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• Growth of complexity with time?
• Bounds on the growth of complexity?
• Complexity for decohered state?

What is the (quantum circuit) 
complexity of this process?
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BACKGROUND AND MOTIVATION

Eternal Black Hole
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Question: How do we probe the interior of a Black Hole?
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Singularity
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BACKGROUND AND MOTIVATION

AdS/CFT
 

Duality   

Boundary
% = '

Minimal 
SurfaceAdSd+2

Entanglement 
Entropy

Ryu, Takayanagi 2006

!! =
Area "#$
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codimension 2 
minimal       
surface 

EE in (d + 1) dim. CFT can be obtained from the area of  d dim. minimal surfaces in AdSd+2 



BACKGROUND AND MOTIVATION

Eternal Black Hole
2 Copies of CFT in 
Thermofield Double

Ryu-Takayanagi 
Surface

AdS/CFT
  duality   

AdS/CFT
  duality   Entanglement Entropy

Ryu, Takayanagi 2006

Figure courtesy: Rob Myers
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BACKGROUND AND MOTIVATION

Eternal Black Hole

Entanglement Entropy
Saturates

2 Copies of CFT in 
Thermofield Double

RT Surface is 
Disconnected

AdS/CFT
  duality   

AdS/CFT
  duality   

A’

Entanglement Entropy is NOT enough!  − Susskind, 2014

RT is NOT a 
Good Probe!

Figure courtesy: Rob Myers
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BACKGROUND AND MOTIVATION

Eternal Black Hole

Holographic Complexity

2 Copies of CFT in 
Thermofield Double

Volume of the 
Worm Hole

AdS/CFT
  duality   

AdS/CFT
  duality   

Complexity is a well-defined Quantity 

in Quantum Information Theory!

Incorporating an idea from a different Field

Entanglement Entropy is NOT enough!  − Susskind, 2014

13



COMPUTATIONAL COMPLEXITY

Example: How difficult it is to come to work/school everyday? 
Generically: A measure of difficulty to implement a task.

14



COMPUTATIONAL COMPLEXITY

) = * |)%⟩

Reference State:    
0 0 0 ……

Target State   Unitary
Operator

Physics Question:

How difficult it is to prepare a particular 
State in a Quantum Theory? 

We will use a particular Model − 
Quantum Circuit Model

Generically: A measure of difficulty to implement a task.

15

Example: How difficult it is to come to work everyday? 

Analog of Classical 
Logic Gate



QUANTUM CIRCUIT

|+⟩

0 0 0 ……

Big Unitary

Reference State

Target State

U

16



QUANTUM CIRCUIT

|+⟩

0 0 0 ……

Simple 
Operations

How to Minimize the number of operations/Quantum Gates?

Reference State

Target State

How to find the Optimal Quantum Circuit?

Complexity = Minimum no of Gates required  
to Prepare the Target State

17
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QUANTUM CIRCUIT

+ =	-*. . …… . . -+-, |+-⟩

More Precisely
Approximate Target state with Unitary operations built from these 

Quantum Gates

Quantum Gates

with some tolerance

There are some Universal Gates 

There could be many choices for Universal Gates 

Any Universal (one or two qubits) Gate sets is good 
    as any other provided we only care about some tolerance  

+. +.(0)⟩ ≥ 1 − 1



DIFFERENT CIRCUITS
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Open System: 
State Circuit

Complexity of 
Purification

Closed system: 
Operator Method

Complexity:
Field Theory 

Limit

Goal: Complexity 
 in Cosmology

!"#$%&	(&)*+,

-$.*,$&$#.$

Closed system: State 
Method

Two-mode 
squeezed state

Squeezing 
Operator 

Cosmological 
Perturbation

/0+$#1

-$.*234$0"5".%+"*#

Not	talking	about	AdS/CFT
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OPERATOR COMPLEXITY

Quantum circuit is a unitary operator that transforms 
a given reference state to a specified target state.

