Logarithmic Corrections in AdS/CFT

based on 2312.08909 with Nikolay Bobev, Junho Hong, Valentin Reys, Xuao Zhang

Marina David

KU Leuven

GenHET Meeting in String Theory CERN 30 April 2024

Ultimate goal: full quantum black hole entropy

 $S = \log \Omega$

Ultimate goal: full quantum black hole entropy

Ultimate goal: full quantum black hole entropy

Ultimate goal: full quantum black hole entropy

$$S = \underbrace{\frac{A}{4G_N}}_{\substack{\text{Bekenstein}\\\text{Hawking}}}$$

Ultimate goal: full quantum black hole entropy

 entropy can depend on various continuous parameters of the theory/background

AdS/CFT: duality between certain gravity and gauge field theories

precision holography

AdS/CFT: duality between certain gravity and gauge field theories

precision holography - beyond the leading term

- precision holography beyond the leading term
 - how far can holography go?

- precision holography beyond the leading term
 - how far can holography go?
 - if there is apparent discrepancy, why?

- precision holography beyond the leading term
 - how far can holography go?
 - if there is apparent discrepancy, why?
 - learn about certain aspects of quantum gravity

- precision holography beyond the leading term
 - how far can holography go?
 - if there is apparent discrepancy, why?
 - learn about certain aspects of quantum gravity
 - develop tools/tricks of the trade

▶ large N limit of SCFT₃

$$\log Z_{\mathsf{CFT}} = F_0 + \underbrace{\mathcal{C}_{\mathsf{CFT}}}_{\text{``topological''}} \log N + \dots$$

▶ large N limit of SCFT₃

$$\log Z_{\mathsf{CFT}} = F_0 + \underbrace{\mathcal{C}_{\mathsf{CFT}}}_{\text{"topological"}} \log N + \dots$$

• All CFT examples $\longleftrightarrow C_{CFT}$ is a pure number

▶ large N limit of SCFT₃

$$\log Z_{\mathsf{CFT}} = F_0 + \underbrace{\mathcal{C}_{\mathsf{CFT}}}_{\text{"topological"}} \log N + \dots$$

• All CFT examples $\longleftrightarrow C_{CFT}$ is a pure number

$$C_{\text{gravity}} \stackrel{!}{=} \mathcal{C}_{\text{CFT}}$$

Marina David

► large N limit of SCFT₃

$$\log Z_{\mathsf{CFT}} = F_0 + \underbrace{\mathcal{C}_{\mathsf{CFT}}}_{\text{"topological"}} \log N + \dots$$

• All CFT examples $\longleftrightarrow C_{CFT}$ is a pure number

$$C_{\mathsf{gravity}} \stackrel{!}{=} \mathcal{C}_{\mathsf{CFT}}$$

strong holographic constraint

 \blacktriangleright logs come from 1-loop quantum correction: quadratic operator for each field ϕ

General Strategy

 \blacktriangleright logs come from 1-loop quantum correction: quadratic operator for each field ϕ

$$\log Z_{\text{sugra}} = S_{\text{cl}} - \frac{1}{2} \sum_{\phi} \log \det \mathcal{Q}_{\phi} + \dots$$

General Strategy

 \blacktriangleright logs come from 1-loop quantum correction: quadratic operator for each field ϕ

$$\log Z_{\mathsf{sugra}} = S_{\mathsf{cl}} - \frac{1}{2} \sum_{\phi} \log \det \mathcal{Q}_{\phi} + \dots$$

 numerous work starting with Ashoke Sen

- numerous work starting with Ashoke Sen
- ► IR window into the UV

- numerous work starting with Ashoke Sen
- ► IR window into the UV
- consider spectrum of massless fields

- numerous work starting with Ashoke Sen
- ► IR window into the UV
- consider spectrum of massless fields

AdS Spacetimes: $\Lambda < 0$

- numerous work starting with Ashoke Sen
- IR window into the UV
- consider spectrum of massless fields

