-			
4				l m s Cl - Exe				

A main aim of this work is to fill in this gap:

- superconformal algebra for n = 5,6.
- \star We will investigate AdS₃/CFT₂ holography with (0,6) supersymmetry

* There is a broad effort towards classifying supersymmetric AdS₃ solutions in type II or M-theory, but at this time many gaps

Exe PC Cl

No examples Some examples Partial classification Complete classification

(Macpherson, Tomasiello)

 \star We provide two new AdS₃ classes of solutions to massive type IIA supergravity realising an $\mathfrak{osp}(n|2)$

TALK OUTLINE

★ Introduction & motivation

 \star AdS₃ solutions realising $\mathfrak{osp}(n|2)$ superconformal symmetry (2304.12207: N.Macpherson, AR)

* Aspects of the CFT (2404.17469: Y. Lozano, N. Macpherson, N. Petri, AR)

★ Conclusions & Open problems

We seek AdS₃ solutions of massive type IIA supergravity with a superconformal algebra $\mathfrak{sl}(2) \oplus \mathfrak{so}(n)$ for n = 5,6

We want supersymmetric solutions,

Geometrically,

$$ds^{2} = e^{2A}ds^{2}_{\mathsf{AdS}_{3}} + \frac{1}{4}\left(e^{2C}ds^{2}_{\mathsf{S}^{4}} + e^{2D}(Dy_{i})^{2}\right) + e^{2k}dr^{2}$$

fibered S²

The rest of NSNS and RR fields are turned on.

SO(5) R-symmetry \blacktriangleright $S^2 \to \mathbb{CP}^3 \to S^4 \to \widehat{\mathbb{CP}}^3$: squashed \mathbb{CP}^3

We will set up our study in terms of the pure spinor formalism. we reformulate supersymmetry in terms of equations that involve pure forms and exterior algebra.

Our strategy

 \star Construct spinors that ensure consistency with superconformal algebra $\mathfrak{Sl}(2) \oplus \mathfrak{So}(n)$

 $\mathcal{N} = (0,5)$ and $\mathcal{N} = (0,6)$ in IIA to exist (Dibitetto, Lo Monaco, Passias, Petri, Tomasiello; Passias, Prints; Macpherson, Tomasiello)

$$\begin{aligned} (d - H) \wedge (e^{A - \Phi} \Psi_{\mp}) &= 0, \\ (d - H) \wedge (e^{2A - \Phi} \Psi_{\pm}) \mp 2m e^{A - \Phi} \Psi_{\mp} &= \frac{e^{3A}}{8} \star_{7} \lambda(f_{\pm}), \\ (\Psi_{-}, f_{\pm})_{7} &= \mp \frac{m}{2} e^{-\Phi} \mathrm{vol}_{\mathsf{M}_{7}'} \end{aligned}$$

★ Study the classes consistent with our assumptions.

* Exploit an existing AdS classification to obtain sufficient conditions on the geometry and fluxes for a solution with

The local solutions are defined in terms of two functions, h(r) and u(r),

$$\frac{ds^2}{2\pi} = \frac{|hu|}{\sqrt{\Delta_1}} ds_{\mathsf{AdS}_3}^2 + \frac{\sqrt{\Delta_1}}{4|u|} \left[\frac{2}{|h''|} \left(ds_{\mathsf{S}_4}^2 + \frac{1}{\Delta_2} (Dy_i)^2 \right) + \frac{1}{|h|} dr^2 \right], \qquad e^{-2\Phi} = \frac{|u||h''|^3 \Delta_1}{4\pi\sqrt{\Delta_2}}$$

$$B_{2} = 4\pi \left[\left(\frac{uh' - hu'}{uh''} - (r - k) \right) J_{2} + \frac{u'}{2h''} \left(\frac{h}{u} + \frac{hh'' - 2(h')^{2}}{2h'u' + uh''} \right) \left(J_{2} - \tilde{J}_{2} \right) \right],$$

$$\Delta_1 = 2hh''u^2 - (uh' - hu')^2, \qquad \Delta_2 = 1 + \frac{2h'u'}{uh''}.$$

the RR sector:

$$F_0 = -\frac{1}{2\pi}h''',$$

$$F_2 = B_2 F_0 + 2(h'' - (r - k)h''')J_2,$$

 $F_4 = -\pi \operatorname{vol}_{\mathsf{AdS}_3} \wedge d\left(h' + \frac{hh''u(uh' + hu')}{\Delta_1}\right) + \operatorname{mag. terms.}$

