A state-operator correspondence for nonlocal operators

Stathis Vitouladitis
University of Amsterdam

based on upcoming work with D.M. Hofman

> GenHET meeting in String Theory CERN $-30 / 04 / 2024$

Outline

Motivation

Generalised symmetries

CFTs with higher-form symmetries

The state-operator correspondence

Summary er outlook

Outline

Motivation

Generalised symmetries

CFTs with higher-form symmetries

The state-operator correspondence

Summary er outlook

State-operator correspondence in CFT

State-operator correspondence in CFT

$$
\begin{array}{ccc}
\text { local operators } \\
\text { on } \mathbb{R}^{d}
\end{array} \Longleftrightarrow \begin{aligned}
& \text { states on } \\
& \mathcal{H}\left(\mathbb{S}^{d-1}\right)
\end{aligned}
$$

Facilitated by the existence of radial quantisation and a Weyl transformation relating \mathbb{R}^{d} to $\mathbb{R} \times \mathbb{S}^{d-1}$

$$
\mathcal{H}_{\mathbb{S}^{d-1}} \ni|\mathcal{O}\rangle
$$

State-operator correspondence in CFT

$$
\begin{array}{ccc}
\text { local operators } \\
\text { on } \mathbb{R}^{d}
\end{array} \Longleftrightarrow \begin{aligned}
& \text { states on } \\
& \mathcal{H}\left(\mathbb{S}^{d-1}\right)
\end{aligned}
$$

Facilitated by the existence of radial quantisation and a Weyl transformation relating \mathbb{R}^{d} to $\mathbb{R} \times \mathbb{S}^{d-1}$

Lies at the heart of many developments of systematic understanding of CFTs: conformal bootstrap, VOAs, etc.

$$
\mathcal{H}_{\mathbb{S}^{d-1}} \ni|\mathcal{O}\rangle
$$

But there's more to life than particles scattering in flat space

But there's more to life than particles scattering in flat space
Modern approach: put QFTs on compact spaces and study extended operators

But there's more to life than particles scattering in flat space
Modern approach: put QFTs on compact spaces and study extended operators
What is the case with CFTs? How to understand a CFT on a compact manifold?

But there's more to life than particles scattering in flat space
Modern approach: put QFTs on compact spaces and study extended operators
What is the case with CFTs? How to understand a CFT on a compact manifold?
In $d=2$: cut and sew, resolution of the identity on $\mathbb{S}^{1} \Longrightarrow$
done ${ }^{[F r i e d a n, ~ S h e n k e r ~ 1987 ; ~ M o o r e, ~ S e i b e r g ~ 1989] ~}$

But there's more to life than particles scattering in flat space
Modern approach: put QFTs on compact spaces and study extended operators
What is the case with CFTs? How to understand a CFT on a compact manifold?
In $d=2$: cut and sew, resolution of the identity on $\mathbb{S}^{1} \Longrightarrow$
done ${ }^{\text {[Friedan, Shenker 1987; Moore, Seiberg 1989] }}$
In $d>2$: it doesn't work. Need resolution of the identity on $\Sigma \not \not \mathbb{S}^{d-1} \Longrightarrow$ need state-operator correspondence for non-local operators

But there's more to life than particles scattering in flat space
Modern approach: put QFTs on compact spaces and study extended operators
What is the case with CFTs? How to understand a CFT on a compact manifold?
In $d=2$: cut and sew, resolution of the identity on $\mathbb{S}^{1} \Longrightarrow$
done ${ }^{\text {[Friedan, Shenker 1987; Moore, Seiberg 1989] }}$
In $d>2$: it doesn't work. Need resolution of the identity on $\Sigma \not \not \mathbb{S}^{d-1} \Longrightarrow$ need state-operator correspondence for non-local operators

Is there a such a thing?

