
 QuantumInformation
Lecture 2

What is quantum information This is a deep question whosegene
at answer we won'tattempthere

In the context of classicaldigital computing information is a string of
Os and 1s Thus if we have a byte it maybe something like 011010

When we move to quantum computation the analogous information is the

specification of the state in the computational basis 1011010117

In quantum computing we represent each bit by a two level quantum

system whosebasis states are 107 117 This is the qubit
states that require more information require multiple qubits The

state 10110 1011 require 8 qubits

In a classical computer a single register can only have a finite numb



of states 28states for a register that is 1 byte long In quantum inf
mation theory one can have an arbitrary linear combination of thecomputationalbasis A quantum register can take on an infinite numberof
states

The fact that one can have superposition of states mean that a quantum
circuit which is just a bunch of linear unitary operators can act on man

inputs simultaneously However This doesn't mean we canget all the
answers simultaneously since observing the result will collapse the

superpositionof all the results into only one result Thus to take advantage
of quantum aspectsof computing we shall need to perform the right
kind of observations

Entanglement is another aspectof quantum states that is notavailableto classical computers By usingentanglement as resources we can move

quantum states around in a quantum computer in a non local way



Entanglement also allows us to be able to send classical information in

high density known as superdense coding

The Qubit
The simplest unit of quantum information is a two level quantummechanicalsystem known as thequbit
Physically a qubit can be realized in many differentways a spin

particle The low lying statesof an atom an interferometer with two

paths for photons each labelled 0 and 1 etc

The Hilbert space of a qubit is We denote by 107 and 11

the orthonormal basis of 92 which are the eigenkets of Z
2107 107

7 117 117

An arbitrary stateof a qubit is 147 α 107 β is with 12171ps



Taking into account the freedom 147 X 147 we can write

147 Cos 107 e sing in show

where 0444271 and 040 T1

Its is obvious from this parametrization the pure states of a qubit
are in 1 to 1 correspondence with the points of a sphere known as the
Block sphere 107
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Each point on the surface of a Block sphere is a unique pure state



The Density Matrix of a Qubit
A densitymatrix is a Hermitian positive semi definite matrix with unit
trace This means for a qubit p must have the form

p I E 5

where I X Y Z are the Pauli operators I ax ay Az is
a real 3 Vector Paulis satisfy
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I Block vector When 101 1 the state is on thesurface
of the Bloch sphere and thus the state is pure

ii laki The states are inside the Block sphere p then represen



mixed states
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Innerproduct between two mixed states

Tr P Pa 1 5 az For pure states Tr PP K4 42 12

The state 0 corresponds to the maximally mixed state

P 10 01 411 11



Imbiguity of Mixtures
Any conve linear combination of Block Vectors

p a P Gat than sit P Pat Pn

is also a Valid Block Vector
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This implies that any mixed state can bewritten as a convex

linearcombination of an arbitrary number of valid density matrices
This is known as the ambiguity of mixtures



Measurements in Quantum Mechanics

The measurement postulate stated in the last lecture is what is
known as a Von Neumann measurement or a projective measurement

But quantum mechanics allows for a more generalizedmeasurementpostulate

Generalized Measurements

Quantum measurements are described by a collection Mm of
measurement operators These are operators which act on the

state space of the system that is being measured The index m

refers to the measurement outcomes that may occur in the experiment
If the state of the system is 147 immediately before the measurement

then the probability that the result m occurs is given by
p m 41 MmtMm 4

and the state of the system after the measurement is



III
The measurement operators satisfythe completeness condition

I MtmMm I
which follow from In Plm 1

Excise show that a projective measurement is a typeofgeneralizedmeasurement

POVM Measurements

In the generalized measurement postulates there are two parts 1st it

gives a way to compute the probabilities of eachoutcome and then 2nd
it gives us the state of the system after the measurement However
in many applications we are not interested in the state of the system
after the measurement For example There are experiments where we



measure the system only once at the conclusion of the experiment In
such cases we use a variation of thegeneralized measurement
known as POUM

Suppose a generalized measurement is described by the operators

Mm and the state of the system is 147 Then p m 24 MmtMm 47
suppose we define Em MmtMm Then from the postulate

Em 1
And from linear algebra Em is a positiveoperator Em then are

knownas POVM elements and pcm 4 Em 4

7h Example Suppose Alice prepares two states14,7 107 and

1427 2407 1177 Alicegives Bob one of these states Since 1417

and 1427 are not orthogonal Bob cannot determine whether he
had been given 1417 or 1427 with perfect reliability But Bob ca
make a POVM measurement which distinguishes the state some of



the time but he never makes an error of mis identification ThePOV

contains
E Ifr 11 11
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