The local solutions are defined in terms of two functions, h(r) and u(r),

$$\frac{ds^2}{2\pi} = \frac{|hu|}{\sqrt{\Delta_1}} ds_{\mathsf{AdS}_3}^2 + \frac{\sqrt{\Delta_1}}{4|u|} \left[\frac{2}{|h''|} \left(ds_{\mathsf{S}^4}^2 + \frac{1}{\Delta_2} (Dy_i)^2 \right) + \frac{1}{|h|} dr^2 \right], \qquad e^{-2\Phi} = \frac{|u||h''|^3 \Delta_1}{4\pi\sqrt{\Delta_2}}$$

$$B_{2} = 4\pi \left[\left(\frac{uh' - hu'}{uh''} - (r - k) \right) J_{2} + \frac{u'}{2h''} \left(\frac{h}{u} + \frac{hh'' - 2(h')^{2}}{2h'u' + uh''} \right) \left(J_{2} - \tilde{J}_{2} \right) \right],$$

$$\Delta_1 = 2hh''u^2 - (uh' - hu')^2, \qquad \Delta_2 = 1 + \frac{2h'u'}{uh''}.$$

the RR sector:

$$F_0 = -\frac{1}{2\pi}h^{\prime\prime\prime},$$

$$F_2 = B_2 F_0 + 2(h'' - (r - k)h''')J_2,$$

$$F_4 = -\pi \operatorname{vol}_{\mathsf{AdS}_3} \wedge d\left(h' + \frac{hh''u(uh' + hu')}{\Delta_1}\right) + \operatorname{mag. terms.}$$

NS5

D8

D6

D4

D2

The local solutions are defined in terms of two functions, h(r) and u(r),

$$\frac{ds^2}{2\pi} = \frac{|hu|}{\sqrt{\Delta_1}} ds_{\mathsf{AdS}_3}^2 + \frac{\sqrt{\Delta_1}}{4|u|} \left[\frac{2}{|h''|} \left(ds_{\mathsf{S}^4}^2 + \frac{1}{\Delta_2} (Dy_i)^2 \right) + \frac{1}{|h|} dr^2 \right], \qquad e^{-2\Phi} = \frac{|u||h''|^3 \Delta_1}{4\pi\sqrt{\Delta_2}}$$

$$B_{2} = 4\pi \left[\left(\frac{uh' - hu'}{uh''} - (r - k) \right) J_{2} + \frac{u'}{2h''} \left(\frac{h}{u} + \frac{hh'' - 2(h')^{2}}{2h'u' + uh''} \right) \left(J_{2} - \tilde{J}_{2} \right) \right],$$

$$\Delta_1 = 2hh''u^2 - (uh' - hu')^2, \qquad \Delta_2 = 1 + \frac{2h'u'}{uh''}.$$

the RR sector:

$$F_0 = -\frac{1}{2\pi}h^{\prime\prime\prime},$$

$$F_2 = B_2 F_0 + 2(h'' - (r - k)h''')J_2,$$

$$F_4 = -\pi \operatorname{vol}_{\mathsf{AdS}_3} \wedge d\left(h' + \frac{hh''u(uh' + hu')}{\Delta_1}\right) + \operatorname{mag. terms.}$$

NS5		
D8		
D6	Solutions are governed by 2 ordinary diff eqs:	
D4		
D2	SUSY demands: $u'' = 0$	
	Bianchi identities: $h'''' = 0$	

★ Supersymmetry implies u'' = 0 globally

u' = 0 we have a round \mathbb{CP}^3

$\mathfrak{osp}(6|2)$ AdS₃ solutions

$u' \neq 0$ we have the $\widehat{\mathbb{CP}}^3$

+

 $\mathfrak{ogp}(5|2)$ AdS₃ solutions

★ Supersymmetry implies u'' = 0 globally

One can glue local solutions together with D8 sources

Metric and dilaton fields are continuos at $r = r_0$. NS 2-form is also continuous modulo large gauge transformations

 $B_2 \rightarrow B_2 + \Delta B_2$

*

 \star Supersymmetry implies u'' = 0 globally

Bianchi identities,
$$dF_0 = -\frac{1}{2\pi}h''''dr$$
, imply

★ In the massless $\mathcal{N} = (0,6)$ case, we obtain the AdS₄ × \mathbb{CP}^3

Globally $h'''' \sim \delta(r - r_0)$ can be discontinuities which imply D8 sources