But there's more to life than particles scattering in flat space
Modern approach: put QFTs on compact spaces and study extended operators
What is the case with CFTs? How to understand a CFT on a compact manifold?
In $d=2$: cut and sew, resolution of the identity on $\mathbb{S}^{1} \Longrightarrow$
done ${ }^{\text {[FFriedan, Shenker 1987; Moore, Seiberg 1989] }}$
In $d>2$: it doesn't work. Need resolution of the identity on $\Sigma \nsimeq \mathbb{S}^{d-1} \Longrightarrow$ need state-operator correspondence for non-local operators

Is there a such a thing?
In general no. ${ }^{[B e l i n, ~ d e ~ B o e r, ~ K r u t h o f f ~ 2018] ~}$ Would require a "radial quantisation" with higher codimension slicing

But there's more to life than particles scattering in flat space
Modern approach: put QFTs on compact spaces and study extended operators
What is the case with CFTs? How to understand a CFT on a compact manifold?
In $d=2$: cut and sew, resolution of the identity on $\mathbb{S}^{1} \Longrightarrow$
done ${ }^{[F r i e d a n, ~ S h e n k e r ~ 1987 ; ~ M o o r e, ~ S e i b e r g ~ 1989] ~}$
In $d>2$: it doesn't work. Need resolution of the identity on $\Sigma \not \not \mathbb{S}^{d-1} \Longrightarrow$ need state-operator correspondence for non-local operators

Is there a such a thing?
In general no. ${ }^{[B e l i n, ~ d e ~ B o e r, ~ K r u t h o f f ~ 2018] ~}$ Would require a "radial quantisation" with higher codimension slicing

What if I have more symmetries at my disposal?

Outline

Motivation

Generalised symmetries

CFTs with higher-form symmetries

The state-operator correspondence

Summary er outlook

Higher-form symmetries

Recently vast generalisation of the notion of symmetry

Higher-form symmetries

Recently vast generalisation of the notion of symmetry $\begin{gathered}\text { see e.g. snowmass white paper } \\ \text { [Córdova,Dumitrescu,Intrilligator,Shao '22] } \\ \text { for references }\end{gathered}$
One kind of generalisation: Higher-form symmetries [Gaiotto, Kapustin, Seiberg, Willet '14]

Recently vast generalisation of the notion of symmetry
One kind of generalisation: Higher-form symmetries [Gaiotto, Kapustin, Seiberg, Willet '14]
Continuous symmetry: $\partial_{\mu} J^{\mu}=0 \Longleftrightarrow \mathrm{~d} \star J_{[1]}=0$
\Longrightarrow codimension-one topological operator $U\left(\Sigma_{d-1}\right):=\exp \left(\mathrm{i} \int_{\Sigma_{d-1}} \star J_{[1]}\right)$

Recently vast generalisation of the notion of symmetry
One kind of generalisation: Higher-form symmetries [Gaiotto, Kapustin, Seiberg, Willet '14]
Zero-form continuous symmetry: $\partial_{\mu} J^{\mu}=0 \quad \Longleftrightarrow \quad \mathrm{~d} \star J_{[1]}=0$
\Longrightarrow codimension-one topological operator $U\left(\Sigma_{d-1}\right):=\exp \left(\mathrm{i} \int_{\Sigma_{d-1}} \star J_{[1]}\right)$
p-form continuous symmetry: $\partial_{\mu} J^{\mu v_{1} \cdots v_{p}}=0 \Longleftrightarrow \mathrm{~d} \star J_{[p+1]}=0$
\Longrightarrow codimension- $(p+1)$ topological operator $U\left(\Sigma_{d-p-1}\right):=\exp \left(\mathrm{i} \int_{\Sigma_{d-p-1}} \star J_{[p+1]}\right)$

Recently vast generalisation of the notion of symmetry
One kind of generalisation: Higher-form symmetries [Gaiotto, Kapustin, Seiberg, Willet 14]
Zero-form continuous symmetry: $\partial_{\mu} J^{\mu}=0 \quad \Longleftrightarrow \quad \mathrm{~d} \star J_{[1]}=0$
\Longrightarrow codimension-one topological operator $U\left(\Sigma_{d-1}\right):=\exp \left(\mathrm{i} \int_{\Sigma_{d-1}} \star J_{[1]}\right)$
p-form continuous symmetry: $\partial_{\mu} J^{\mu v_{1} \cdots v_{p}}=0 \quad \Longleftrightarrow \quad \mathrm{~d} \star J_{[p+1]}=0$
\Longrightarrow codimension- $(p+1)$ topological operator $U\left(\Sigma_{d-p-1}\right):=\exp \left(\mathrm{i} \int_{\Sigma_{d-p-1}} \star J_{[p+1]}\right)$
Act on p-dimensional extended operators by linking

