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Hydrodynamics

Say we have a strongly interacting QFT at  and we want to understand the time-dependent, long-
distance and late-time physics; d.o.f.s to keep track of : conserved quantities:  

Given the conserved quantities, there is (usually) a well-established framework to construct the low-
energy effective field theory: hydrodynamics  

Hydrodynamics is a genuine EFT, entirely dictated by symmetries and is still evolving!

T > 0
ωconserved ∼ 𝒪(L−1)

(conservation eqns  EoMs)→→

Ordinary symmetries                          

Systems with ’t Hooft anomalies           

Systems with ABJ anomalies              

Navier-Stokes equations 

[Sun, Surowka; Nieman, Oz; …] 

attempts - [Figueroa et. al.; Hattori et. al.; …; Das et. al.]

(  - anomaly)Δ

(applications: astrophysics,  
plasma physics, condensed matter, …)

d ⋆ jA = k F ∧ F



Symmetries

Global symmetries imply conservation laws 

Conserved operators are topological 

Since global symmetries are preserved along RG flows, they help in constructing EFTs

Let us review ordinary symmetries (1-index) currents first: 

An ordinary current counts particles, “catch them all” by integrating on a co-dimension 1 subspace:

∇μ jμ = 0 d ⋆ j = 0

Q = ∫ℳd−1

⋆ j →
 defines a -valued  

topological 
co-dim. 1 surface operator

U(1)
→ U (ℳd−1) = exp (iαQ (ℳd−1))

(fancy way to talk about “conserved charge”  call this a 0-form symmetry)→

[Gaiotto, Kapustin, Seiberg, Willet]

[Noether]



Higher-form symmetries

Now consider a 2-index current: 

2-index current counts strings, as they don’t end in space or time: “catch them 
all” by integrating on a co-dimension 2 subspace:

∇μJμν = 0 d ⋆ J = 0

Q = ∫ℳd−2

⋆ J  defines a -valued  
topological 

co-dim. 2 surface operator

U(1)
U (ℳd−2) = exp (iαQ (ℳd−2))→ →

This is called a 1-form symmetry: counts conserved “string number” 

[Gaiotto, Kapustin, Seiberg, Willet]



Chiral Plasma (QED at T>0)

IR dynamics of chiral plasma: dynamical E&M coupled to massless Dirac fermion, 

Global symmetries: 

SEM [Aμ, ψ] = ∫ d4x (−
1
g2

F2 + ψ γμ (∂μ − iAμ) ψ)

∂μJμν = 0 ∂μ jμ
A = kϵμνρσ JμνJρσ (where Jμν :=

1
2

ϵμνρσFρσ)
We have two currents:  and . So,jμ

A Jμν  E1 ↔ jμ
A

B2 ↔ Jμν
(bulk                boundary)

Gauge invariance of :  B2 B2 → B2 + dΛ1 (conservation of )Jμν

However,  is a 1-form with mutilated gauge invariance to allow for the non-
conservation of chiral current:   

E1
jμ
A d ⋆ jA = k ⋆ J ∧ ⋆J



Holographic bulk action

Sbulk = ∫ℳ5

dE1
2

+ dB2
2

+ k E1 ∧ ⋆dB2 ∧ ⋆dB2 + ⋯
(ℳ5 = Sch − AdS5) : probe-limit

(contains “mass” terms for   
like )

E1
(dB2) ⋅ E1 ⋅ (dB2)

Anomaly  decay of chiral charge: ; compute  which controls 
the chiral decay rate  

→ nA ∼ e−ΓAt ΓA

Heat up the system — put it on the black hole and study linear 
perturbations of fields:  and δE1 δB2

Compute quasi-normal modes (infalling modes at horizon) — lowest QNM:   
  ωl

QNM ΓA

Result:  (for small ) and estimate of  matches with 

previous elementary hydro results, at small fields. However, deviation 
from quadratic behaviour at larger fields.

ΓA ∼ ζ b2 ∼
k2ρ b2

χA
b ζ



Hydrodynamic EFT
Well-posed problem: what is the finite temperature hydro theory with the following symmetry structure?

∂μJμν = 0 ∂μ jμ
A = k ϵμνρσ JμνJρσ true situation more subtle: “0-form non-invertible symmetry”

[Choi, Lam, Shao: Cordova, Ohmori; Karasik; Etxebarria, Iqbal]

1-form symmetry for magnetic flux conservation
0-form “non-invertible” symmetry for axial charge 
“conservation”

“Defect operators exist even if  
there is no locally conserved current” ∫ℳ3

⋆ jA− A ∧ dA

[Berger, Field]

EFT: A hydro-action realising 1-form and non-invertible symmetry structure without any reference 
to QED!

→

reproduces known pheno. results: Chiral Separation Effect & Chiral Magnetic Effect→



Results & Implications
Universal transport coefficients: 
✦ Kubo formula (response-source eqns.):

[Grozdanov et.al.,; Grozdanov et. al.; Das. et. al.]

ji
ind ∼ σ Ei

ext (weak-coupling) Ek
ind ∼ ϵijk Jij ∼ ρ jk

ext (universal: e ∼ 𝒪(1))

σ ∼
GR

ji ji (ω, ⃗q = 0)
iω

ω→0

ρ ∼
GR

Jij Jij (ω, ⃗q = 0)
iω

ω→0

We saw:  . What happens to  when hydrodynamic fluctuations 

are included. The leading (1-loop) fluctuation-driven contribution to the decay-rate still remains 

zero! Protected by the 0-form non-invertible symmetry which leads to chirality conservation. 