★ In the massless $\mathcal{N} = (0,6)$ case, we obtain the AdS₄ × \mathbb{CP}^3

u' = 0 and $h = Q_2 + Q_4 r + \frac{1}{2}Q_4 r^2 \rightarrow F_0 = 0$

$$ds^{2} = \frac{L^{2}}{4} ds^{2}_{AdS_{4}} + L^{2} ds^{2}_{\mathbb{CP}^{3}}$$
, $e^{-\Phi} = -$

$$L^2 = \frac{4\pi}{Q_6} \sqrt{2Q_2Q_6 - Q_4^2} ,$$

$$H_3 = 0, \qquad \hat{f}_4 = -\hat{f}_2 \wedge B_2,$$

★ In the massless $\mathcal{N} = (0,6)$ case, we obtain the AdS₄ × \mathbb{CP}^3

u' = 0 and $h = Q_2 + Q_4 r + \frac{1}{2}Q_4 r^2 \rightarrow F_0 = 0$

$$ds^{2} = \frac{L^{2}}{4} ds^{2}_{\mathsf{AdS}_{4}} + L^{2} ds^{2}_{\mathbb{CP}^{3}} , \qquad e^{-\Phi} = \frac{Q_{6}}{L} , \qquad B_{2} = -4\pi \frac{Q_{4}}{Q_{6}} J_{2} , \qquad b = -\frac{Q_{4}}{Q_{6}}$$

$$L^2 = \frac{4\pi}{Q_6} \sqrt{2Q_2Q_6 - Q_4^2} ,$$

fractional charges appear (Aharony, Bergman, Jafferis)

$$H_3 = 0,$$
 $\hat{f}_4 = -\hat{f}_2 \wedge B_2,$

The NS5 and D4 branes are not physical, since they annihilate to nothing (Aharony, Bergman, Jafferis)

★ In the massless $\mathcal{N} = (0,6)$ case, we obtain the AdS₄ × \mathbb{CP}^3

$$u' = 0$$
 and $h = Q_2 + Q_4 r + \frac{1}{2}Q_4 r^2 \rightarrow F_0 = 0$

$$ds^{2} = \frac{L^{2}}{4} ds^{2}_{\mathsf{AdS}_{4}} + L^{2} ds^{2}_{\mathbb{CP}^{3}} , \qquad e^{-\Phi} = \frac{Q_{6}}{L} , \qquad B_{2} = -4\pi \frac{Q_{4}}{Q_{6}} J_{2} , \qquad b = -\frac{Q_{4}}{Q_{6}}$$

$$L^2 = \frac{4\pi}{Q_6} \sqrt{2Q_2Q_6 - Q_4^2} ,$$

★ We compute the charges $\frac{1}{2\pi} \int_{\mathbb{CP}^1} \hat{f}_2 = Q_6$, $\frac{1}{(2\pi)^3} \int_{\mathbb{CP}^2} \hat{f}_4 = Q_4$, $\frac{1}{(2\pi)^5} \int_{\mathbb{CP}^3} \hat{f}_6 = Q_2$ and realise that these are associated with the # of branes in the following way: $Q_6 = k$, $Q_4 = M - \frac{k}{2}$, $Q_2 = N + \frac{k}{12}$, due to the effects of the

Freed-Witten anomaly and the higher curvature terms, (Aharony, Hashimoto, Hirano, Ouyang)

fractional charges appear (Aharony, Bergman, Jafferis)

 $H_3 = 0,$ $\hat{f}_4 = -\hat{f}_2 \wedge B_2,$

The NS5 and D4 branes are not physical, since they annihilate to nothing (Aharony, Bergman, Jafferis)