Recently vast generalisation of the notion of symmetry
One kind of generalisation: Higher-form symmetries [Gaiotto, Kapustin, Seiberg, Willet '14]
Zero-form continuous symmetry: $\partial_{\mu} J^{\mu}=0 \quad \Longleftrightarrow \quad \mathrm{~d} \star J_{[1]}=0$
\Longrightarrow codimension-one topological operator $U\left(\Sigma_{d-1}\right):=\exp \left(\mathrm{i} \int_{\Sigma_{d-1}} \star J_{[1]}\right)$
p-form continuous symmetry: $\partial_{\mu} J^{\mu v_{1} \cdots v_{p}}=0 \quad \Longleftrightarrow \quad \mathrm{~d} \star J_{[p+1]}=0$
\Longrightarrow codimension- $(p+1)$ topological operator $U\left(\Sigma_{d-p-1}\right):=\exp \left(\mathrm{i} \int_{\Sigma_{d-p-1}} \star J_{[p+1]}\right)$
Act on p-dimensional extended operators by linking

Outline

Motivation

Generalised symmetries

CFTs with higher-form symmetries

The state-operator correspondence

Summaryer outlook

Photonisation

Photonisation ${ }^{[H o f m a n, ~ I q b a l ~ 2018] ~}$

$$
\begin{gathered}
\begin{array}{c}
\text { unitary CFT in } d=2 p+2 \\
+
\end{array} \\
\begin{array}{c}
\mathrm{U}(1) p \text {-form symmetry } \\
\mathrm{d} \star J_{[p+1]}=0
\end{array}
\end{gathered} \quad \begin{gathered}
\text { dual } \mathrm{U}(1) p \text {-form } \\
\text { symmetry for free } \\
\mathrm{d} J_{[p+1]}=0
\end{gathered} \quad \Longrightarrow \quad \text { theory of free } p \text {-forms }
$$

Photonisation

Photonisation ${ }^{[H \text { Hofman, Iqbal 2018] }}$

unitary CFT in $d=2 p+2$
$\stackrel{+}{\mathrm{U}(1)} \stackrel{p \text {-form symmetry }}{ }$ $\mathrm{d} \star J_{[p+1]}=0$
dual $\mathrm{U}(1) p$-form
symmetry for free $\quad \Longrightarrow \quad$ theory of free p-forms

$$
\mathrm{d} J_{[p+1]}=0
$$

follows from the form of the current two-point function [Costa,Hansen 2015] and the standard state-operator correspondence

Photonisation

Photonisation ${ }^{[H \text { Hofman, Iqbal 2018] }}$

$$
\begin{gathered}
\begin{array}{c}
\text { unitary CFT in } d=2 p+2 \\
+
\end{array} \\
\begin{array}{c}
\mathrm{U}(1) p \text {-form symmetry } \\
\mathrm{d} \star J_{[p+1]}=0
\end{array}
\end{gathered} \longrightarrow \begin{gathered}
\text { dual } \mathrm{U}(1) p \text {-form } \\
\text { symmetry for free } \\
\mathrm{d} J_{[p+1]}=0
\end{gathered} \quad \Longrightarrow \quad \text { theory of free } p \text {-forms }
$$

$p=0$: Old result: $J(z)$ and $\bar{J}(\bar{z})$ separately conserved \Longrightarrow free boson realisation

Photonisation

Photonisation ${ }^{[H \text { Hofman, Iqbal 2018] }}$

$$
\begin{gathered}
\begin{array}{c}
\text { unitary } \mathrm{CFT} \text { in } d=2 p+2 \\
+ \\
\mathrm{U}(1) p \text {-form symmetry } \\
\mathrm{d} \star J_{[p+1]}=0
\end{array}
\end{gathered} \longrightarrow \begin{gathered}
\text { dual } \mathrm{U}(1) p \text {-form } \\
\text { symmetry for free } \\
\mathrm{d} J_{[p+1]}=0
\end{gathered} \quad \Longrightarrow \quad \text { theory of free } p \text {-forms }
$$

$p=0$: Old result: $J(z)$ and $\bar{J}(\bar{z})$ separately conserved \Longrightarrow free boson realisation
$p=1$: Free photon realistation