AdS Spacetimes: $\Lambda < 0$

 not much has been studied in AdS

Flat vs AdS Spacetimes

Flat Spacetimes: $\Lambda = 0$

- numerous work starting with Ashoke Sen
- IR window into the UV
- consider spectrum of massless fields

AdS Spacetimes: $\Lambda < 0$

- not much has been studied in AdS
- no scale separation

- numerous work starting with Ashoke Sen
- IR window into the UV
- consider spectrum of massless fields

AdS Spacetimes: $\Lambda < 0$

- not much has been studied in AdS
- no scale separation
- consider spectrum of massless fields + inf massive KK modes

$$\log \det Q_{\phi} = \frac{1}{(4\pi)^2} \int d^4x \sqrt{g} (\operatorname{Tr} a_4 - \underbrace{n^0}_{\substack{\text{zero} \\ \text{modes}}}) \log \frac{L^2}{G_N} + \dots$$

$$\log \det Q_{\phi} = \frac{1}{(4\pi)^2} \int d^4x \sqrt{g} (\operatorname{Tr} a_4 - \underbrace{n^0}_{\substack{\text{zero} \\ \text{modes}}}) \log \frac{L^2}{G_N} + \dots$$

▶ for Einstein-Maxwell-AdS₄ theories

$$\log \det Q_{\phi} = \frac{1}{(4\pi)^2} \int d^4x \sqrt{g} (\operatorname{Tr} a_4 - \underbrace{n^0}_{\substack{\text{zero} \\ \text{modes}}}) \log \frac{L^2}{G_N} + \dots$$

▶ for Einstein-Maxwell-AdS₄ theories

$$(4\pi)^{2} \operatorname{Tr} a_{4} = -a_{\mathrm{E}} \underbrace{E_{4}}_{\text{Euler}} + c \underbrace{W^{2}}_{W^{2}} + \underbrace{b_{1}R^{2} + b_{2}RF_{\mu\nu}F^{\mu\nu}}_{\text{vanish in flat spacetimes}}$$

$$\log \det Q_{\phi} = \frac{1}{(4\pi)^2} \int d^4x \sqrt{g} (\operatorname{Tr} a_4 - \underbrace{n^0}_{\substack{\text{zero} \\ \text{modes}}}) \log \frac{L^2}{G_N} + \dots$$

for Einstein-Maxwell-AdS₄ theories

$$(4\pi)^{2} \operatorname{Tr} a_{4} = -a_{\mathrm{E}} \underbrace{E_{4}}_{\underset{\text{density}}{\text{Euler}}} + c \underbrace{W^{2}}_{W^{2}} + \underbrace{b_{1}R^{2} + b_{2}RF_{\mu\nu}F^{\mu\nu}}_{\text{vanish in flat spacetimes}}$$

▶ $(a_{\rm E}, c, b_1, b_2)$ depend on spin

$$\log \det Q_{\phi} = \frac{1}{(4\pi)^2} \int d^4x \sqrt{g} (\operatorname{Tr} a_4 - \underbrace{n^0}_{\substack{\text{zero} \\ \text{modes}}}) \log \frac{L^2}{G_N} + \dots$$

for Einstein-Maxwell-AdS₄ theories

$$(4\pi)^{2} \operatorname{Tr} a_{4} = -a_{\mathrm{E}} \underbrace{E_{4}}_{\underset{\text{density}}{\text{Euler}}} + c \underbrace{W^{2}}_{W^{2}} + \underbrace{b_{1}R^{2} + b_{2}RF_{\mu\nu}F^{\mu\nu}}_{\text{vanish in flat spacetimes}}$$

(a_E, c, b₁, b₂) depend on spin
 From now on we focus on AdS₄ × S⁷

 \blacktriangleright heat kernel a_{11} vanishes

- \blacktriangleright heat kernel a_{11} vanishes
- 2-form zero mode

- \blacktriangleright heat kernel a_{11} vanishes
- 2-form zero mode
- match with CFT prediction

- \blacktriangleright heat kernel a_{11} vanishes
- 2-form zero mode
- match with CFT prediction

4 dimensional EFT

- heat kernel a_{11} vanishes
- 2-form zero mode
- match with CFT prediction

4 dimensional EFT

heat kernel a₄ does not vanish

- heat kernel a₁₁ vanishes
- 2-form zero mode
- match with CFT prediction

4 dimensional EFT

- heat kernel a₄ does not vanish
- ▶ no 2-form in KK spectrum

- heat kernel a₁₁ vanishes
- 2-form zero mode
- match with CFT prediction

4 dimensional EFT

- heat kernel a₄ does not vanish
- no 2-form in KK spectrum
- do we find a match? let's check...

