## $\mathrm{AdS}_{3} \operatorname{SOLUTIONS~WITH~}(0,5)$ AND $(0,6)$

 SUPERSYMMETRY \&
## HOLOGRAPHY

ANAYELI RAMÍREZ

UNIVERSITÀ DI MILANO-BICOCCA


GEN-HET MEETING IN STRING THEORY

INTRO \& MOTIVATION: why are $\mathrm{AdS}_{3}$ solutions relevant?

INTRO \& MOTIVATION: why are $A d S_{3}$ solutions relevant?
$\star \mathrm{AdS}_{3}$ spaces play a key role as near horizon geometries

INTRO \& MOTIVATION: why are $\mathrm{AdS}_{3}$ solutions relevant?
$\star \mathrm{AdS}_{3}$ spaces play a key role as near horizon geometries
$\mathrm{AdS}_{3}$ geometries arise as near horizon geometries of 5 d extremal BH s
$\star \mathrm{AdS}_{3}$ appears in the near horizon limit of black-strings solutions

The embedding of such scenarios into higher dimensions enables one to employ string theory to count the microstates making up the Bekenstein-Hawking entropy a la Strominger-Vafa

INTRO \& MOTIVATION: why are $A d S_{3}$ solutions relevant?
$\star \mathrm{AdS}_{3}$ spaces play a key role as near horizon geometries
$\mathrm{AdS}_{3}$ geometries arise as near horizon geometries of 5 d extremal BHs

* $\mathrm{AdS}_{3}$ appears in the near horizon limit of black-strings solutions

The embedding of such scenarios into higher dimensions enables one to employ string theory to count the microstates making up the Bekenstein-Hawking entropy a la Strominger-Vafa

* Through the AdS-CFT correspondence one might presume that there is a 2 d CFT
$\star$ 2d CFTs play a prominent role in string theory and provide the best arena to test the AdS/CFT correspondence.
* The conformal group in 2d is infinite dimensional and this makes two dimensional CFTs much more tractable than their higher dimensional counterparts.


## INTRO \& MOTIVATION: why are $\mathrm{AdS}_{3}$ solutions relevant?

*The description of conformal defects in higher dimensional CFTs
They are typically understood as operator insertions that realise a deformation of the ambient CFT

Probe brane approximation: (Karch, Randall;
DeWolfe, Freedman, Ooguri)

## INTRO \& MOTIVATION: why are $\mathrm{AdS}_{3}$ solutions relevant?

*The description of conformal defects in higher dimensional CFTs
They are typically understood as operator insertions that realise a deformation of the ambient CFT


The probe brane approximation breaks down when $M \gg 1$, due to their backreaction on the original geometry

## INTRO \& MOTIVATION: why are $\mathrm{AdS}_{3}$ solutions relevant?

*The description of conformal defects in higher dimensional CFTs
They are typically understood as operator insertions that realise a deformation of the ambient CFT


The probe brane approximation breaks down when $M \gg 1$, due to their backreaction on the original geometry

In this scenario:

Defect branes intersects the original brane system,
which is known to be described by an AdS in the NHL and where the higher dimensional CFT lives

Some of the isometries of the AdS space are broken, producing lower-dimensional AdS backgrounds in the NHL

These are dual to low dimensional CFTs, that retake a defect CFTs interpretation within the higher-dimensional CFTs.

INTRO \& MOTIVATION: why are $\mathrm{AdS}_{3}$ solutions relevant?
$\star$ There is a broad effort towards classifying supersymmetric $\mathrm{AdS}_{3}$ solutions in type II or M-theory, but at this time many gaps remain:

For $\mathcal{N}=(p, q) \mathrm{AdS}_{3}$ solutions in 10 or 11 dim , where $p+q \leq 8_{\text {(Haupt, Lautz, Papadopoulos) }}$

| $N_{R} N_{L}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $P C$ | $P C$ | $\varepsilon_{x e}$ | $P C$ | - | - | $l$ <br> - | $\varepsilon_{x e}$ |
| 1 | $P C$ | $\varepsilon_{x e}$ | - | - | - | - | - |  |
| 2 |  | $\varepsilon_{x e}$ | - | $\varepsilon_{x e}$ | - | - |  |  |
| 3 |  |  | $\varepsilon_{x e}$ | - | - |  |  |  |
| 4 |  |  |  | $l$ <br> $a$ | $m$ | $\varepsilon_{\varepsilon_{x}}$ |  |  |

(Macpherson, Tomasiello)


INTRO \& MOTIVATION: why are $\mathrm{AdS}_{3}$ solutions relevant?