Photonisation

$\boldsymbol{p}=\mathbf{0}$: Old result: $J(z)$ and $\bar{J}(\bar{z})$ separately conserved \Longrightarrow free boson realisation
$p=1$: Free photon realistation
Alternative proof: [Lee, Zheng 2021] via $\mathfrak{s o}(d+1,1)$ representation theory and unitarity bounds ${ }^{\text {[Minwalla 1998] }}$

Photonisation

$p=0$: Old result: $J(z)$ and $\bar{J}(\bar{z})$ separately conserved \Longrightarrow free boson realisation
$p=1$: Free photon realistation
I will stick to $p=1$ and free Maxwell theory in this talk
Alternative proof: [Lee, Zheng 2021] via $\mathfrak{s o}(d+1,1)$ representation theory and unitarity bounds ${ }^{\text {[Minwalla 1998] }}$

Higher-dimensional Kac-Moody algebra

...there's (much) more

$$
\sqrt{ } \Lambda^{ \pm}= \pm \star \mathrm{d} \Lambda^{ \pm}
$$

For any chiral one-form $\Lambda^{\mp} J^{ \pm}= \pm \star J^{ \pm}$
$Q_{\Lambda}^{ \pm}\left[\Sigma_{3}\right]:=\int_{\Sigma_{3}} J^{ \pm} \wedge \Lambda^{\mp} \quad$ is a conserved charge

Higher-dimensional Kac-Moody algebra

...there's (much) more

$$
\sqrt{ } \mathrm{d} \Lambda^{ \pm}= \pm \star \mathrm{d} \Lambda^{ \pm}
$$

For any chiral one-form Λ^{\mp}
$Q_{\Lambda}^{ \pm}\left[\Sigma_{3}\right]:=\int_{\Sigma_{3}} J^{ \pm} \wedge \Lambda^{\mp} \quad$ is a conserved charge \Longrightarrow infinitely many conserved charges!
...there's (much) more

For any chiral one-form Λ^{\mp}
$Q_{\Lambda}^{ \pm}\left[\Sigma_{3}\right]:=\int_{\Sigma_{3}} J^{ \pm} \wedge \Lambda^{\mp} \quad$ is a conserved charge \Longrightarrow infinitely many conserved charges
Charge algebra: $\left[Q_{\Lambda_{1}}^{ \pm}, Q_{\Lambda_{2}}^{ \pm}\right]= \pm \mathrm{k} \int_{\Sigma_{3}} \Lambda_{1}^{\mp} \wedge \mathrm{d} \Lambda_{2}^{ \pm}$

Higher-dimensional Kac-Moody algebra

...there's (much) more

$$
\sqrt{ } \Lambda^{ \pm}= \pm \star \mathrm{d} \Lambda^{ \pm}
$$

For any chiral one-form Λ^{\mp} $J^{ \pm}= \pm \star J^{ \pm}$
$Q_{\Lambda}^{ \pm}\left[\Sigma_{3}\right]:=\int_{\Sigma_{3}} J^{ \pm} \wedge \Lambda^{\mp} \quad$ is a conserved charge \Longrightarrow infinitely many conserved charges!
Charge algebra: $\left[J_{\mathrm{n}}^{ \pm}, J_{\mathrm{m}}^{\mp}\right]= \pm \mathrm{k} \sqrt{\lambda_{\mathrm{n}}} \delta_{\mathrm{mn}} \Longrightarrow$ it's a Kac-Moody!

$$
\lambda_{n}=\begin{gathered}
\text { eignevalue of } \\
\text { Laplacian on } \Sigma
\end{gathered}
$$

Higher-dimensional Kac-Moody algebra

...there's (much) more

For any chiral one-form Λ^{\mp} $J^{ \pm}= \pm \star J^{ \pm}$
$Q_{\Lambda}^{ \pm}\left[\Sigma_{3}\right]:=\int_{\Sigma_{3}} J^{ \pm} \wedge \Lambda^{\mp}$ is a conserved charge \Longrightarrow infinitely many conserved charges
Charge algebra: $\left[J_{n}^{ \pm}, J_{m}^{\mp}\right]= \pm \mathrm{k} \sqrt{\lambda_{n}} \delta_{\mathrm{mn}} \Longrightarrow$ it's a Kac-Moody! $\quad \lambda_{\mathrm{n}}=\underset{\substack{\text { Leignevalue of } \\ \text { Laplan on } \Sigma}}{\text { en }}$