+. 	 |+2⟩

2345673	 3

State 

Operator 
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OPERATOR COMPLEXITY

¢ Sensitive to arbitrary tolerance

¢ Discontinuous (overshooting problem)

Drawbacks of the discrete Gates   

Quantum circuit is a unitary operator that transforms 
a given reference state to a specified target state.

&!"#$%! = (&…… . ('((



22

OPERATOR COMPLEXITY
Quantum circuit is a unitary operator that transforms a given reference state to a 
specified target state.

Advantage?

Group Manifold Approach

Target unitary is generated from 
a set of fundamental operators, 

which form a Lie algebra. 

o Geometry is determined by the generators of 
the Lie algebra

o Manifestly independent of the states.
o Continuous trajectories than discrete ones

Geometry suggests new approach to Quantum Algorithms!

Nielsen 2005 Need a continuous description of complexity!

Finding optimal circuit è Geometric problem of studying geodesic on a group manifold
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OPERATOR COMPLEXITY
Target Unitary consists of a continuum of operators parametrized by a parameter s. 

Universal 
Operators. Vectors that specify the path 

of the sequence of operators  

Path ordering ensures that the operators are applied sequentially from s = 0 to 1 

It is useful to introduce a s-dependent unitary

Solution to 
Equation

Subject to the BC:  
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OPERATOR COMPLEXITY

From the Unitary we define a Cost Function  

Define a 
Distance 
Functional 

The optimal quantum circuit is the one with Minimal length

The minimal path !4 "  is a geodesic on the space, which solves 
                                          
                                       Euler-Arnold equation 



SUMMARY
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o First, we identify the target unitary #567895	and select a set of basis operators, with 
associated Lie group.

o  We use these operators to construct the unitary # " .

o  By solving E.A. eq. we get paths that define a set of geodesics !4 "  on this space. 

o  We then restrict this set of geodesics to those that realize the target unitary 
 through the D.E. of #(")	and the boundary conditions:

o  Assign a circuit depth 

o  Finally, we use the resulting optimal construction of the unitary to calculate the  
 complexity since Circuit Complexity is depth minimized over paths

)*!"#$%! = -⃖ exp 1
&

'
2( 3 	 )5(	63 { 78!}:   basis of gates

:! ; :   tangent vectors

7 = min
)!

; 2(

< :! = >
"

#

?!$	:!:$	@;

Unitary evolution from 
reference state A%  to 
target state A&

with :"# = <"# “gate cost”



COMMENTS
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o Metric (=> is the operational cost to build the path with any 

particular operator.

o A natural choice is the Cartan Killing Form. 

o This is Not generically possible, so we will choose )=>

Unitary evolution from 
reference state A%  to 
target state A&

Next:  We will review the state circuit complexity
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FURTHER COMMENTS ON THE METRIC

Consider the space of arbitrary group manifold G

Let’s U be an element and choose a basis on the tangent space (i.e. the lie algebra) by *4 . 

The matrix quantity Ω	is the velocity on the group manifold and is 
related to group elements along the path by

If we expand it in the basis 8% as Ω = :% ; 8% 

and J is some fixed matrix in the definition of the inner product

Then the metric elements in this basis will be given by

Then a path is given by <(;). A simple metric would be
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The metric elements:

o In the case of an orthonormal basis, and if we choose J to be 

the identity matrix then the metric will be

                                       =%& = >%&

o If for a given group, we use the adjoint representation for the 

basis matrices 8%, then the metric is given by Kartan-Killing 
form     

=%& = ?%& = @%'( 	@(&'

Now we will review the state circuit complexity

FURTHER COMMENTS ON THE METRIC



B) → |B*〉
Unitary transformation from 
“reference” state to “target” stateB* = F<	|B)〉

,# = /⃖ exp 3
?

@

4"	5
4

64 " 	784
defines a path through 
space of operators (gates)

G# H = I
%

H% #
Provide 

Riemannian 
Geometry

Operators

,84 ∼ :;	<=6	 ?̂A
Gates--preserve the general 
Gaussian form

Jefferson, Myers

QUANTUM CIRCUIT COMPLEXITY: STATE COMPUTATION

In this general space the paths satisfy the boundary condition: # " = 0 = 1	, # " = 1 = #

J(s)

Tangent vector to a trajectory
in the space of Unitary

,# = /⃖ exp 3
?