* There is a broad effort towards classifying supersymmetric $\mathrm{AdS}_{3}$ solutions in type II or M-theory, but at this time many gaps remain:

For $\mathscr{N}=(p, q) \mathrm{AdS}_{3}$ solutions in 10 or 11 dim , where $p+q \leq 8_{\text {(Haupt, Lautz, Papadopoulos) }}$

| $N_{R} \lambda_{L}^{N_{L}}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | PC | Pe | Exe | PC | - | - |  |  |
| 1 | PC | Exe | - | - | - | - | - |  |
| 2 |  | Exe | - | $\varepsilon_{x e}$ | - | - |  |  |
| 3 |  |  | Exe | - | - |  |  |  |
| 4 |  |  |  | m m |  |  |  |  |

(Macpherson, Tomasiello)


Two maximal cases are completely classified
(D'Hoker et.al. and Mapherson)
(Legramandi, Lo Monaco and Mapherson)

INTRO \& MOTIVATION: why are $\mathrm{AdS}_{3}$ solutions relevant?

* There is a broad effort towards classifying supersymmetric $\mathrm{AdS}_{3}$ solutions in type II or M-theory, but at this time many gaps remain:

For $\mathcal{N}=(p, q)$ AdS $_{3}$ solutions in 10 or 11 dim, where $p+q \leq 8$
(Haupt, Lautz, Papadopoulos)

| $N_{R} N_{L}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $P C$ | $P C$ | $\varepsilon_{x e}$ | $P C$ | - | - | $\ddots$ | 0 |
| 1 | $P C$ | $\varepsilon_{x e}$ | - | - | - | - | - |  |
| 2 |  | $\varepsilon_{x e}$ | - | $\varepsilon_{x e}$ | - | - |  |  |
| 3 |  |  | $\varepsilon_{x e}$ | - | - |  |  |  |
| 4 |  |  |  | $\ell$ <br> $a$$\binom{\ddots}{\varepsilon_{x}}$ |  |  |  |  |


| - | No examples |
| :---: | :---: |
| $\varepsilon_{x}$ | Some examples |
| Pe | Partial classification |
| C | Complete classification |

Canonical example: Near horizon of D1-D5 system.
$\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{CY}_{2}$ realising small $(4,4)$ superconformal symmetry
Symmetric Product Orbifold
(Giveon, Kutasov and Seiberg ) (Eberhardt, Gaberdiel, Gopakumar ....)

## INTRO \& MOTIVATION: why are $\mathrm{AdS}_{3}$ solutions relevant?

$\star$ There is a broad effort towards classifying supersymmetric $\mathrm{AdS}_{3}$ solutions in type II or M-theory, but at this time many gaps remain:

For $\mathcal{N}=(p, q) \mathrm{AdS}_{3}$ solutions in 10 or 11 dim , where $p+q \leq 8$
(Haupt, Lautz, Papadopoulos)
(Macpherson, Tomasiello)

| $N_{R} N_{L}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | $P C$ | $P C$ | $\varepsilon_{x e}$ | $P C$ | - | - | $\ddots$ | 0 |
| 1 | $P C$ | $\varepsilon_{x e}$ | - | - | - | - | - | $C$ |
| 2 |  | $\varepsilon_{x e}$ | - | $\varepsilon_{x e}$ | - | - |  |  |
| 3 |  |  | $\varepsilon_{x e}$ | - | - |  |  |  |
| 4 |  |  | $l$ <br> $a$ |  |  |  |  |  |


| - | No examples |
| :---: | :---: |
| $\varepsilon_{x e}$ | Some examples |
| pe | Partial classification |
| $a$ | Complete classification |

Notably, most known solutions rely on $\mathcal{N}=(p, q)$ or ( $0, q$ ) with $p, q \leq 4$ supersymmetry

## Canonical example: Near horizon of D1-D5 system.

$\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{CY}_{2}$ realising small $(4,4)$ superconformal symmetry

## INTRO \& MOTIVATION: why are AdS $_{3}$ solutions relevant?

* There is a broad effort towards classifying supersymmetric $\mathrm{AdS}_{3}$ solutions in type II or M-theory, but at this time many gaps remain:

For $\mathcal{N}=(p, q) \mathrm{AdS}_{3}$ solutions in 10 or 11 dim, where $p+q \leq 8$
(Haupt, Lautz, Papadopoulos)

| $N_{R} N_{L}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | PC | PC | $\varepsilon_{x e}$ | $P C$ |  | - | 1 0 <br> - $\varepsilon_{x e}$ |  |
| 1 | PC | Exe | - |  | - | - | - |  |
| 2 |  | $\varepsilon_{x e}$ | - | $\varepsilon_{x}$ | - | - |  |  |
| 3 |  |  | $\varepsilon_{x}$ |  |  |  |  |  |
| 4 |  |  |  |  |  |  |  |  |

(Macpherson, Tomasiello)

This sector has been relatively unexplored so far

Canonical example: Near horizon of D1-D5 system.
$\mathrm{AdS}_{3} \times \mathrm{S}^{3} \times \mathrm{CY}_{2}$ realising small $(4,4)$ superconformal symmetry


Some examples Partial classification Complete classification

Notably, most known solutions rely on $\mathcal{N}=(p, q)$ or ( $0, q$ ) with $p, q \leq 4$ supersymmetry

Symmetric Product Orbifold
(Giveon, Kutasov and Seiberg )
(Eberhardt, Gaberdiel, Gopakumar ....)

