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Question: How do we probe the interior of a Black Hole?
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BACKGROUND ano MOTIVATION

EE in (d + 1) dim. CFT can be obtained from the area of d dim. minimal surfaces in AdSy;,

o Ryu, Takayanagi 2006
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BACKGROUND ano MOTIVATION
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BACKGROUND ano MOTIVATION

Entanglement Entropy is NOT enough! — Susskind, 2014
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BACKGROUND axo MOTIVATION
Entanglement Entropy is NOT enough! — Susskind, 2014

2 Copies of CFT in J

duality

AdS/CFT
{Etemal Black HOleJ {Thermoﬁeld Double

AdS/CFT [Holographic CompleXity}

duality

Worm Hole

{ Volume of the J

Complexity 1s a well-defined Quantity

in Quantum Information Theory!

Incorporating an idea from a different Field



COMPUTATIONAL COMPLEXITY

Generically: A measure of difficulty to implement a task.

Example: How difficult it 1s to come to work/school everyday?




COMPUTATIONAL COMPLEXITY

Generically: A measure of difficulty to implement a task.

Example: How difficult it 1s to come to work everyday?

Physics Question:

How difficult it 1s to prepare a particular
State in a Quantum Theory?

We will use a particular Model —
Quantum Circuit Model

‘/‘ [Y) = i] ¥o) ﬁ

Target State Unitary Reference State;
Operator |0)[0)]0) e

Analog of Classical
Logic Gate




QUANTUM CIRCUIT

/ Target State \

¥)

l ‘ Big Unitary

|0)[0)|0) ... ...
Reference State /




QUANTUM CIRCUIT

/ Target State \

'

1 01 1 01 1
1 1 111 A
1 1 1 1 1 | Simple
o e e Operations
1 1P 111
1 1 1 1 1

10)|0)[0) ... ...
Reference State /

How to Minimize the number of operations/Quantum Gates?
How to find the Optimal Quantum Circuit?

Minimum no of Gates required °
to Prepare the Target State

Complexity = {




QUANTUM CIRCUIT

More Precisely
Approximate Target state with Unitary operations built from these
Quantum Gates

) =|Ggn-- e - 9291|1P0)

Quantum Gates

with some tolerance

Wrlpsdy =1 —e

There are some Universal Gates

There could be many choices for Universal Gates

Any Universal (one or two qubits) Gate sets 1s good
as any other provided we only care about some tolerance




DIFFERENT CIRCUITS

Goal: Complexity
in Cosmology

Cosmological | Not talking about AdS/CFT

Perturbation %
Linear Grwoth Q Decomplexification

Closed system: Closed system} State
Operator Method Method
Squeezing Two-mode
Operator Extend squeezed state

Open System:
State Circuit

Complexity: Decoherence
Field Theory
Limit
Complexity of

Purification




OPERATOR COMPLEXITY

Quantum circuit is a unitary operator that transforms
a given reference state to a specified target state.

I"p)T — I:{target |¢>R

[Yr) - [YRr) State

Utarget < I Operator




OPERATOR COMPLEXITY

Quantum circuit is a unitary operator that transforms
a given reference state to a specified target state.

|¢>T — I/?target |¢>R

Utarget = 9dn 29201

Drawbacks of the discrete Gates

o Sensitive to arbitrary tolerance

o Discontinuous (overshooting problem)




OPERATOR COMPLEXITY

Quantum circuit is a unitary operator that transforms a given reference state to a
specified target state. ) = Uharget [¥)R

Need a continuous description of complexity!  Nielsen 2005

Finding optimal circuit = Geometric problem of studying geodesic on a group manifold
Group Manifold Approach

Target unitary is generated from
a set of fundamental operators,
which form a Lie algebra.

o Geometry is determined by the generators of
the Lie algebra

o Manifestly independent of the states.

o Continuous trajectories than discrete ones

Geometry suggests new approach to Quantum Algorithms!



OPERATOR COMPLEXITY

Target Unitary consists of a continuum of operators parametrized by a parameter s.

