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Facilitated by the existence of radial quantisation and a
Weyl transformation relating RY to R x S9~1

Lies at the heart of many developments of systematic under-

standing of CFTs: conformal bootstrap, VOAs, etc. |

HSd—l > |O>



But there’s more to life than particles scattering in flat space



But there’s more to life than particles scattering in flat space

Modern approach: put QFTs on compact spaces and study extended operators



But there’s more to life than particles scattering in flat space
Modern approach: put QFTs on compact spaces and study extended operators

What is the case with CFTs? How to understand a CFT on a compact manifold?



But there’s more to life than particles scattering in flat space
Modern approach: put QFTs on compact spaces and study extended operators

What is the case with CFTs? How to understand a CFT on a compact manifold?

Ind = 2: cutand sew, resolution of the identity on S! =
don e[Friedan, Shenker 1987; Moore, Seiberg 1989]



But there’s more to life than particles scattering in flat space
Modern approach: put QFTs on compact spaces and study extended operators

What is the case with CFTs? How to understand a CFT on a compact manifold?
Ind = 2: cutand sew, resolution of the identity on S! =

don e[Friedan, Shenker 1987; Moore, Seiberg 1989]

Ind > 2: it doesn’t work. Need resolution of the identity on % % S~! = need
state-operator correspondence for non-local operators



But there’s more to life than particles scattering in flat space
Modern approach: put QFTs on compact spaces and study extended operators

What is the case with CFTs? How to understand a CFT on a compact manifold?
Ind = 2: cutand sew, resolution of the identity on S! =

don e[Friedan, Shenker 1987; Moore, Seiberg 1989]

Ind > 2: it doesn’t work. Need resolution of the identity on % % S~! = need
state-operator correspondence for non-local operators

Is there a such a thing?



But there’s more to life than particles scattering in flat space
Modern approach: put QFTs on compact spaces and study extended operators

What is the case with CFTs? How to understand a CFT on a compact manifold?

Ind = 2: cutand sew, resolution of the identity on S! =
don e[Friedan, Shenker 1987; Moore, Seiberg 1989]

Ind > 2: it doesn’t work. Need resolution of the identity on % % S~! = need
state-operator correspondence for non-local operators

Is there a such a thing?

In general no,Belin de Boer Kruthoff 2018) \Njo1d require a “radial quantisation” with higher codimension
slicing



But there’s more to life than particles scattering in flat space
Modern approach: put QFTs on compact spaces and study extended operators

What is the case with CFTs? How to understand a CFT on a compact manifold?

Ind = 2: cutand sew, resolution of the identity on S! =
don e[Friedan, Shenker 1987; Moore, Seiberg 1989]

Ind > 2: it doesn’t work. Need resolution of the identity on % % S~! = need
state-operator correspondence for non-local operators

Is there a such a thing?

In general no,Belin de Boer Kruthoff 2018) \Njo1d require a “radial quantisation” with higher codimension
slicing

What if | have more symmetries at my disposal?
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Ph otonisation[Hofman, Igbal 2018]

unitary CFTind = 2p + 2 dual U(1) p-form

* —> symmetryforfr,e — th f f f
U(1) p-form symmetry 4 aJ Y ~0 eory otiree p-iorms
d*-][p+1] =0 [p+1] =

[Costa,Hansen 2015]

p = 0: Oldresult: J(z) and J (%) separately conserved => free boson realisation

p = 1: Free photon realistation /\—) I will stick to p = 1 and free Maxwell theory in this talk

Alternative proof: [Lee, Zheng 2021] via so(d + 1, 1) representation theory and unitarity
boun dS[MinwaIIa 1998]
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.there’s (much) more f\ dAT =+ xdAt

+ _ +
For any chiral one-forV J¥=%xJ

Q/i\[ZS] = J J* AA¥ isaconserved charge = infinitely many conserved charges!
23
Charge algebra: |:J' ni, J nﬂ = £ky/A,0,n = it'saKac-Moody!

Botomline:

unitary CFT, infinitely many zero-form symmetries
+ = +
continuous one-form symmetry spectrum generating algebra
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The Hamiltonian becomes a coIIecbtlc();)of oscillators: half of the J rf’s
2

the other half
Hy. (||E||2+||B|| EIJ 0,+ § AT A, + Eg cotherna
nGJV’

N r,s € zb®)
At the bottom: J3; |j) = ji* |j), A, |]) Yne '
(r +ts)'E(r +ts)

Flux quantisation == |j) ~» |r,s) withenergy A, ¢ =

2Imt

Dress with oscillators:

Genericstate: |r,s;{N,}): l_[ (AT "|r,s) withenergy A, ¢ + Z \/—

neA’ neA’
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Let’s connect to the states

Path integral on B® x S!

. . . = stateon S2 x S!
with £ insertion

£) = J DAe S £({o} x S1)
cl ]

Charges act by surrounding

QL) = lim DAe~ S Q(s2 x s')c({0} x s?)
R—0 ol ] R

Interesting subtlety: time evolution = radial evolution on B2 mixes ladder operators:

A =0(r ") A (r) +V(r, 1) A::(r')
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The state-operator correspondence

squeezing operator ~ [ [ exp( Aﬁ n ( Ar,] )2)

Saueczed)Primary states i\ takes care of Bogoliubov transformation
|WH, ) = f DAe S WH, ({0} x S') = §|r,s)
el
Can check scaling dimension for WH,.;.
Jo [WH, ) = 775 |[WH, ) fromabove ) f [Verlinde 1995; Kapustin 2005]
|r + ts]

= §7! |WHr’s> has energy A, s = Tmt

Descendants

SATS [ WH,,) = L AL, (10} x)



Bottomline:

line operators on R® x S!

WH, ({0} x §")
T WH, ({0} x 8

photons sprinkled
over Wilson—"t Hooft loops

—

Laaed

D>

states on H(SZ X Sl)

squeezed |1, s)

squeezed |1, 55 {1,})

generic state
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Unitary CFTind = 2p + 2
+
U(1)tP! symmetry

states on H(SZ X Sl)

line operators on R® x S!




Non-invertible symmetries
Gauging charge-conjugation breaks U(1)!!) ~» gets restored as non-invertible symmetry

So does the Kac-Moody algebra
Representation theory of non-invertible Kac-Moody = state-operator on the orbifold branch?

Non-abelian story?
No non-abelian higher-form symmetries

However [Jn/:, JE] = CABkr'nnJrC +k4/ A,,6 1 may make sense
Higher-dimensional WZ\W?
N = 4SYM partition function: Z ~ . a,q% [Vafa, Witten 1994]

And [Kapustin, 2005] suggests scaling dimensions of %BPS operators.



Thank you!
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