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Motivation

State-operator correspondence in CFT

local operators
onRd ⇐⇒ states on

H
�
Sd−1

�

Facilitated by the existence of radial quantisation and a
Weyl transformation relatingRd toR× Sd−1

Lies at the heart of many developments of systematic under-
standing of CFTs: conformal bootstrap, VOAs, etc.

O

HSd−1 3 |O〉
Rd

R× Sd−1

ei tH |O〉
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But there’s more to life than particles scattering in flat space

Modern approach: put QFTs on compact spaces and study extended operators

What is the case with CFTs? How to understand a CFT on a compact manifold?

In d = 2: cut and sew, resolution of the identity on S1 =⇒
done[Friedan, Shenker 1987; Moore, Seiberg 1989]

In d > 2: it doesn’t work. Need resolution of the identity onΣ 6' Sd−1 =⇒ need
state-operator correspondence for non-local operators

Is there a such a thing?

In general no.[Belin, de Boer, Kruthoff 2018] Would require a “radial quantisation” with higher codimension
slicing

What if I havemore symmetries at my disposal?



5/20

But there’s more to life than particles scattering in flat space

Modern approach: put QFTs on compact spaces and study extended operators

What is the case with CFTs? How to understand a CFT on a compact manifold?

In d = 2: cut and sew, resolution of the identity on S1 =⇒
done[Friedan, Shenker 1987; Moore, Seiberg 1989]

In d > 2: it doesn’t work. Need resolution of the identity onΣ 6' Sd−1 =⇒ need
state-operator correspondence for non-local operators

Is there a such a thing?

In general no.[Belin, de Boer, Kruthoff 2018] Would require a “radial quantisation” with higher codimension
slicing

What if I havemore symmetries at my disposal?



5/20

But there’s more to life than particles scattering in flat space

Modern approach: put QFTs on compact spaces and study extended operators

What is the case with CFTs? How to understand a CFT on a compact manifold?

In d = 2: cut and sew, resolution of the identity on S1 =⇒
done[Friedan, Shenker 1987; Moore, Seiberg 1989]

In d > 2: it doesn’t work. Need resolution of the identity onΣ 6' Sd−1 =⇒ need
state-operator correspondence for non-local operators

Is there a such a thing?

In general no.[Belin, de Boer, Kruthoff 2018] Would require a “radial quantisation” with higher codimension
slicing

What if I havemore symmetries at my disposal?



5/20

But there’s more to life than particles scattering in flat space

Modern approach: put QFTs on compact spaces and study extended operators

What is the case with CFTs? How to understand a CFT on a compact manifold?

In d = 2: cut and sew, resolution of the identity on S1 =⇒
done[Friedan, Shenker 1987; Moore, Seiberg 1989]

In d > 2: it doesn’t work. Need resolution of the identity onΣ 6' Sd−1 =⇒ need
state-operator correspondence for non-local operators

Is there a such a thing?

In general no.[Belin, de Boer, Kruthoff 2018] Would require a “radial quantisation” with higher codimension
slicing

What if I havemore symmetries at my disposal?



5/20

But there’s more to life than particles scattering in flat space

Modern approach: put QFTs on compact spaces and study extended operators

What is the case with CFTs? How to understand a CFT on a compact manifold?

In d = 2: cut and sew, resolution of the identity on S1 =⇒
done[Friedan, Shenker 1987; Moore, Seiberg 1989]

In d > 2: it doesn’t work. Need resolution of the identity onΣ 6' Sd−1 =⇒ need
state-operator correspondence for non-local operators

Is there a such a thing?

In general no.[Belin, de Boer, Kruthoff 2018] Would require a “radial quantisation” with higher codimension
slicing

What if I havemore symmetries at my disposal?



5/20

But there’s more to life than particles scattering in flat space

Modern approach: put QFTs on compact spaces and study extended operators

What is the case with CFTs? How to understand a CFT on a compact manifold?

In d = 2: cut and sew, resolution of the identity on S1 =⇒
done[Friedan, Shenker 1987; Moore, Seiberg 1989]

In d > 2: it doesn’t work. Need resolution of the identity onΣ 6' Sd−1 =⇒ need
state-operator correspondence for non-local operators

Is there a such a thing?

In general no.[Belin, de Boer, Kruthoff 2018] Would require a “radial quantisation” with higher codimension
slicing

What if I havemore symmetries at my disposal?



5/20

But there’s more to life than particles scattering in flat space

Modern approach: put QFTs on compact spaces and study extended operators

What is the case with CFTs? How to understand a CFT on a compact manifold?

In d = 2: cut and sew, resolution of the identity on S1 =⇒
done[Friedan, Shenker 1987; Moore, Seiberg 1989]

In d > 2: it doesn’t work. Need resolution of the identity onΣ 6' Sd−1 =⇒ need
state-operator correspondence for non-local operators

Is there a such a thing?

In general no.[Belin, de Boer, Kruthoff 2018] Would require a “radial quantisation” with higher codimension
slicing

What if I havemore symmetries at my disposal?



5/20

But there’s more to life than particles scattering in flat space

Modern approach: put QFTs on compact spaces and study extended operators

What is the case with CFTs? How to understand a CFT on a compact manifold?

In d = 2: cut and sew, resolution of the identity on S1 =⇒
done[Friedan, Shenker 1987; Moore, Seiberg 1989]

In d > 2: it doesn’t work. Need resolution of the identity onΣ 6' Sd−1 =⇒ need
state-operator correspondence for non-local operators

Is there a such a thing?