 \star In the massless $\mathcal{N} = (0,6)$ case, we obtain the AdS₄ $\times \mathbb{CP}^3$

$$u' = 0$$
 and $h = Q_2 + Q_4 r + \frac{1}{2}Q_4 r^2 \rightarrow F_0 = 0$

$$ds^{2} = \frac{L^{2}}{4} ds^{2}_{\mathsf{AdS}_{4}} + L^{2} ds^{2}_{\mathbb{CP}^{3}} , \qquad e^{-\Phi} = \frac{Q_{6}}{L} , \qquad B_{2} = -4\pi \frac{Q_{4}}{Q_{6}} J_{2} , \qquad b = -\frac{Q_{4}}{Q_{6}}$$

$$L^2 = \frac{4\pi}{Q_6} \sqrt{2Q_2Q_6 - Q_4^2} ,$$

* We compute the charges $\frac{1}{2\pi} \int_{\mathbb{CP}^1} \hat{f}_2 = Q_6$, $\frac{1}{(2\pi)^3} \int_{\mathbb{CP}^2} \hat{f}_4 = Q_4$, $\frac{1}{(2\pi)^5} \int_{\mathbb{CP}^3} \hat{f}_6 = Q_2$ and realise that these are associated with the # of branes in the following way: $Q_6 = k$, $Q_4 = M - \frac{k}{2}$, $Q_2 = N + \frac{k}{12}$, due to the effects of the

Freed-Witten anomaly and the higher curvature terms, (Aharony, Hashimoto, Hirano, Ouyang)

* Taking this identifications into account and performing large gauge transformation, $b \rightarrow b + 1$,

 $U(N+M)_k \times U(N)$

fractional charges appear (Aharony, Bergman, Jafferis)

$$H_3 = 0, \qquad \hat{f}_4 = -\hat{f}_2 \wedge B_2,$$

The NS5 and D4 branes are not physical, since they annihilate to nothing (Aharony, Bergman, Jafferis)

(Bergman and Lifschytz) (Benini, Canoura, Cremonesi, Nunez, Ramallo; $N \to N + k - M, \qquad M \to M - k,$ Aharony, Hashimoto, Hirano, Ouyang)

and these transformations generate Seiberg dualities relating the IR behaviour of different 3d N = 3 CSm theories

$$D_{-k} \rightarrow U(N)_k \times U(N - M + k)_{-k}$$

Its brane construction (type IIB realization)

Branes	0	1	2	3	4	5	Ψ	7	8	9
ND3	x	x	x	-	-	-	х	-	-	-
NS5′	x	x	x	Х	Х	Х	-	-	-	-
(1,k)5′	X	Х	Х	$\cos \theta$	$\cos\theta$	$\cos\theta$	-	sin θ	$\sin\theta$	$\sin \theta$

The brane system preserves $\mathcal{N} = 3$ supersymmetry in 3d, and this is enhanced to $\mathcal{N} = 6$ in the IR

The D3-branes stretch on the ψ -circle, intersecting one NS5'-brane and one (1, k) 5'-brane

(N+M)D3

On top of this there are M fractional branes stretched just along one segment of the circle, which as mentioned are not physical

Its brane construction (type IIB realization)

Branes	0	1	2	3	4	5	Ψ	7	8	9
ND3	x	Х	Х		-	-	х	-	-	-
NS5′	x	Х	Х	Х	Х	Х	-	-	-	-
(1,k)5′	x	х	Х	$\cos \theta$	$\cos \theta$	$\cos\theta$	-	$\sin \theta$	$\sin \theta$	sin θ

Massive case, $F_0 \neq 0$,

 $h_l(r) = Q_2^l - Q_4^l(r-l) + \frac{1}{2}Q_6^l(r-l)^2 - \frac{1}{6}Q_8^l(r-l)^3$

D8(D7)-branes localized

Its brane construction (type IIB realization)

Branes	0	1	2	3	4	5	Ψ	7	8	9
ND3	X	X	X	-	-	-	X		-	-
NS5′	x	Х	Х	Х	Х	Х	-	-	-	-
(1,k)5′	X	X	X	$\cos \theta$	$\cos \theta$	$\cos\theta$	-	sin θ	sin θ	$\sin \theta$
D7	x	х	-	х	х	х	-	x	x	x
NS5	X	Х	-	-	-	-	X	X	Х	Х

Massive case, $F_0 \neq 0$,

$$q_l(r) = Q_2^l - Q_4^l(r-l) + \frac{1}{2}Q_6^l(r-l)^2 - \frac{1}{6}Q_8^l(r-l)^3$$

D8(D7)-branes localized

Where the D7-NS5 defect branes create a domain wall in the 3d theory living in the D3-NS5'- (1,k)5' branes.