## INTRO \& MOTIVATION: why are $\mathrm{AdS}_{3}$ solutions relevant?

* There is a broad effort towards classifying supersymmetric $\mathrm{AdS}_{3}$ solutions in type II or M-theory, but at this time many gaps remain:

For $\mathcal{N}=(p, q) \mathrm{AdS}_{3}$ solutions in 10 or 11 dim , where $p+q \leq 8$
(Haupt, Lautz, Papadopoulos)

| $N_{R} N_{L}$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | PC | Pe | Exe | PC | PC | PC |  | Cl |
| 1 | PC | Exe | - | - | - | - | - |  |
| 2 |  | Exe | - | $\varepsilon_{x e}$ | - | - |  |  |
| 3 |  |  | $\varepsilon_{x}$ | - | - |  |  |  |
| 4 |  |  |  |  |  |  |  |  |

(Macpherson, Tomasiello)


A main aim of this work is to fill in this gap:

* We provide two new $\mathrm{AdS}_{3}$ classes of solutions to massive type IIA supergravity realising an $\mathfrak{o} \mathfrak{P}(n \mid 2)$
superconformal algebra for $n=5,6$.
$\star$ We will investigate $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ holography with $(0,6)$ supersymmetry


## TALK OUTLINE

* Introduction \& motivation
$\star \mathrm{AdS}_{3}$ solutions realising $\mathfrak{o g} \mathfrak{p}(n \mid 2)$ superconformal symmetry (2304.12207: N.Macpherson, AR)

夫 Aspects of the CFT (2404.17469: Y. Lozano, N. Macpherson, N. Petri, AR)
$\star$ Conclusions \& Open problems

## GEOMETRY

We seek $\mathrm{AdS}_{3}$ solutions of massive type IIA supergravity with a superconformal algebra

$$
\mathfrak{J l}(2) \oplus \mathfrak{g} \mathfrak{v}(n) \quad \text { for } \quad n=5,6
$$

We want supersymmetric solutions,
$\begin{array}{ll}(0,6): & S O(6) \text { R-symmetry } \\ (0,5): & S O(5) \text { R-symmetry } \rightarrow \mathbb{C P}^{3} \\ & \rightarrow S^{2} \rightarrow \mathbb{C P}^{3} \rightarrow S^{4} \rightarrow \widehat{\mathbb{C P}}^{3}: \text { squashed } \mathbb{C P}^{3}\end{array}$

Geometrically,

$$
d s^{2}=e^{2 A} d s_{\mathrm{AdS}_{3}}^{2}+\frac{1}{4}(\overbrace{e^{2 C} d s_{\mathrm{S}^{4}}^{2}+\underbrace{\left.\mathrm{\overparen{CP}}_{i}\right)^{2}}_{\text {fibered }^{2 D} \mathrm{~s}^{2}}}^{\widehat{\mathrm{CP}}^{3}}+e^{2 k} d r^{2}
$$

The rest of NSNS and RR fields are turned on.

## GEOMETRY

We will set up our study in terms of the pure spinor formalism.
we reformulate supersymmetry in terms of equations that involve pure forms and exterior algebra.

Our strategy
$\star$ Construct spinors that ensure consistency with superconformal algebra $\mathfrak{s l}(2) \oplus \mathfrak{g o}(n)$

* Exploit an existing AdS classification to obtain sufficient conditions on the geometry and fluxes for a solution with $\mathcal{N}=(0,5)$ and $\mathcal{N}=(0,6)$ in IIA to exist (Dibitetto, Lo Monaco, Passias, Petri, Tomasiello; Passias, Prints; Macpherson, Tomasiello)

$$
\begin{aligned}
& (d-H) \wedge\left(e^{A-\Phi} \Psi_{\mp}\right)=0 \\
& (d-H) \wedge\left(e^{2 A-\Phi} \Psi_{ \pm}\right) \mp 2 m e^{A-\Phi} \Psi_{\mp}=\frac{e^{3 A}}{8} \star_{7} \lambda\left(f_{ \pm}\right) \\
& \left(\Psi_{-}, f_{ \pm}\right)_{7}=\mp \frac{m}{2} e^{-\Phi} \text { vol }_{\mathrm{M}_{7^{\prime}}}
\end{aligned}
$$

* Study the classes consistent with our assumptions.