Botomline:

unitary CFT_{4}
$+$
continuous one-form symmetry
infinitely many zero-form symmetries
spectrum generating algebra

A current algebra and the spectrum

We have a spectrum-generating algebra $m>$ let's generate the spectrum on Σ_{3}

A current algebra and the spectrum

We have a spectrum-generating algebra \rightsquigarrow let's generate the spectrum on Σ_{3}
The Hamiltonian becomes a collection of oscillators:

$$
H_{\Sigma}=\frac{1}{2 \mathrm{k}}\left(\|E\|_{\Sigma}^{2}+\|B\|_{\Sigma}^{2}\right)=\frac{1}{\mathrm{k}} \sum_{\mathrm{i}=1}^{\mathrm{b}_{2}(\Sigma)} J_{0 \mathrm{i}}^{+} J_{0 \mathrm{i}}^{-}+\frac{1}{\mathrm{k}} \sum_{\mathrm{n} \in \mathcal{N}^{\prime}} \mathcal{A}_{\mathrm{n}}^{\dagger} \mathcal{A}_{\mathrm{n}}+E_{0}
$$

A current algebra and the spectrum

We have a spectrum-generating algebra \rightsquigarrow let's generate the spectrum on Σ_{3}
The Hamiltonian becomes a collection of oscillators:
$H_{\Sigma}=\frac{1}{2 \mathrm{k}}\left(\|E\|_{\Sigma}^{2}+\|B\|_{\Sigma}^{2}\right)=\frac{1}{\mathrm{k}} \sum_{\mathrm{i}=1}^{b_{2}(\Sigma)} J_{0 \mathrm{i}}^{+} J_{0 \mathrm{i}}^{-}+\frac{1}{\mathrm{k}} \sum_{\mathrm{n} \in \mathcal{N}^{\prime}} \mathcal{A}_{\mathrm{n}}^{\dagger} \mathcal{A}_{\mathrm{n}}+E_{0}$
At the bottom: $J_{0 \mathrm{i}}^{ \pm}|j\rangle=j_{\mathrm{i}}^{ \pm}|j\rangle, \quad \mathcal{A}_{\mathrm{n}}|j\rangle \stackrel{!}{=} 0, \quad{ }_{\mathrm{n}} \in \mathscr{N}^{\prime}$

$$
\text { Flux quantisation } \Longrightarrow|j\rangle \rightsquigarrow|r, s\rangle \text { with energy } \Delta_{r, s}=\frac{(r+\mathrm{ts})^{\dagger} \mathbb{E}(r+\mathrm{t} s)}{2 \operatorname{Imt}}
$$

A current algebra and the spectrum

We have a spectrum-generating algebra $m>$ let's generate the spectrum on Σ_{3}
The Hamiltonian becomes a collection of oscillators:
$H_{\Sigma}=\frac{1}{2 \mathrm{k}}\left(\|E\|_{\Sigma}^{2}+\|B\|_{\Sigma}^{2}\right)=\frac{1}{\mathrm{k}} \sum_{\mathrm{i}=1}^{b_{2}(\Sigma)} J_{0 \mathrm{i}}^{+} J_{0 \mathrm{i}}^{-}+\frac{1}{\mathrm{k}} \sum_{\mathrm{n} \in \mathcal{N}^{\prime}} \mathcal{A}_{\mathrm{n}}^{+} \mathcal{A}_{\mathrm{n}}+E_{0}$
half of the $J_{n}^{ \pm \prime} s$

At the bottom: $J_{0 \mathrm{i}}^{ \pm}|j\rangle=j_{\mathrm{i}}^{ \pm}|j\rangle, \quad \mathcal{A}_{\mathrm{n}}|j\rangle \stackrel{!}{=} 0, \quad{ }_{\mathrm{n}} \in \mathscr{N}^{\prime} \quad r, s \in \mathbb{Z}^{b_{2}(\Sigma)}$

$$
\text { Flux quantisation } \Longrightarrow|j\rangle \rightsquigarrow|r, s\rangle \text { with energy } \Delta_{r, s}=\frac{(r+\mathrm{ts})^{\dagger} \mathbb{E}(r+\mathrm{t} s)}{2 \operatorname{Imt}}
$$