KK supergravity on S^7

what we need to compute:

$$\log \det Q_{\phi} = \frac{1}{(4\pi)^2} \int d^4x \sqrt{g} (\operatorname{Tr} a_4 - n^0) \log \frac{L^2}{G_N} + \dots$$

$$(4\pi)^2 \operatorname{Tr} a_4 = -a_{\rm E}E_4 + cW^2 + b_1R^2$$

what we need to compute:

$$\log \det Q_{\phi} = \frac{1}{(4\pi)^2} \int d^4x \sqrt{g} (\operatorname{Tr} a_4 - n^0) \log \frac{L^2}{G_N} + \dots$$

$$(4\pi)^2 \operatorname{Tr} a_4 = -a_{\rm E}E_4 + cW^2 + b_1R^2$$

maximal gauged supergravity with infinite tower of KK massive fields

what we need to compute:

$$\log \det Q_{\phi} = \frac{1}{(4\pi)^2} \int d^4x \sqrt{g} (\operatorname{Tr} a_4 - n^0) \log \frac{L^2}{G_N} + \dots$$

$$(4\pi)^2 \operatorname{Tr} a_4 = -a_{\rm E}E_4 + cW^2 + b_1R^2$$

▶ maximal gauged supergravity with infinite tower of KK massive fields
 ▶ massless (k = 0) or massive (k ≥ 1) N = 8 supermultiplets

nontrivial cancellation level-by-level

what we need to compute:

$$\log \det Q_{\phi} = \frac{1}{(4\pi)^2} \int d^4x \sqrt{g} (\operatorname{Tr} a_4 - n^0) \log \frac{L^2}{G_N} + \dots$$

$$(4\pi)^2 \operatorname{Tr} a_4 = -a_{\rm E}E_4 + cW^2 + b_1R^2$$

▶ maximal gauged supergravity with infinite tower of KK massive fields
 ▶ massless (k = 0) or massive (k ≥ 1) N = 8 supermultiplets

nontrivial cancellation level-by-level

$$c(k) = b_1(k) = 0, \qquad k \ge 0$$

what we need to compute:

$$\log \det Q_{\phi} = \frac{1}{(4\pi)^2} \int d^4x \sqrt{g} (\operatorname{Tr} a_4 - n^0) \log \frac{L^2}{G_N} + \dots$$

$$(4\pi)^2 \operatorname{Tr} a_4 = -a_{\rm E}E_4 + cW^2 + b_1R^2$$

▶ maximal gauged supergravity with infinite tower of KK massive fields
 ▶ massless (k = 0) or massive (k ≥ 1) N = 8 supermultiplets

nontrivial cancellation level-by-level

$$c(k) = b_1(k) = 0, \qquad k \ge 0$$

•
$$a_E$$
 does not cancel level-by-level

Marina David

KK supergravity on S^7

what we need to compute:

$$\log \det Q_{\phi} = \frac{1}{(4\pi)^2} \int d^4x \sqrt{g} (\operatorname{Tr} a_4 - n^0) \log \frac{L^2}{G_N} + \dots$$

$$(4\pi)^2 \operatorname{Tr} a_4 = -a_{\rm E} E_4 + c W^2 + b_1 R^2$$

▶ maximal gauged supergravity with infinite tower of KK massive fields
 ▶ massless (k = 0) or massive (k ≥ 1) N = 8 supermultiplets

nontrivial cancellation level-by-level

$$c(k) = b_1(k) = 0, \qquad k \ge 0$$

 \blacktriangleright a_E does not cancel level-by-level – only non-zero contribution