Its brane construction (type IIB realization)

Branes	0	1	2	3	4	5	Ψ	7	8	9
ND3	x	X	X		-	-	X	-	-	-
NS5′	x	Х	Х	х	Х	х	-	-	-	-
(1,k)5′	Х	X	Х	$\cos \theta$	$\cos \theta$	$\cos\theta$	-	sin θ	$\sin \theta$	sin θ
D7	x	X	-	Х	X	x	-	X	X	x
NS5	х	X	-	-	-	-	Х	Х	Х	Х

Massive case, $F_0 \neq 0$,

$$M_l(r) = Q_2^l - Q_4^l(r-l) + \frac{1}{2}Q_6^l(r-l)^2 - \frac{1}{6}Q_8^l(r-l)^3$$

D8(D7)-branes localized

Where the D7-NS5 defect branes create a domain wall in the 3d theory living in the D3-NS5'- (1,k)5' branes.

For a large number of NS5-D7 defect branes the resulting field theory becomes 2d, preserving one half of the supersymmetries and a subgroup of the superconformal group

The intersection describes a brane box with D3 colour

String	Multiplet	Interval	
D3-D3	(0,4) vector	Same stack	\bigcirc
D3-D3	(0,4) twisted hyper bifundamental	Separated by a NS5	
D3-D3	(0,4) hyper bifundamental	Separated by a NS5'	
D3-D3	(0,2) Fermi	Separated by both and NS5 and NS5'	
two D3-D3	two (0,2) Fermi =(0,4) Fermi	Separated by both and NS5 and NS5	
D3-D5'	(0,4) hyper bifundamental	Same interval	
D3-D5'	(0,2) Fermi	Adjacent interval	
D3-D7	(0,2) Fermi	Same interval	

Taking into account the field content arising from the different branes in the brane box configuration, we can now build up the quiver:

★ We obtain a generalisation of Seiberg duality to the massive case $U(N+M)_k \times U(N)_{-k+q}$

after the identification of the number of branes with the quantised charges $(N_l, M_l, k_l, q_l) \rightarrow (Q_2^l, Q_4^l, Q_6^l, Q_8^l)$ and the transformation of the field numbers $N \rightarrow N - M + k$, $M \rightarrow M - k$ and $k \rightarrow k + q$ due to the large gauge transformations.

★ We can compute the holographic central charge of the 2d (0, 6) SCFTs

$$c_{hol} = \sum_{l=0}^{P} \left(2N_l k_l - M_l^2 + M_l k_l - \frac{1}{12}k_l^2 + q_l(N_l - \frac{1}{2}M_l + \frac{5}{12}k_l - \frac{13}{720}q_l)\right)$$

and this result constitutes a very non-trivial prediction on the field theory side. However, we have not been able to check this result against a field theory calculation since we are unaware of a general result in the literature that relates the level of the superconformal algebra with the R-symmetry anomaly for (0,3) supersymmetry.

$$\rightarrow U(N)_{k+q} \times U(N - M + k)_{-k}$$

CONCLUSIONS & OPEN PROBLEMS

- \star We present two new AdS₃ solutions to massive type IIA, for the case of an $\mathfrak{osp}(n|2)$ superconformal algebra with n = 5,6
- possibility of investigating the AdS₃/CFT₂ correspondence in less standard supersymmetric settings.
- proposal this field theory should flow in the IR to the 2d CFT dual to the AdS₃ $\times \mathbb{CP}^3$ solutions.
- reduce the supersymmetries of the ABJM brane set-up by a half and the superconformal algebra to $\mathfrak{osp}(6|2)$.
- theories. This shows that Seiberg duality can be understood geometrically in terms of large gauge transformations.
- literature, so we hope that our results stimulate further investigations in this direction. **★** It would be interesting to compute other observables
- \star It would be interesting to further extend the analysis in this paper to the solutions with $\mathcal{N} = (0,5)$ supersymmetries.

 \star We have made progress towards the understanding of AdS₃/CFT₂ holography with $\mathcal{N} = (0,6)$ supersymmetry, opening up the interesting new

* We have proposed a brane set-up and, associated to it, a quiver field theory emerging from the quantisation of the open strings. According to our

* We interpret our solutions as describing 1/2-BPS backreacted surface defects within the ABJM theory. This defects consist on D8-NS5 branes that

* We have shown that large gauge transformations in the brane set-up induce the generalisation to the massive case of Seiberg duality in ABJM

* We have not been able to check the holographic central charge against a field theory calculation. We are unaware of a general result in the