Dress with oscillators:
Generic state: $\quad\left|\boldsymbol{r}, \boldsymbol{s} ;\left\{N_{\mathrm{n}}\right\}\right\rangle:=\prod_{\mathrm{n} \in \mathscr{N}^{\prime}}\left(\mathcal{A}_{\mathrm{n}}^{\dagger}\right)^{N_{\mathrm{n}}}|\boldsymbol{r}, \boldsymbol{s}\rangle$ with energy $\Delta_{r, s}+\sum_{\mathrm{n} \in \mathcal{N}^{\prime}} N_{\mathrm{n}} \sqrt{\lambda_{\mathrm{n}}}$

Outline

Motivation

Generalised symmetries

CFTs with higher-form symmetries

The state-operator correspondence

Summaryer outlook

I will now make a choice: $\Sigma_{3}=\mathbb{S}^{2} \times \mathbb{S}^{1} \quad$ supports unique flux

I will now make a choice: $\Sigma_{3}=\mathbb{S}^{2} \times \mathbb{S}^{1}$ supports unique flux

Line operators:

Wilson-'t Hooft operators: $\quad \mathrm{WH}_{r, s}\left(\mathbb{S}^{1}\right):=\exp \left(\mathrm{ir} \int_{\mathbb{S}^{1}} A+\mathrm{i} s \int_{\mathbb{S}^{1}} \check{A}\right)$
supports unique holonomy supports unique flux

Line operators:

Wilson-'t Hooft operators: $\quad \mathrm{WH}_{r, s}\left(\mathbb{S}^{1}\right):=\exp \left(\mathrm{ir} \int_{\mathbb{S}^{1}} A+\mathrm{i} s \int_{\mathbb{S}^{1}} \check{A}\right)$
(smeared) necklaces: $\quad \mathcal{L}\left(\left\{\mathcal{O}_{i}\right\} ; \mathbb{S}^{1}\right):=\int_{\mathbb{S}^{1}} \alpha\left(\left\{x_{i}\right\}\right) \mathcal{O}_{1}\left(x_{1}\right) \cdots \mathcal{O}_{m}\left(x_{m}\right) \mathrm{WH}_{r, s}\left(\mathbb{S}^{1}\right)$
supports unique holonomy supports unique flux

Line operators:

Wilson-'t Hooft operators: $\quad \mathrm{WH}_{r, s}\left(\mathbb{S}^{1}\right):=\exp \left(\mathrm{ir} \int_{\mathbb{S}^{1}} A+\mathrm{i} s \int_{\mathbb{S}^{1}} \check{A}\right)$
(smeared) necklaces:

$$
\mathcal{L}\left(\left\{\mathcal{O}_{i}\right\} ; \mathbb{S}^{1}\right):=\int_{\mathbb{S}^{1}} \alpha\left(\left\{x_{i}\right\}\right) \mathcal{O}_{1}\left(x_{1}\right) \cdots \mathcal{O}_{m}\left(x_{m}\right) \mathrm{WH}_{r, s}\left(\mathbb{S}^{1}\right)
$$

Preparing states

Let's connect to the states

Path integral on $\mathbb{B}^{3} \times \mathbb{S}^{1}$
with \mathcal{L} insertion \Longrightarrow state on $\mathbb{S}^{2} \times \mathbb{S}^{1}$

Preparing states

Let's connect to the states

Path integral on $\mathbb{B}^{3} \times \mathbb{S}^{1} \Longrightarrow$ state on $\mathbb{S}^{2} \times \mathbb{S}^{1}$

$$
\Psi_{\mathcal{L}}\left[A_{*}\right]=\left\langle A_{*} \mid \mathcal{L}\right\rangle:=\int_{\mathcal{C}\left[A_{*}\right]} \mathrm{D} A \mathrm{e}^{-S[A]} \mathcal{L}\left(\{\mathbf{0}\} \times \mathbb{S}^{1}\right)
$$

Preparing states

Let's connect to the states

Path integral on $\mathbb{B}^{3} \times \mathbb{S}^{1}$
with \mathcal{L} insertion \Longrightarrow state on $\mathbb{S}^{2} \times \mathbb{S}^{1}$

$$
|\mathcal{L}\rangle:=\int_{\mathcal{C}[\quad]} \mathrm{D} A \mathrm{e}^{-S[A]} \mathcal{L}\left(\{\mathbf{0}\} \times \mathbb{S}^{1}\right)
$$