In general no.[Belin, de Boer, Kruthoff 2018] Would require a “radial quantisation” with higher codimension
slicing

What if I havemore symmetries at my disposal?



6/20

Outline

1 Motivation

2 Generalised symmetries

3 CFTs with higher-form symmetries

4 The state-operator correspondence

5 Summary& outlook



7/20

Higher-form symmetries

see e.g. snowmass white paper
[Córdova,Dumitrescu,Intrilligator,Shao ’22]

for references
Recently vast generalisation of the notion of symmetry

One kind of generalisation: Higher-form symmetries [Gaiotto, Kapustin, Seiberg,Willet ’14]

ontinuous symmetry: 𝜕µJµ = 0 ⇐⇒ d⋆ J[1] = 0

=⇒ codimension-one topological operator U(Σd−1) ··= exp

�
i

∫
Σd−1

⋆J[1]

�

p-form continuous symmetry: 𝜕µJµν1···νp = 0 ⇐⇒ d⋆ J[p+1] = 0

=⇒ codimension-(p+ 1) topological operator U
�
Σd−p−1

� ··= exp

 
i

∫
Σd−p−1

⋆J[p+1]

!
Act on p-dimensional extended operators by linking
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Photonisation
Photonisation[Hofman, Iqbal 2018]

unitary CFT in d = 2p+ 2
+

U(1) p-form symmetry
d ⋆ J[p+1] = 0

=⇒
dual U(1) p-form
symmetry for free

dJ[p+1] = 0
=⇒ theory of free p-forms

p = 0: Old result: J(z) and J̄(z̄) separately conserved =⇒ free boson realisation

p = 1: Free photon realistation

Alternative proof: [Lee, Zheng 2021] via so(d + 1,1) representation theory and unitarity
bounds[Minwalla 1998]
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Higher-dimensional Kac–Moody algebra

dΛ± = ± ⋆ dΛ±
J± = ± ⋆ J±

...there’s (much)more

For any chiral one-formΛ∓

Q±Λ[Σ3] ··=
∫
Σ3

J± ∧Λ∓ is a conserved charge

Charge algebra:
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Botomline:

unitary CFT4
+

continuous one-form symmetry
=⇒

infinitely many zero-form symmetries
+
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A current algebra and the spectrum

Wehave a spectrum-generating algebra  let’s generate the spectrum onΣ3

The Hamiltonian becomes a collection of oscillators:

HΣ =
1
2k

�‖E‖2Σ + ‖B‖2Σ�= 1
k

b2(Σ)∑
i=1

J+0iJ
−
0i +

1
k

∑
n∈N ′

A†
nAn + E0

At the bottom: J±0i | j〉= j±i | j〉, An | j〉 !
= 0, ∀n ∈ N ′

Dress with oscillators:

Generic state: |r , s ; {Nn}〉 ··=
∏

n∈N ′
�
A†

n
�Nn |r , s〉with energy∆r ,s +

∑
n∈N ′

Nn
Æ
λn
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Line operators
supports unique holonomy
supports unique fluxI will nowmake a choice: Σ3 = S2 × S1

Wilson–’t Hooft operators: WHr,s

�
S1
� ··= exp

�
i r

∫
S1

A+ i s

∫
S1

Ǎ

�
(smeared) necklaces: L

�{Oi};S1
� ··= ∫

S1
α({x i})O1(x1) · · ·Om(xm)WHr,s

�
S1
�
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Preparing states

Let’s connect to the states

Path integral onB3 × S1
withL insertion

=⇒ state on S2 × S1

Charges act by surrounding

Q |L〉= lim
R→0

∫
C[ ]

DAe−S[A]Q
�
S2R × S1

�
L
�{0} × S1�

Interesting subtlety: time evolution≡ radial evolution onB3 mixes ladder operators:
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The state-operator correspondence

squeezing operator ∼∏n exp
�
A2

n +
�
A†

n
�2�

takes care of Bogoliubov transformation
(Squeezed) Primary states��WHr,s

�
=

∫
C[ ]

DAe−S[A] WHr,s

�{0} × S1�= S |r, s〉
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=
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The state-operator correspondence

Bottomline:

line operators onR3 × S1 ⇐⇒ states onH
�
S2 × S1�

WHr,s({0} × S1) ¡ squeezed |r, s〉
“J±n ” WHr,s({0} × S1) ¡ squeezed |r, s; {1n}〉

photons sprinkled
overWilson–’t Hooft loops

¡ generic state
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U(1)×ßU(1) current algebra
classifies states:

primaries: definite charge
descendants: act withA†

n

classifies operators:
squeezed primaries: WHr,s

descendants: sprinkle photons

(d = 4)

states onH
�
S2 × S1�

⇐⇒

line operators onR3 × S1
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Outlook

Non-invertible symmetries

Gauging charge-conjugation breaks U(1)[1]  gets restored as non-invertible symmetry

So does the Kac–Moody algebra

Representation theory of non-invertible Kac–Moody =⇒ state-operator on the orbifold branch?

Non-abelian story?

No non-abelian higher-form symmetries

However
�
JA

m, JB
n
�
= f AB

C kr
mnJC

r + k
Æ
λnδmn maymake sense

Higher-dimensionalWZW?

N = 4 SYM partition function: Z ∼∑αrq
∆r [Vafa,Witten 1994]

And [Kapustin, 2005] suggests scaling dimensions of 1
2BPS operators.
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Thank you!
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