## GEOMETRY

The local solutions are defined in terms of two functions, $h(r)$ and $u(r)$,

$$
\begin{gathered}
\frac{d s^{2}}{2 \pi}=\frac{|h u|}{\sqrt{\Delta_{1}}} d s_{\mathrm{AdS}_{3}}^{2}+\frac{\sqrt{\Delta_{1}}}{4|u|}\left[\frac{2}{\left|h^{\prime \prime}\right|}\left(d s_{\mathrm{S}^{4}+\frac{1}{\Delta_{2}}\left(D y_{i}\right)^{2}}^{\widehat{\mathbb{C P}}^{3}}+\frac{1}{|h|} d r^{2}\right], \quad e^{-2 \Phi}=\frac{|u|\left|h^{\prime \prime}\right|^{3} \Delta_{1}}{4 \pi \sqrt{\Delta_{2}}}\right. \\
B_{2}=4 \pi\left[\left(\frac{u h^{\prime}-h u^{\prime}}{u h^{\prime \prime}}-(r-k)\right) J_{2}+\frac{u^{\prime}}{2 h^{\prime \prime}}\left(\frac{h}{u}+\frac{h h^{\prime \prime}-2\left(h^{\prime}\right)^{2}}{2 h^{\prime} u^{\prime}+u h^{\prime \prime}}\right)\left(J_{2}-\tilde{J}_{2}\right)\right] \\
\Delta_{1}=2 h h^{\prime \prime} u^{2}-\left(u h^{\prime}-h u^{\prime}\right)^{2}, \quad \Delta_{2}=1+\frac{2 h^{\prime} u^{\prime}}{u h^{\prime \prime}} .
\end{gathered}
$$

the RR sector:
$F_{0}=-\frac{1}{2 \pi} h^{\prime \prime \prime}$,
$F_{2}=B_{2} F_{0}+2\left(h^{\prime \prime}-(r-k) h^{\prime \prime \prime}\right) J_{2}$,
$F_{4}=-\pi \mathrm{vol}_{\mathrm{AdS}_{3}} \wedge d\left(h^{\prime}+\frac{h h^{\prime \prime} u\left(u h^{\prime}+h u^{\prime}\right)}{\Delta_{1}}\right)+$ mag. terms.

## GEOMETRY

The local solutions are defined in terms of two functions, $h(r)$ and $u(r)$,

$$
\begin{gathered}
\frac{d s^{2}}{2 \pi}=\frac{|h u|}{\sqrt{\Delta_{1}}} d s_{\mathrm{AdS}_{3}}^{2}+\frac{\sqrt{\Delta_{1}}}{4|u|}\left[\frac{2}{\left|h^{\prime \prime}\right|}\left(d s_{\mathrm{S}^{4}+\frac{1}{\Delta_{2}}\left(D y_{i}\right)^{2}}^{\widehat{\mathbb{C P}}^{3}}+\frac{1}{|h|} d r^{2}\right], \quad e^{-2 \Phi}=\frac{|u|\left|h^{\prime \prime}\right|^{3} \Delta_{1}}{4 \pi \sqrt{\Delta_{2}}}\right. \\
B_{2}=4 \pi\left[\left(\frac{u h^{\prime}-h u^{\prime}}{u h^{\prime \prime}}-(r-k)\right) J_{2}+\frac{u^{\prime}}{2 h^{\prime \prime}}\left(\frac{h}{u}+\frac{h h^{\prime \prime}-2\left(h^{\prime}\right)^{2}}{2 h^{\prime} u^{\prime}+u h^{\prime \prime}}\right)\left(J_{2}-\tilde{J}_{2}\right)\right] \\
\Delta_{1}=2 h h^{\prime \prime} u^{2}-\left(u h^{\prime}-h u^{\prime}\right)^{2}, \quad \Delta_{2}=1+\frac{2 h^{\prime} u^{\prime}}{u h^{\prime \prime}} .
\end{gathered}
$$

the RR sector:
$F_{0}=-\frac{1}{2 \pi} h^{\prime \prime \prime}$,
$F_{2}=B_{2} F_{0}+2\left(h^{\prime \prime}-(r-k) h^{\prime \prime \prime}\right) J_{2}$,
D2
$F_{4}=-\pi \mathrm{vol}_{\mathrm{AdS}_{3}} \wedge d\left(h^{\prime}+\frac{h h^{\prime \prime} u\left(u h^{\prime}+h u^{\prime}\right)}{\Delta_{1}}\right)+$ mag. terms.