Preparing states

Let's connect to the states

Path integral on $\mathbb{B}^{3} \times \mathbb{S}^{1}$
with \mathcal{L} insertion \Longrightarrow state on $\mathbb{S}^{2} \times \mathbb{S}^{1}$

$$
|\mathcal{L}\rangle:=\int_{\mathcal{C}[\quad]} \mathrm{D} A \mathrm{e}^{-S[A]} \mathcal{L}\left(\{\mathbf{0}\} \times \mathbb{S}^{1}\right)
$$

Charges act by surrounding

$$
Q|\mathcal{L}\rangle=\lim _{R \rightarrow 0} \int_{\mathcal{C}[} \quad \mathrm{D} A \mathrm{e}^{-S[A]} Q\left(\mathbb{S}_{R}^{2} \times \mathbb{S}^{1}\right) \mathcal{L}\left(\{\mathbf{0}\} \times \mathbb{S}^{1}\right)
$$

Let's connect to the states
Path integral on $\mathbb{B}^{3} \times \mathbb{S}^{1}$
with \mathcal{L} insertion \Longrightarrow state on $\mathbb{S}^{2} \times \mathbb{S}^{1}$

$$
|\mathcal{L}\rangle:=\int_{\mathcal{C}[]} \mathrm{DA} \mathrm{e}^{-S[A]} \mathcal{L}\left(\{\mathbf{0}\} \times \mathbb{S}^{1}\right)
$$

Charges act by surrounding

$$
Q|\mathcal{L}\rangle=\lim _{R \rightarrow 0} \int_{\mathcal{C}[} \quad \mathrm{D} A \mathrm{e}^{-S[A]} Q\left(\mathbb{S}_{R}^{2} \times \mathbb{S}^{1}\right) \mathcal{L}\left(\{\mathbf{0}\} \times \mathbb{S}^{1}\right)
$$

Interesting subtlety: time evolution \equiv radial evolution on \mathbb{B}^{3} mixes ladder operators:

$$
\mathcal{A}_{\mathrm{n}}(r)=\mathbb{U}\left(r, r^{\prime}\right) \mathcal{A}_{\mathrm{n}}\left(r^{\prime}\right)+\mathbb{V}\left(r, r^{\prime}\right) \mathcal{A}_{\mathrm{n}}^{\dagger}\left(r^{\prime}\right)
$$

The state-operator correspondence

(Squeezed) Primary states

$$
\left|\mathrm{WH}_{r, s}\right\rangle=\int_{\mathcal{C}[]} \mathrm{D} A \mathrm{e}^{-S[A]} \mathrm{WH}_{r, s}\left(\{\mathbf{0}\} \times \mathbb{S}^{1}\right)=S|r, s\rangle
$$

squeezing operator $\sim \prod_{n} \exp \left(\mathcal{A}_{n}^{2}+\left(\mathcal{A}_{n}^{\dagger}\right)^{2}\right)$ takes care of Bogoliubov transformation

The state-operator correspondence

(Squeezed) Primary states

$$
\left|\mathrm{WH}_{r, s}\right\rangle=\int_{\mathcal{C}[1]} \mathrm{DA} \mathrm{e}^{-S[A]} \mathrm{WH}_{r, s}\left(\{\mathbf{0}\} \times \mathbb{S}^{1}\right)=S|r, s\rangle
$$

Can check

$$
\begin{aligned}
& J_{0}^{ \pm}\left|\mathrm{WH}_{r, s}\right\rangle=j_{r, s}^{ \pm}\left|\mathrm{WH}_{r, s}\right\rangle \text { from above } \\
& \quad \Longrightarrow S^{-1}\left|\mathrm{WH}_{r, s}\right\rangle \text { has energy } \Delta_{r, s}=\frac{|r+\mathrm{ts}|^{2}}{\mathrm{Imt}}
\end{aligned}
$$ takes care of Bogoliubov transformation

The state-operator correspondence

(Squeezed) Primary states

$$
\left|\mathrm{WH}_{r, s}\right\rangle=\int_{\mathcal{C}[1]} \mathrm{DA} \mathrm{e}^{-S[A]} \mathrm{WH}_{r, s}\left(\{\mathbf{0}\} \times \mathbb{S}^{1}\right)=S|r, s\rangle
$$ takes care of Bogoliubov transformation