B

4"	C(")

Next, we need to define a cost, such as 

example: Scaling and Entangling 



QUANTUM CIRCUIT COMPLEXITY: STATE COMPUTATION

Other choices possible:

By using this cost function, we define a distance functional

Complexity= Minimization of     
                      “length” along path

Complexity is defined by the minimization of the distance functional over paths 
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Change the problem to the wavefunctions language 

QUANTUM CIRCUIT COMPLEXITY: STATE COMPUTATION

B* = <	B)

# " = 0 = 1	, # " = 1 = #567895

Jefferson, Myers

Gaussian

with

Then we need to translate the scaling and entangling gates to this matrix representation. 

That is, we build a representation of 
these operators as 2×2 matrices which 
act on the symmetric matrices A. 

The Basis of 
generators B!    

Boundary conditions 

The gate matrices act as 



QUANTUM CIRCUIT COMPLEXITY: STATE COMPUTATION

U(s) are trajectories in 
the space of GL(2, R) 

transformations. 

In this matrix formulation, the path-ordered exponentials are replaced by 

Simple expression of 
the velocity vector. 

Now we explicitly construct a parametrization of U(s) to construct the desired geodesics. 

Then we get

The minimum value of k is then the depth of the optimal 
circuit, and by extension, the complexity of the target state. 

Circuits form a 
representation 

of GL(2,R) 

In wavefunction 
language 



NOTE
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¢ Our task is to find the shortest geodesic on GL(2, R) that connects the initial 
and final states, AR and AT.

 

¢ There is a continuous family of geodesics connecting the desired states. This 
non-uniqueness arises because our space of circuits is 4d (since dim GL(2, R) = 
4) whereas our space of states is only three-dimensional (since the 2 × 2 
matrices D=> are symmetric).

 

¢ The complexity is defined as the cost of the optimal circuit. Hence this one-
parameter family of solutions is merely the set of all possible circuits. To find 
the optimal circuit, we simply need to find the geodesic within this family with 
the shortest length.

Jefferson, MyersWavefunction language 
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QUANTUM CIRCUIT COMPLEXITY

GL(2, R) 
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End of Lecture 1

Thank You
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Outline 
• Quantum Circuit Complexity
• Squeezed States 
• Cosmological Complexity

Lecture 2
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¢ Quantum complexity is versatile, is a proxy for various 
physical quantities. Useful for understanding Quantum 
Chaos, Quantum Phase transition etc.

¢ It gives an additional label to states ⇒	additional information 
about quantum evolution.

¢ Complexity applied to coherent and squeezed states, that are 
essential building blocks of quantum optics and quantum 
computation.

¢ Can it say anything about cosmology?

¢ Can we understand decoherence?

LECTURE 2
Motivation

(not Holographic)



LECTURE 2
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o Background and Motivation for studying quantum complexity

o What is Circuit Complexity?

o Operator and State circuit complexities

Last time/Lecture 1

Lecture 2

o Examples: Displacement operator, Harmonic Oscillators, Free field 
Theory (I will apply both state and operator circuits)

o What is Squeezed States? 

o Complexity of Purification



QUANTUM CIRCUIT COMPLEXITY: STATE COMPUTATION

In this construction we are interested in the Gaussian States. 

The position space wave function for two coupled Harmonic Oscillators

EC = exp 	[−
1
2
	IC 	5

6D@

E

J6E	 ]	 EF = exp 	[−
1
2
	I 5

6,AD@

E

xH	Ω6A	JA 	]	

Time evolved wave function

The reference and the target states are simultaneously diagonalized, 

Note: The off-diagonal components will increase the distance between 
states; the shortest distance corresponds to them being set to zero.

U(s) are trajectories in 
the space of GL(2, C) 
transformations. 