## GEOMETRY

The local solutions are defined in terms of two functions, $h(r)$ and $u(r)$,

$$
\begin{gathered}
\frac{d s^{2}}{2 \pi}=\frac{|h u|}{\sqrt{\Delta_{1}}} d s_{\mathrm{AdS}_{3}}^{2}+\frac{\sqrt{\Delta_{1}}}{4|u|}\left[\frac{2}{\left|h^{\prime \prime}\right|}\left(d s_{\mathrm{S}^{4}+\frac{1}{\Delta_{2}}\left(D y_{i}\right)^{2}}^{\widehat{\mathbb{C P}}^{3}}+\frac{1}{|h|} d r^{2}\right], \quad e^{-2 \Phi}=\frac{|u|\left|h^{\prime \prime}\right|^{3} \Delta_{1}}{4 \pi \sqrt{\Delta_{2}}}\right. \\
B_{2}=4 \pi\left[\left(\frac{u h^{\prime}-h u^{\prime}}{u h^{\prime \prime}}-(r-k)\right) J_{2}+\frac{u^{\prime}}{2 h^{\prime \prime}}\left(\frac{h}{u}+\frac{h h^{\prime \prime}-2\left(h^{\prime}\right)^{2}}{2 h^{\prime} u^{\prime}+u h^{\prime \prime}}\right)\left(J_{2}-\tilde{J}_{2}\right)\right] \\
\Delta_{1}=2 h h^{\prime \prime} u^{2}-\left(u h^{\prime}-h u^{\prime}\right)^{2}, \quad \Delta_{2}=1+\frac{2 h^{\prime} u^{\prime}}{u h^{\prime \prime}} .
\end{gathered}
$$

the RR sector:
$F_{0}=-\frac{1}{2 \pi} h^{\prime \prime \prime}$,
$F_{2}=B_{2} F_{0}+2\left(h^{\prime \prime}-(r-k) h^{\prime \prime \prime}\right) J_{2}$,
D2
$F_{4}=-\pi \mathrm{vol}_{\mathrm{AdS}_{3}} \wedge d\left(h^{\prime}+\frac{h h^{\prime \prime} u\left(u h^{\prime}+h u^{\prime}\right)}{\Delta_{1}}\right)+$ mag. terms.

SUSY demands: $\quad u^{\prime \prime}=0$
Bianchi identities: $h^{\prime \prime \prime \prime}=0$

## GEOMETRY

* Supersymmetry implies $u^{\prime \prime}=0$ globally


## GEOMETRY

$\star$ Supersymmetry implies $u^{\prime \prime}=0$ globally


## GEOMETRY

Supersymmetry implies $u^{\prime \prime}=0$ globally
$u^{\prime}=0$ we have a round $\mathbb{C P}^{3} \Rightarrow \mathfrak{o} \mathfrak{p}(6 \mid 2) \mathrm{AdS}_{3}$ solutions
$u^{\prime} \neq 0$ we have the $\widehat{\mathbb{C P}}^{3} \quad \mathfrak{o} \mathfrak{p}(5 \mid 2) \mathrm{AdS}_{3}$ solutions
$\star$ Bianchi identities, $d F_{0}=-\frac{1}{2 \pi} h^{\prime \prime \prime \prime} d r$, imply
Locally $h^{\prime \prime \prime \prime}=0 \rightarrow \mathcal{O}(3)$ polynomial

Globally $h^{\prime \prime \prime \prime} \sim \delta\left(r-r_{0}\right)$ can be discontinuities which imply D8 sources


One can glue local solutions together with D8 sources

Metric and dilaton fields are continuos at $r=r_{0}$. NS 2-form is also continuous modulo large gauge transformations

$$
B_{2} \rightarrow B_{2}+\Delta B_{2}
$$

## GEOMETRY

Supersymmetry implies $u^{\prime \prime}=0$ globally

$\star$ Bianchi identities, $d F_{0}=-\frac{1}{2 \pi} h^{\prime \prime \prime \prime} d r$, imply
Locally $h^{\prime \prime \prime \prime}=0 \rightarrow \mathcal{O}(3)$ polynomial

Globally $h^{\prime \prime \prime \prime} \sim \delta\left(r-r_{0}\right)$ can be discontinuities which imply D8 sources
$\star$ In the massless $\mathcal{N}=(0,6)$ case, we obtain the $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$

## GEOMETRY

$\star$ In the massless $\mathcal{N}=(0,6)$ case, we obtain the $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$

$$
\begin{aligned}
& u^{\prime}=0 \text { and } h=Q_{2}+Q_{4} r+\frac{1}{2} Q_{4} r^{2} \rightarrow \quad F_{0}=0 \\
& \qquad \begin{array}{c}
d s^{2}=\frac{L^{2}}{4} d s_{\mathrm{AdS}_{4}}^{2}+L^{2} d s_{\mathbb{C P}^{3}}^{2}, \quad e^{-\Phi}=\frac{Q_{6}}{L}, \quad B_{2}=-4 \pi \frac{Q_{4}}{Q_{6}} J_{2}, \quad b=-\frac{Q_{4}}{Q_{6}} \\
L^{2}=\frac{4 \pi}{Q_{6}} \sqrt{2 Q_{2} Q_{6}-Q_{4}^{2}}, \quad H_{3}=0, \quad \hat{f}_{4}=-\hat{f}_{2} \wedge B_{2},
\end{array}
\end{aligned}
$$