Can check

$$
\begin{aligned}
& J_{0}^{ \pm}\left|\mathrm{WH}_{r, s}\right\rangle=j_{r, s}^{ \pm}\left|\mathrm{WH}_{r, s}\right\rangle \text { from above } \\
& \quad \Longrightarrow S^{-1}\left|\mathrm{WH}_{r, s}\right\rangle \text { has energy } \Delta_{r, s}=\frac{|r+\mathrm{ts}|^{2}}{\mathrm{Imt}}
\end{aligned}
$$

scaling dimension for $\mathrm{WH}_{r, s}$.
[Verlinde 1995; Kapustin 2005]

Descendants

$$
\boldsymbol{S} \mathcal{A}_{\mathrm{n}}^{\dagger} \boldsymbol{S}^{-1}\left|\mathrm{WH}_{r, s}\right\rangle=\int_{\mathcal{C}[\quad]} \mathrm{D} A \mathrm{e}^{-S[A]}\left[\mathcal{A}_{\mathrm{n}}^{\dagger} \mathrm{WH}_{r, s}\right]\left(\{\mathbf{0}\} \times \mathbb{S}^{1}\right)
$$

The state-operator correspondence

Bottomline:
line operators on $\mathbb{R}^{3} \times \mathbb{S}^{1} \Longleftrightarrow$ states on $\mathcal{H}\left(\mathbb{S}^{2} \times \mathbb{S}^{1}\right)$

$$
\begin{gathered}
\mathrm{WH}_{r, s}\left(\{0\} \times \mathbb{S}^{1}\right) \quad \longleftrightarrow 4 \quad \text { squeezed }|r, s\rangle \\
" J_{\mathrm{n}}^{ \pm \prime} \mathrm{WH}_{r, s}\left(\{0\} \times \mathbb{S}^{1}\right) \quad \leftrightarrow \mu \quad \text { squeezed }\left|r, s ;\left\{1_{\mathrm{n}}\right\}\right\rangle
\end{gathered}
$$

photons sprinkled over Wilson-'t Hooft loops
\leftrightarrow generic state

Outline

Motivation

Generalised symmetries

CFTs with higher-form symmetries

The state-operator correspondence

Summary er outlook

Unitary CFT in $d=2 p+2$
$+$
$\mathrm{U}(1)^{[p]}$ symmetry

Unitary CFT in $d=2 p+2$
$\mathrm{U}(1)^{[p]}{ }^{+}$symmetry
$\widetilde{\mathrm{U}(1)}^{[p]}$ symmetry

Unitary CFT in $d=2 p+2$
$\mathrm{U}(1)^{[p]}{ }_{\text {symmetry }}^{+}$
$\widetilde{\mathrm{U}}(1)^{[p]}$ symmetry
$\mathrm{U}(1) \times \widetilde{\mathrm{U}(1)}$ current algebra

Unitary CFT in $d=2 p+2$ $\mathrm{U}(1)^{[p]}$ symmetry

classifies states:
primaries: definite charge descendants: act with $\mathcal{A}_{n}^{\dagger}$
$(d=4) \quad$ classifies operators:
squeezed primaries: $\mathrm{WH}_{r, s}$ descendants: sprinkle photons

Non-invertible symmetries

Gauging charge-conjugation breaks $\mathrm{U}(1)^{[1]} \rightsquigarrow$ gets restored as non-invertible symmetry
So does the Kac-Moody algebra
Representation theory of non-invertible Kac-Moody \Longrightarrow state-operator on the orbifold branch?

Non-abelian story?

No non-abelian higher-form symmetries
However $\left[J_{\mathrm{m}}^{\mathrm{A}}, J_{\mathrm{n}}^{\mathrm{B}}\right]=f_{\mathrm{C}}^{\mathrm{AB}} k_{\mathrm{mn}}^{\mathrm{r}} J_{\mathrm{r}}^{\mathrm{C}}+\mathrm{k} \sqrt{\lambda_{\mathrm{n}}} \delta_{\mathrm{mn}}$ may make sense
Higher-dimensional WZW?
$\mathcal{N}=4$ SYM partition function: $\mathcal{Z} \sim \sum \alpha_{r} q^{\Delta_{r}}$ [Vafa, Witten 1994]
And [Kapustin, 2005] suggests scaling dimensions of $\frac{1}{2}$ BPS operators.

Thank you!