The unitary operator acts on the reference matrix as

Since  ΩIs can be complex, we will use the diagonal elements of GL(2,C) as our 
set of gate operators

Ground state wavefunction 



QUANTUM CIRCUIT COMPLEXITY: STATE COMPUTATION

The resulting metric on the reduced space of operators becomes

The resulting circuit depth
 

is minimized, subject to the boundary conditions, by the straight-line geodesic 

Choosing the reference frequency to be the ground state frequency of the oscillator 

leads to the complexity

Two coupled Harmonic Oscillators
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QUANTUM CIRCUIT COMPLEXITY

Let’s do an example on Operator Circuit Complexity
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OPERATOR COMPLEXITY FOR DISPLACEMENT OPERATOR

Displacement Operator is important ==> can generate Coherent States  

v

Euler Arnold Equations Solutions

Heisenberg 
Lie Algebra

Operator Circuit Complexity

This is the path 
that minimizes 
the circuit depth

Resulting circuit complexity along this minimal path
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Since the operator e3 is the central element, it just gives an overall phase 

we can set L+ = 0

OPERATOR COMPLEXITY FOR DISPLACEMENT OPERATOR

Now let’s construct the M(N)

General Element of 
 Heisenberg Group

Operator Circuit Complexity

Target operator is the s = 1 
boundary condition of the s-
dependent unitary operator 
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We will determine the constants O@	and OE by applying the boundary conditions: 

Complexity

OPERATOR COMPLEXITY FOR DISPLACEMENT OPERATOR

with this group 
element and the sols of 
the E A equations in 

solved by the
parametrization

Then

Operator Circuit Complexity
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Complexity

Significance?

OPERATOR COMPLEXITY FOR DISPLACEMENT OPERATOR

In QI protocols, the energy needed to prepare a state 
 or set of gates can be an important resource. 

Note: the average number density – or equivalently, 
the average energy – of a vacuum coherent state 

The energy required to build a coherent state with some fixed complexity 

grows quadratically with that complexity ⟨E⟩ ∼ C2. 

These scaling might have general lessons for building QI protocols?

Operator Circuit Complexity

Next: Operator circuit complexity for free scalar field



Example: Free Harmonic Oscillator

EF = PJ= KL'5	 EC

,C? =
I
2

<Q† <Q + <Q	 <Q†

EF = STMHNOPM EC

)*!"#$%! = -⃖ exp 1
&

'
2( 3 	 )5(	63

Model as continuous application of operators

{ 78!}:    basis of gates
:! ; :  tangent vectors

Operator Circuit Complexity

Characterize gates by structure constants  SU4, SUQ = :	V4Q
R SUR

SU@, SUE = −: SUS, SUS, SU@ = : SUE, SUE, SUS = : SU@

Minimization ⇒ Euler-Arnold eq on group manifold ((4Q = )4Q)

(4Q
4!Q

4"
= V4Q

R	(RT	!Q	!T

su(1,1)

SH, Jana, Underwood

COMPLEXITY: FREE HARMONIC OSCILLATOR



Minimization ⇒ Euler-Arnold eq on group manifold (=%& = >%&)

(4Q
4!Q

4"
= V4Q

R	(RT	!Q	!T
!@ = 0,
!E = 0,

!S = min [
2 I\ − 2]^
2 2]^ − I\

 

!S is a compact 
direction

U$%&'

U$%(!/*

COMPLEXITY: FREE HARMONIC OSCILLATOR
Operator Circuit Complexity

Complexity

R,-.. = :/ # + :# # + :+ #

= :+



Free scalar field C in (@ + 1)-dimensions, mass H, box I	with periodic boundary conditions