## GEOMETRY

$\star$ In the massless $\mathcal{N}=(0,6)$ case, we obtain the $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$

$$
\begin{aligned}
& u^{\prime}=0 \text { and } h=Q_{2}+Q_{4} r+\frac{1}{2} Q_{4} r^{2} \rightarrow F_{0}=0 \\
& \qquad \begin{array}{c}
d^{2}=\frac{L^{2}}{4} d s_{\mathrm{AdS}_{4}}^{2}+L^{2} d s_{\mathrm{CP}^{3}}^{2}, \quad e^{-\Phi}=\frac{Q_{6}}{L}, \quad B_{2}=-4 \pi \frac{Q_{4}}{Q_{6}} J_{2}, \quad b=-\frac{Q_{4}}{Q_{6}} \\
L^{2}=\frac{4 \pi}{Q_{6}} \sqrt{2 Q_{2} Q_{6}-Q_{4}^{2}}, \quad \hat{H}_{3}=0, \quad \hat{f}_{4}=-\hat{f}_{2} \wedge B_{2}
\end{array}
\end{aligned}
$$

\% The NS5 and D4 branes are not physical, since they annihilate to nothing (Aharony, Bergman, Jafferis)

## GEOMETRY

$\star$ In the massless $\mathcal{N}=(0,6)$ case, we obtain the $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$

$$
u^{\prime}=0 \text { and } h=Q_{2}+Q_{4} r+\frac{1}{2} Q_{4} r^{2} \rightarrow F_{0}=0
$$

$\%$ fractional charges appear (Aharony, Bergman, Jafferis)

$$
\begin{gathered}
d s^{2}=\frac{L^{2}}{4} d s_{\mathrm{AdS}_{4}}^{2}+L^{2} d s_{\mathbb{C P}^{3}}^{2}, \quad e^{-\Phi}=\frac{Q_{6}}{L}, \quad B_{2}=-4 \pi \frac{Q_{4}}{Q_{6}} J_{2}, \quad b=-\frac{Q_{4}}{Q_{6}} \\
L^{2}=\frac{4 \pi}{Q_{6}} \sqrt{2 Q_{2} Q_{6}-Q_{4}^{2}}, \quad \hat{f}_{3}=0, \quad \hat{f}_{2} \wedge B_{2}
\end{gathered}
$$

\% The NS5 and D4 branes are not physical, since they annihilate to nothing (Aharony, Bergman, Jafferis)
$\%$ We compute the charges $\frac{1}{2 \pi} \int_{\mathbb{C P}^{1}} \hat{f}_{2}=Q_{6}, \quad \frac{1}{(2 \pi)^{3}} \int_{\mathbb{C P}^{2}} \hat{f}_{4}=Q_{4}, \quad \frac{1}{(2 \pi)^{5}} \int_{\mathbb{C P}^{3}} \hat{f}_{6}=Q_{2} \quad$ and realise that these are associated with the \# of branes in the following way: $\quad Q_{6}=k, \quad Q_{4}=M-\frac{k}{2}, \quad Q_{2}=N+\frac{k}{12}$, due to the effects of the Freed-Witten anomaly and the higher curvature terms, (Aharony, Hashimoto, Hirano, Ouyang)

## GEOMETRY

$\star$ In the massless $\mathcal{N}=(0,6)$ case, we obtain the $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$

$$
u^{\prime}=0 \text { and } h=Q_{2}+Q_{4} r+\frac{1}{2} Q_{4} r^{2} \rightarrow F_{0}=0
$$

$$
\because \text { fractional charges appear (Aharony, Bergman, Jafferis) }
$$

$$
\begin{gathered}
d s^{2}=\frac{L^{2}}{4} d s_{\mathrm{AdS}_{4}}^{2}+L^{2} d s_{\mathbb{C P}^{3}}^{2}, \quad e^{-\Phi}=\frac{Q_{6}}{L}, \quad B_{2}=-4 \pi \frac{Q_{4}}{Q_{6}} J_{2}, \quad b=-\frac{Q_{4}}{Q_{6}} \\
L^{2}=\frac{4 \pi}{Q_{6}} \sqrt{2 Q_{2} Q_{6}-Q_{4}^{2}}, \quad \hat{f}_{3}=0, \quad \hat{f}_{2} \wedge B_{2}
\end{gathered}
$$