1
ggggglU utarget — Pexp [_Z/ VI(S)OI dS]

/ Universal

~ 0201 Vectors that specify the path Operators.

i of the sequence of operators A A LD
01,0;| = zfIJ Op

g1

Path ordering ensures that the operators are applied sequentially from s =0 to 1

It is useful to introduce a s-dependent unitary
A S A
U(s) =Pexp [—z/ VIO, ds']
0

. dU(S) T A A
Solution to —
Equa::i;ln ds v (8) OI U(S)

Subject to the BC: 0(0) =1 and 0(1) = L?target



OPERATOR COMPLEXITY

From the Unitary we define a Cost Function F (U (1), U (t))

Define a 1 \/
Distance D [VI] — / Gr/VIVJI)ds
Functional 0

The optimal quantum circuit is the one with Minimal length

The minimal path V/(s) is a geodesic on the space, which solves

Euler-Arnold equation

dv’

ds=

Gry L viGapL vt




target SUMMARY

T )
} R Unitary evolution from
e |¢R> _‘utarget-’ |l/}T) reference state |Yg) to
reference target state |l/)T>

First, we identify the target unitary Uiqrger and select a set of basis operators, with

associated Lie group.

1
U = Pex j Vi(s)O dS] {0,}: basis of gates
rarget P [ 0 ! Vi(s): tangent vectors

We use these operators to construct the unitary U(s).

By solving E.A. eq. we get paths that define a set of geodesics V!(s) on this space.

We then restrict this set of geodesics to those that realize the target unitary
through the D.E. of U(s) and the boundary conditions:

dU(s) _

ds

—’iVI(S) @I [A](S) ‘ [7(()) =1 and U(l) = atarget

1
Assign a circuit depth D[V'] = fo /G, JVIVIds  Githg, =6,  “eate cost”

Finally, we use the resulting optimal construction of the unitary to calculate the
complexity since Circuit Complexity is depth minimized over paths

C = minD[V']
vh




COMMENTS

target
)
~ Unitary evolution from
sz |1/) R ) —‘Utarget > I‘(I)T) reference state [ig) to
[¥r) target state |{7)

reference

Ctarget = min D VI = mm/ \/G]JVIVJ ds .
{v1} {vi

o Metric G;; 1s the operational cost to build the path with any

particular operator.

o A natural choice is the Cartan Killing Form.

o This is Not generically possible, so we will choose §;;

Next: We will review the state circuit complexity




FURTHER COMMENTS ON THE METRIC
Consider the space of arbitrary group manifold G
Let’s U be an element and choose a basis on the tangent space (i.e. the lie algebra) by 0; .

Then a path is given by U(s). A simple metric would be
di? = tr(Q1JIN)ds?

The matrix quantity () is the velocity on the group manifold and is
related to group elements along the path by

QO =UU!

and J 1s some fixed matrix in the definition of the inner product

4 N

If we expand it in the basis 0, as Q = VI(s)0,

Then the metric elements in this basis will be given by

tr((’)}\ﬂ OJ) = GIJ.
- /




FURTHER COMMENTS ON THE METRIC

The metric elements:

tI‘(O}J’ OJ) = GIJ‘

(In the case of an orthonormal basis, and if we choose J toh

the 1dentity matrix then the metric will be

GI] == 511

o If for a given group, we use the adjoint representation for the
basis matrices O;, then the metric is given by Kartan-Killing

form

\ GI] = KI] = fﬁw fLA;I /

Now we will review the state circuit complexity




QUANTUM CIRCUIT COMPLEXITY: STATE COMPUTATION

target |lp R ) - |ll)T) Jefferson, Myers

h/}T) — i Unitary transformation from
WJT) =U |¢R> “reference” state to “target” state

defines a path through
space of operators (gates)

[¥r)

reference

Tangent vector to a trajectory M; ~ i€ qa Pp

in the space of Unitary Gates--preserve the general
Gaussian form
example: Scaling and Entangling

U =Pexp Usds H(s)]
0

In this general space the paths satisfy the boundary condition: U(s =0) =1,U(s=1)=U
Next, we need to define a cost, such as

Provide

F,(Y) = Z(YI)Z Riemannian
I

Geometry



QUANTUM CIRCUIT COMPLEXITY: STATE COMPUTATION

target Other choices possible:

¥r)
' RUY)=) |V, FRUY) =) pr|Y'],
I i}

e) R(U,Y) = /Z(YI)2, F,UY) =Y a )
reference I I

By using this cost function, we define a distance functional

D(U(t)) = /O L (U, 0())

Complexity is defined by the minimization of the distance functional over paths

r “
Complexity= Minimization of
“length” along path

C' =min D(U(t))




QUANTUM CIRCUIT COMPLEXITY: STATE COMPUTATION
Jefferson, Myers

Change the problem to the wavefunctions language

1

P >~ exp [— éfCa Agp xb] Gaussian

Boundary conditions

U(S=0)=1,U(S=1)=Utarget :> r = wol , Ar = (cuﬁl fz)

Then we need to translate the scaling and entangling gates to this matrix representation.

That is, we build a representation of The gate matrices act as
these operators as 2X2 matrices which , T
act on the symmetric matrices A. A =Quw A Qyp

Qab = exp[e Mab] with [Mab] cd = Oac Obd -

The Basis of
generators M, 00 00




QUANTUM CIRCUIT COMPLEXITY: STATE COMPUTATION

In wavefunction Circuits form a U(s) are trajectories in
language representation > the space of GL(2, R)
of GL(2,R) transformations.

In this matrix formulation, the path-ordered exponentials are replaced by

U(s) = P exp / ds YX3)M;,  with Ar=U(s=1)AzUT(s=1)
0

Then we get Simple expression of
the velocity vector.

Yis)Mr=0,U(s)U(s) = Yi(s)=tr (8SU(3) U_l(s)MIT)

v

ds? = 67y tr (AU U MT) tr (AU U~ M7)

Now we explicitly construct a parametrization of U(s) to construct the desired geodesics.

1
D(U) 2/0 dsy/gi; B3I =k.

The minimum value of & is then the depth of the optimal
circuit, and by extension, the complexity of the target state.



NOTE

Wavefunction language Jefferson, Myers

Our task 1s to find the shortest geodesic on GL(2, R) that connects the initial

and final states, Ag and Ap

There 1s a continuous family of geodesics connecting the desired states. This
non-uniqueness arises because our space of circuits 1s 4d (since dim GL(2, R) =
4) whereas our space of states is only three-dimensional (since the 2 X 2

matrices A;; are symmetric).

The complexity is defined as the cost of the optimal circuit. Hence this one-
parameter family of solutions is merely the set of all possible circuits. To find
the optimal circuit, we simply need to find the geodesic within this family with

the shortest length.



QUANTUM CIRCUIT COMPLEXITY

1
Utarget = P exp [ f Vi(s) O, ds]
0

* Model as continuous application of operators

Nielsen et al

{51}1
VIi(s):

basis of gates
tangent vectors

Operator Circuit Complexity

* Characterize gates by structure constants
[01,0;] = i fif O
* Minimization:
= Euler-Arnold eq on group manifold

av’
Gy ds = fII]{ G, VI VE

Advantage: Focus is on target unitary
Disadvantage: Euler-Arnold eq can be difficult
to solve

(.

Balasubramanian, Decross, Kar, Parrikar
Basteiro, Erdmenger, Fries, Goth, Matthaiakakis, Meyer

(Gaussian) State Circuit Complexity

Characterize target operator by its action
on Gaussian states

1
(xlpg) ~ e72 “o%w
O
{0,}: basis for GL(2, R)

) Advantage: Simple to set up and find optimal path
J Disadvantage: Restricted to Gaussian states

1

~ e~k — (x[Ypr) ~ €72 Tk Mk

Jefferson, Myers
Ali, Bhattacharyya, Haque, Kim, Moynihan, Murugan




End of Lecture 1

Thank You
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LECTURE 2

Motivation
(not Holographic)

Quantum complexity i1s versatile, 1s a proxy for wvarious
physical quantities. Useful for understanding Quantum

Chaos, Quantum Phase transition etc.

It gives an additional label to states = additional information

about quantum evolution.

Complexity applied to coherent and squeezed states, that are
essential building blocks of quantum optics and quantum

computation.
Can it say anything about cosmology?