Contrasting to QCD: the CS diffusion rate — IR limit of the non-Abelian topological density 

 is non-zero!

ΓA ∼ ζ b2 ∼
k2ρA b2

χA
ΓA(b → 0)?

Tr(Fa
μν F̃aμν)

σ ≠
1
ρ⇒



Results (contd.)

Lattice results: classical real-time lattice simulations of scalar QED 
coupled to axion with axion shift giving the anomalous Ward identity

. The numerical coefficients of the  non-analytic pieces are universal in the 

sense that they do not receive UV corrections  protected by the 0-form non-invertible symmetry

ΓA(ω) ∼
k2ρ2

D5
2χA ( π

2 2β
|ω |

3
2 + 𝒪(ω2))

↔



Symmetry resolution of entanglement

Cardy’s replica trick but with symmetry operator/
defect insertion:

Zab(qn, g) ≡ Trab[ℒ̂i(g) qn(L0−c/24)]

where, for group -like symmetries, computing the above 
amounts to finding -invariant conformal states or, Cardy states: 

; such that:

G
G

|a⟩g, |b⟩g

ℒ̂i |a⟩g = |a⟩g ∀ i ∈ G

Entanglement is equipartitioned — at leading order w.r.t.  — among 
all charged sectors of the interval , for group-like symmetries. 

εuv
A

What about when these operators are non-invertible?

[Calabrese, Cardy; Goldstein, Sela]

[Ohmori, Tachikawa; Northe]



Non-invertible symmetry in 2D rational CFTs
Given an RCFT (finite #primaries), topological defect lines/Verlinde lines provide prototypical examples of non-
invertible symmetries since these topological lines can be both invertible and non-invertible.
For diagonal RCFTs: primaries  TDLs  Cardy states. Consider the 2D Ising model at criticality. 
✦ It has 3 TDLs:

↔ ↔

1̂ − line (identity)

̂η − line (ℤ2 symmetry)

N̂ − line (KW-duality)

1(0,0)

ε( 1
2 , 1

2 )

σ( 1
16 , 1

16 )

✦ Its fusion rules: ̂η2 = 1̂ N̂2 = 1̂ + ̂η ̂η N̂ = 1̂ , implying that the -line is non-invertible.N
✦ -line:there exists a -symmetric Cardy state - the free boundary condition on the lattice -  

  hence it is possible to symmetry resolve the -line. This is expected since this is a group-like symmetry.  
  However, there doesn’t exist any Cardy state invariant under the action of the -line. So, we can’t symmetry  
  resolve this non-invertible line

̂η ℤ2
̂η

N
-line can’t be gauged!N [Choi et. al.]



Result: tri-critical Ising

Consider the tri-critical Ising model with central charge: c = 7/10. 
✦ It has 6 TDLs out of which 2 are non-invertible: the -line and the -line.N W
✦ There exists Cardy states which are invariant under the action of the -line. In category theoretic language:  

            the Fibonacci sub-category (  with fusion: ) of the full tri-critical Ising category can be gauged.  
           So, we can symmetry resolve this non-invertible line

W
{1, Ŵ} Ŵ2 = 1 + Ŵ

Entanglement is equipartitioned — at leading order w.r.t.  — among all the Fibonacci anyons charged 
sectors of the interval !

εuv
A

[Choi et. al.]

[Saura-Bastida et. al.]



Thank you for listening!!!



Extra slides…



Non-invertible symmetry in QED I

No conserved gauge-invariant current. Conserved charge? 

Try and make a topological surface operator like before:

Q(ℳ3) = ∫ℳ3
( ⋆ jA −

1
4π2

A ∧ dA)

U (ℳ3) = exp ( iα
2

Q (ℳ3))
This is gauge-invariant under small gauge transformations but not under 
large ones, unless  is integer — but then the operator is always . Feels 
like no useful conserved charge…

α 1̂



Non-invertible symmetry in QED II

Try to make  fractional, : 

Idea (Choi et. al., Cordova et. al.): Let us introduce a new dynamical field  only on the defect! Then we can 
write:

α α = 2π/N

a

2iπ
2N

Q(ℳ3) =
2iπ
2N ∫ℳ3

( ⋆ jA −
1

4π2
A ∧ dA) …(5)

2iπ
2N

Q(ℳ3) = ∫ℳ3

i ( 2π
2N

⋆ jA +
N
4π

a ∧ da +
1

2π
a ∧ dA)

“Integrating out ” -> results in Eq.(5): and now everything is gauge-invariant 
for ! 

Constructed a topological charge operator, at the cost of introducing a new 
dynamical field .

a
N ∈ ℤ

a



Properties of the defect operator

Replace axial phase rotation  with any rational 
number by using fancier TQFT. Correct way to 
interpret axial symmetry in QED. 

Called non-invertible symmetry: has no inverse -> 
acting with opposite charge doesn’t give the identity 
operator.

1/N

1
N

Q(ℳ3) = ∫ℳ3
( 1

N
⋆ jA −

N
4π2

a ∧ da +
1

2π
a ∧ dA) ψ → e

i
N γ5ψ

−
1
N

+
1
N

=

No local conserved current! However, topological operators are useful — selection rules, 
constraints on effective actions, etc.