\% The NS5 and D4 branes are not physical, since they annihilate to nothing (Aharony, Bergman, Jafferis)
\%. We compute the charges $\frac{1}{2 \pi} \int_{\mathbb{C P}^{1}} \hat{f}_{2}=Q_{6}, \quad \frac{1}{(2 \pi)^{3}} \int_{\mathbb{C P}^{2}} \hat{f}_{4}=Q_{4}, \quad \frac{1}{(2 \pi)^{5}} \int_{\mathbb{C P}^{3}} \hat{f}_{6}=Q_{2} \quad$ and realise that these are associated with the \# of branes in the following way: $\quad Q_{6}=k, \quad Q_{4}=M-\frac{k}{2}, \quad Q_{2}=N+\frac{k}{12}$, due to the effects of the Freed-Witten anomaly and the higher curvature terms, (Aharony, Hashimoto, Hirano, Ouyang)
$\because$ Taking this identifications into account and performing large gauge transformation, $b \rightarrow b+1$, (Bergman and Lifschytz)

$$
N \rightarrow N+k-M, \quad M \rightarrow M-k
$$

(Benini, Canoura, Cremonesi, Nunez, Ramallo; Aharony, Hashimoto, Hirano, Ouyang)
and these transformations generate Seiberg dualities relating the IR behaviour of different $3 \mathrm{~d} N=3 \mathrm{CSm}$ theories

$$
U(N+M)_{k} \times U(N)_{-k} \rightarrow U(N)_{k} \times U(N-M+k)_{-k}
$$

## GEOMETRY

Its brane construction (type IIB realization)

| Branes | 0 | 1 | 2 | 3 | 4 | 5 | $\psi$ | 7 | 8 | 9 |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ND3 | x | x | x | - | - | - | $x$ | - | - | - |
| NS5' | x | x | x | x | x | x | - | - | - | - |
| $(1, k) 5^{\prime}$ | x | x | x | $\cos \theta$ | $\cos \theta$ | $\cos \theta$ | - | $\sin \theta$ | $\sin \theta$ | $\sin \theta$ |

The brane system preserves $\mathcal{N}=3$ supersymmetry in 3d, and this is enhanced to $\mathcal{N}=6$ in the IR


The D3-branes stretch on the $\psi$-circle, intersecting one NS5'-brane and one (1, k) 5'-brane
On top of this there are $M$ fractional branes stretched just along one segment of the circle, which as mentioned are not physical

## ASPECTS OF THE CFT

Its brane construction (type IIB realization)

| Branes | 0 | 1 | 2 | 3 | 4 | 5 | $\psi$ | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N D3 | x | x | x | - | - | - | x | - | - | - |
| NS5' $^{\prime}$ | x | x | x | x | x | x | - | - | - | - |
| $(1, \mathrm{k}) 5^{\prime}$ | x | x | x | $\cos \theta$ | $\cos \theta$ | $\cos \theta$ | - | $\sin \theta$ | $\sin \theta$ | $\sin \theta$ |

Massive case, $F_{0} \neq 0$,
$h_{l}(r)=Q_{2}^{l}-Q_{4}^{l}(r-l)+\frac{1}{2} Q_{6}^{l}(r-l)^{2}-\frac{1}{6} Q_{8}^{l}(r-l)^{3}$
D8(D7)-branes localized

## ASPECTS OF THE CFT

Its brane construction (type IIB realization)

| Branes | 0 | 1 | 2 | 3 | 4 | 5 | $\psi$ | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N D3 | X | X | X | - | - | - | X | - | - | - |
| NS5' | X | X | X | X | X | X | - | - | - | - |
| $(1, k) 5^{\prime}$ | X | X | X | $\cos \theta$ | $\cos \theta$ | $\cos \theta$ | - | $\sin \theta$ | $\sin \theta$ | $\sin \theta$ |
| D7 | X | X | - | X | X | X | - | X | X | X |
| NS5 | X | X | - | - | - | - | X | X | X | X |

Massive case, $F_{0} \neq 0$,
$h_{l}(r)=Q_{2}^{l}-Q_{4}^{l}(r-l)+\frac{1}{2} Q_{6}^{l}(r-l)^{2}-\frac{1}{6} Q_{8}^{l}(r-l)^{3}$
D8(D7)-branes localized
Where the D7-NS5 defect branes create a domain wall in the 3d theory living in the D3-NS5'- $(1, k) 5^{\prime}$ branes.


## ASPECTS OF THE CFT

Its brane construction (type IIB realization)

| Branes | 0 | 1 | 2 | 3 | 4 | 5 | $\psi$ | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| N D3 | X | X | X | - | - | - | X | - | - | - |
| NS5' | X | X | X | X | X | X | - | - | - | - |
| $(1, k) 5^{\prime}$ | X | X | X | $\cos \theta$ | $\cos \theta$ | $\cos \theta$ | - | $\sin \theta$ | $\sin \theta$ | $\sin \theta$ |
| D7 | X | X | - | X | X | X | - | X | X | X |
| NS5 | X | X | - | - | - | - | X | X | X | X |

Massive case, $F_{0} \neq 0$,

$$
h_{l}(r)=Q_{2}^{l}-Q_{4}^{l}(r-l)+\frac{1}{2} Q_{6}^{l}(r-l)^{2}-\frac{1}{6} Q_{8}^{l}(r-l)^{3}
$$

D8(D7)-branes localized
Where the D7-NS5 defect branes create a domain wall in the 3d theory living in the D3-NS5'- $(1, k) 5^{\prime}$ branes.