Marina David

• study the contribution of a_E to find the total logarithmic

study the contribution of a_E to find the total logarithmic
 infinite sum due to KK spectrum

- study the contribution of a_E to find the total logarithmic
 infinite sum due to KK spectrum
- regularize C_{gravity}

$$C_{\text{gravity}} = -\frac{1}{72} \sum_{k \ge 0} (k+1)(k+2)(k+3)^2(k+4)(k+5)$$

study the contribution of a_E to find the total logarithmic
 infinite sum due to KK spectrum

regularize C_{gravity}

$$C_{\text{gravity}} = -\frac{1}{72} \sum_{k \ge 0} (k+1)(k+2)(k+3)^2(k+4)(k+5)$$

• $C_{\text{gravity}} = -\frac{1}{3}$ consistent with 11d and CFT computations

Marina David

study the contribution of a_E to find the total logarithmic
 infinite sum due to KK spectrum

regularize C_{gravity}

$$C_{\text{gravity}} = -\frac{1}{72} \sum_{k \ge 0} (k+1)(k+2)(k+3)^2(k+4)(k+5)$$

• $C_{\text{gravity}} = -\frac{1}{3}$ consistent with 11d and CFT computations

Marina David

Conclusion/Outlook

What?

What? logarithmic corrections are of quantum origin and are possible to compute

- What? logarithmic corrections are of quantum origin and are possible to compute
- Why?

- What? logarithmic corrections are of quantum origin and are possible to compute
- ► Why?
 - precision holography: learn about certain aspects of quantum gravity

- What? logarithmic corrections are of quantum origin and are possible to compute
- ► Why?
 - precision holography: learn about certain aspects of quantum gravity
 - major differences in flat versus AdS

- What? logarithmic corrections are of quantum origin and are possible to compute
- ► Why?
 - precision holography: learn about certain aspects of quantum gravity
 - major differences in flat versus AdS
- How?

- What? logarithmic corrections are of quantum origin and are possible to compute
- Why?
 - precision holography: learn about certain aspects of quantum gravity
 - major differences in flat versus AdS
- How?

heat kernel method in 4d EFT

- What? logarithmic corrections are of quantum origin and are possible to compute
- Why?
 - precision holography: learn about certain aspects of quantum gravity
 - major differences in flat versus AdS
- How?
 - heat kernel method in 4d EFT
- Some puzzles/Open problems

- What? logarithmic corrections are of quantum origin and are possible to compute
- ► Why?
 - precision holography: learn about certain aspects of quantum gravity
 - major differences in flat versus AdS
- How?
 - heat kernel method in 4d EFT
- Some puzzles/Open problems
 - understanding why the coefficient of $\log N$ is a pure number

- What? logarithmic corrections are of quantum origin and are possible to compute
- ► Why?
 - precision holography: learn about certain aspects of quantum gravity
 - major differences in flat versus AdS
- How?
 - heat kernel method in 4d EFT

Some puzzles/Open problems

- understanding why the coefficient of $\log N$ is a pure number
- investigating subleading corrections in other D = 2n spacetimes

- What? logarithmic corrections are of quantum origin and are possible to compute
- Why?
 - precision holography: learn about certain aspects of quantum gravity
 - major differences in flat versus AdS
- How?
 - heat kernel method in 4d EFT

Some puzzles/Open problems

- understanding why the coefficient of $\log N$ is a pure number
- ▶ investigating subleading corrections in other D = 2n spacetimes
- a deeper understanding of regularization schemes in holographic context

- What? logarithmic corrections are of quantum origin and are possible to compute
- ► Why?
 - precision holography: learn about certain aspects of quantum gravity
 - major differences in flat versus AdS
- How?
 - heat kernel method in 4d EFT

Some puzzles/Open problems

- understanding why the coefficient of $\log N$ is a pure number
- ▶ investigating subleading corrections in other D = 2n spacetimes
- a deeper understanding of regularization schemes in holographic context

Thank you!