S_ = 5
V

W()* 1

2	`V
<QV	P

=Y⃗+⋅[⃗ + <Q
V

†PJ=Y⃗+⋅[⃗ Mode expansion:  J
L⃗, = MN/I 

P, = L,
- +H-

Λ = ]+,-^/_    UV cutoff

Target Unitary TMHNOPM = a
V

W()*

PJ=
@
E
`+ a6

+

†
a6+ba6+ a6+

†

Complexity for a 
single mode M	

Q. = R
,

/!"#

:,
0 -

∼ I1/- >
3

:0 L
-
	@1L

SH, Jana, Underwood

COMPLEXITY: FREE SCALAR FIELD

copies of free oscillator for each mode

Operator Circuit Complexity

Complexity of the 
free scalar field

The Hamiltonian becomes 
a sum over modes 

We cutoff the infinite sums of modes at the UV scale Λ = U456
7

8
	 for U456 ≫ 1



Complexity of free scalar field

Q. = R
,

/!"#

:,
0 -

∼ I1/- >
3

:0 L
-
	@1L

continuum limit

Linear Growth:
complexity of only one 
mode growing

Saturation:
complexity of all modes 
oscillating, average out

v

bc

COMPLEXITY: FREE SCALAR FIELD

v

Operator Circuit Complexity



ESA and Planck Collaboration

Outline
• Quantum Circuit 

Complexity 
• Squeezed States
• Cosmological 

Complexity

Let’s change the gear…



Vacuum States

A W ∼ X9
:$
- , Z L ∼ X9

;$
-

Δae! =
1

2
Δah! =

1

2

Squeezed Vacuum 
State

A W ∼ X9
:$
- <

$%
, Z L ∼ X9

;$
- <

&$%

Δae! =
1

2
i"!# Δah! =

1

2
i!#

Squeezed, rotated 
Vacuum State

Δae! 〈Δ ah!〉 =
1

4
Δae! 〈Δ ah!〉 =

1

4
Δae$

! 〈Δae"
!〉 =

1

4

[ = 0.5 [ = 0.5
C = N/3

ae$ = ah sinn + ap cosn

ae" = ah cosn − ap sinn

X-=

X9-=

[ = 0
C = 0

SQUEEZED STATES



Described by squeezing parameter c, squeezing angle d, 
and rotation angle e

where squeezing 
operator

rotation operator

Squeezed States found in:
• Quantum Optics
• Gravitational Wave Detection
• Cosmological Perturbations

“World record” 
laboratory squeezing

[ ≈ 1.7

Vahlbruch, et al, 2016

X9-=

X-=

C

Squeezed, Rotated 
Vacuum State

Δae$
! 〈Δae"

!〉 =
1

4

[ = 0.5
C = N/3

ae$ = ah sinn + ap cosn

ae" = ah cosn − ap sinn

T, V, W = XY T, V 	 Zℛ W 0

bc [, C ≡ exp
[ h
2

X9->.	 jk- 	− X->.	 jk†-

7ℛ n ≡ exp −on jk† jk + jkjk†

SQUEEZED STATES

-< = ./=>?@A= -B

Example, for IHO we get the Squeezed, rotated Vacuum 
State (single mode)

Z\01-2.0 = X] T, V 	 Ẑ W 	

Time evolution by generic 
  quadratic Hamiltonian 

ST = fg h, _ 	 Si j 	We can write
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WHY SQUEEZED STATES?

o Squeezed states appear naturally in Cosmological Scalar 
Perturbation Model.

 
o The time evolution can be written as a product of Squeezing 

and Rotation Operator.
 
o We can apply both Operator approach and State  approach 

(by using wave function).

o These squeezed states can be realized as a TFD. 

o We can get mixed (thermal) state by tracing out degrees of 
freedom, hence study Decoherence.

o Natural setup to study open quantum system and hence 
Complexity of Purification.

o Perform a comparison: Open vs closed system complexity.

o Applications in quantum optics and quantum computations
Not today
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‘The career of a young theoretical physicist consists of treating 
the harmonic oscillator in ever-increasing levels of abstraction.’