For a large number of NS5-D7 defect branes the resulting field theory becomes $2 d$, preserving one half of the supersymmetries and a subgroup of the superconformal group

$(N+M) D 3$


## ASPECTS OF THE CFT

The intersection describes a brane box with D3 colour

| String | Multiplet | Interval |  |
| :---: | :---: | :---: | :---: |
| D3-D3 | $(0,4)$ vector | Same stack | O |
| D3-D3 | $(0,4)$ twisted hyper <br> bifundamental | Separated by a NS5 | - |
| D3-D3 | $(0,4)$ hyper <br> bifundamental | Separated by a <br> NS5' | - |
| D3-D3 | $(0,2)$ Fermi | Separated by both <br> and NS5 and NS5 | --- |
| two D3-D3 | two (0,2) Fermi <br> $=(0,4)$ Fermi | Separated by both <br> and NS5 and NS5 | --- |
| D3-D5' | $(0,4)$ hyper <br> bifundamental | Same interval | - |
| D3-D5' | $(0,2)$ Fermi | Adjacent interval | --- |
| D3-D7 | $(0,2)$ Fermi | Same interval | --- |

Taking into account the field content arising from the different branes in the brane box configuration, we can now build up the quiver:


## ASPECTS OF THE CFT

* We obtain a generalisation of Seiberg duality to the massive case

$$
U(N+M)_{k} \times U(N)_{-k+q} \quad \rightarrow \quad U(N)_{k+q} \times U(N-M+k)_{-k}
$$

after the identification of the number of branes with the quantised charges $\left(N_{l}, M_{l}, k_{l}, q_{l}\right) \rightarrow\left(Q_{2}^{l}, Q_{4}^{l}, Q_{6}^{l}, Q_{8}^{l}\right)$ and the transformation of the field numbers $N \rightarrow N-M+k, \quad M \rightarrow M-k$ and $k \rightarrow k+q$ due to the large gauge transformations.
$\star$ We can compute the holographic central charge of the $2 \mathrm{~d}(0,6)$ SCFTs

$$
c_{\text {hol }}=\sum_{l=0}^{P}\left(2 N_{l} k_{l}-M_{l}^{2}+M_{l} k_{l}-\frac{1}{12} k_{l}^{2}+q_{l}\left(N_{l}-\frac{1}{2} M_{l}+\frac{5}{12} k_{l}-\frac{13}{720} q_{l}\right)\right)
$$

and this result constitutes a very non-trivial prediction on the field theory side. However, we have not been able to check this result against a field theory calculation since we are unaware of a general result in the literature that relates the level of the superconformal algebra with the R-symmetry anomaly for $(0,3)$ supersymmetry.

## CONCLUSIONS \& OPEN PROBLEMS

$\star$ We present two new $\mathrm{AdS}_{3}$ solutions to massive type IIA, for the case of an $\mathfrak{o} \mathfrak{G p}(n \mid 2)$ superconformal algebra with $n=5,6$
$\star$ We have made progress towards the understanding of $A d S_{3} / C F T_{2}$ holography with $\mathcal{N}=(0,6)$ supersymmetry, opening up the interesting new possibility of investigating the $A d S_{3} / \mathrm{CFT}_{2}$ correspondence in less standard supersymmetric settings.

夫 We have proposed a brane set-up and, associated to it, a quiver field theory emerging from the quantisation of the open strings. According to our proposal this field theory should flow in the IR to the $2 d$ CFT dual to the $A d S_{3} \times \mathbb{C P}^{3}$ solutions.

* We interpret our solutions as describing 1/2-BPS backreacted surface defects within the ABJM theory. This defects consist on D8-NS5 branes that reduce the supersymmetries of the $A B J M$ brane set-up by a half and the superconformal algebra to $\mathfrak{o} \mathfrak{G p}(6 \mid 2)$.
* We have shown that large gauge transformations in the brane set-up induce the generalisation to the massive case of Seiberg duality in ABJM theories. This shows that Seiberg duality can be understood geometrically in terms of large gauge transformations.
* We have not been able to check the holographic central charge against a field theory calculation. We are unaware of a general result in the literature, so we hope that our results stimulate further investigations in this direction
$\star$ It would be interesting to compute other observables
* It would be interesting to further extend the analysis in this paper to the solutions with $\mathcal{N}=(0,5)$ supersymmetries.

THANKS!