Sidney Coleman

SQUEEZED STATES: INVERTED HARMONIC OSCILLATOR



SQUEEZED STATES: INVERTED HARMONIC OSCILLATOR
State Circuit Complexity

Why inverted harmonic oscillator (IHO)? 
Similar situation happens in cosmological perturbation model

IHO is defined by a Hamiltonian with a “wrong sign” of the restoring force

Using raising and lowering operators based on the non-inverted harmonic oscillator

then it will naturally evolve into a squeezed state at later times. 

If a system starts in the "vacuum state" annihilated by the lowering operator

Hamiltonian

unitary evolution can 
be parameterized as:



SQUEEZED STATES: INVERTED HARMONIC OSCILLATOR

Schrodinger 
equation

Squeezing 
equations 
of motion 

State Circuit Complexity
Why inverted harmonic oscillator? 

Similar situation happens in cosmological perturbation model



SQUEEZED STATES: INVERTED HARMONIC OSCILLATOR
State Circuit Complexity

Why inverted harmonic oscillator? 
Similar situation happens in cosmological perturbation model

Reference state: unsqueezed vacuum ⟨_|0⟩ 

      Target state: squeezed state _ B

For large squeezing T ≫ 1, V ∼ 3

4

Circuit?

Note: If we do the same computation for operator circuit, we get  p?@ = q	r
It is insensitive to the squeezing angle. 

Complexity

Complexity of a single mode vacuum squeezed state saturates at late times



¢ Examples: 

¢ What is Squeezed States?

¢ Complexity of Purification
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WHAT NEXT?

Displacement operator : Operator complexity
Harmonic Oscillator : State and Operator complexity
Free field Theory: Operator complexity

Open Quantum System

Inverted Harmonic Oscillator
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SQUEEZED STATES, THERMAL DENSITY MATRIX AND TFD 

A straightforward purification of this 
generic thermal state is the TFD state: 

Consider 
Thermal state 

This is not a unique 
purification, and it is 
possible to include 
an additional phase 

We recognize this as a two-mode squeezed vacuum state

|b, b567⟩⟨c,c567|
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SQUEEZED STATES, THERMAL DENSITY MATRIX AND TFD 

Now consider the circuit

with (purified) 
ground state as
Reference State 

Position space 
wavefunction 

For Target state

Following the 
outline at the 
beginning of the 
lecture

position space 
wavefunction 

SH, Jana, Underwood

Complexity of the pure state
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COMPLEXITY OF PURIFICATION

A thermal state

Note that expectation values of operators acting in H are preserved under purification, 

Observables are preserved by purification. 

ancillary d.o.f.

For any mixed state d89:	 on the Hilbert space H, one can construct a 

purification of d89:	which consists of a pure state |Ψ⟩ in an enlarged Hilbert 
space 

Trace of the density matrix of this	ijTk	slmlk	|Ψ⟩ over the ancillary degrees of 

freedom gives the original mixed state 

|Ψ⟩	is a “purification” of d89:.

A pure state 
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COMPLEXITY OF PURIFICATION

The purification is not unique Many choices for the ancillary Hilbert space        

Example: There may be a set of pure states 
                                                           

Complexity of 
purification

Hanc is arbitrary Just needs to meet the 
purification requirement. 

We are interested in the complexity of the mixed thermal state

Minimize a quantity with 
respect to the parameters. 

To distinguish among 
the set of purifications 

E. E. or Complexity

So, we will minimize the complexity



SO, WHAT ARE WE DOING?
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Thermal 
Mixed State

TFD 
(Pure State)

Two Mode 
Squeezed State

Purification

Complexity
of Pure State

Complexity
of Purification

Add Phase

n ∼ T

State Complexity

Minimize ancillary

Why?
Because sensitive 
to squeezing angle
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SQUEEZED STATES, THERMAL DENSITY MATRIX AND TFD 

COP for Thermal State

o;

Fig:

T → 0 System	and	ancillary	
not	entangled,	w ∼ 0	

T ≫ 1 Wavefunction	is	off	

diagonal	A ∼ 0, w ∼ }	

Complexity for 
The purified state

important when we study 
decoherence in the next lecture

C
O
P

COP,

C is minimized at %&
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End of Lecture 2

Thank You