Can we understand decoherence?



LECTURE 2

Last time/Lecture 1

o Background and Motivation for studying quantum complexity
o What is Circuit Complexity?

o Operator and State circuit complexities

Lecture 2

o Examples: Displacement operator, Harmonic Oscillators, Free field
Theory (I will apply both state and operator circuits)

o What is Squeezed States?

o Complexity of Purification




QUANTUM CIRCUIT COMPLEXITY: STATE COMPUTATION

In this construction we are interested in the Gaussian States.

The position space wave function for two coupled Harmonic Oscillators

2 2
1 1
be=ep [=(5) 0 ) 21 2> wr=ew—(3) o Y xOmx ]
a=1 a,b=1
Ground state wavefunction Time evolved wave function

The reference and the target states are simultaneously diagonalized,

0 0
Ar=wgrl, Ar=w
0 Qo

The unitary operator acts on the reference matrix as
A(s) = U(s)ARUT (s).

Since Qs can be complex, we will use the diagonal elements of GL(2,C) as our

set of gate operators U(s) are trajectories in
R ‘ yl (S) 0 the space of GL(2, C)
U(S) = exp [ya(s)Mglag] = exp transformations.
0 y*(s)

y?(s) = a*(s) +iB%(s) are complex.

Note: The off-diagonal components will increase the distance between
states; the shortest distance corresponds to them being set to zero.



QUANTUM CIRCUIT COMPLEXITY: STATE COMPUTATION

Two coupled Harmonic Oscillators

The resulting metric on the reduced space of operators becomes

2 2
ds® = GrydY'dy’ = |y =Y [(@%)? + (8%)?]
a=1

a=1

The resulting circuit depth

2

C= /01 VG1dY1dY 7 ds = /01 \l Z [(a®)? + (82)?] ds,

a=1

1s minimized, subject to the boundary conditions, by the straight-line geodesic

a’(s) = In

w
Qa -
WR

s,  B%s) = arctan [EIQESZ;] s

Choosing the reference frequency to be the ground state frequency of the oscillator
WR = W

leads to the complexity

C =

(In |Q])* + (arctan [?{2232;] )2] .

N

=




QUANTUM CIRCUIT COMPLEXITY

1
Utarget = P exp [ f Vi(s) O, ds]
0

* Model as continuous application of operators

Nielsen et al

{@1}1
VIi(s):

basis of gates
tangent vectors

Operator Circuit Complexity

* Characterize gates by structure constants
[01,0;] = i fif O
* Minimization:
= Euler-Arnold eq on group manifold

av’
Gy ds = fII]{ Gy, VI VE

Advantage: Focus is on target unitary
Disadvantage: Euler-Arnold eq can be difficult
to solve

(.

Balasubramanian, Decross, Kar, Parrikar
Basteiro, Erdmenger, Fries, Goth, Matthaiakakis, Meyer

(Gaussian) State Circuit Complexity

* Characterize target operator by its action
on Gaussian states

1 2

~ —E wozkxk
(x[gr) e ; 1
O, ~ e Kbk —> (x|P7) ~ e 2

{0,}: basis for GL(N, C)

() Advantage: Simple to set up and find optimal path
J Disadvantage: Restricted to Gaussian states

Yk Qk X7

Jefferson, Myers
Ali, Bhattacharyya, Haque, Kim, Moynihan, Murugan

Let’s do an example on Operator Circuit Complexity




OPERATOR COMPLEXITY FOR DISPLACEMENT OPERATOR
Operator Circuit Complexity

Displacement Operator is important ==> can generate Coherent States

(Ghge(t) = Dl t) = B D)0 1y — uate

b _ At kA

Heisenberg \ D(a) = exp [aa o a]

Lie Algebra N S SUe N Y e L i

- . *81—E(a+a), eg—ﬁ(a—a), és =1,

[617 62] = —1€3, R

\L{target(t) — exp |v/2i Ima(t)] &1 + V/2i Re[a(t)] ég]j
Euler Arnold Equations Solutions

dv?! .
= A Vi(s) = wycos(vss)+ vysin(vss); This is the path
dV2 V2(s) = wisin(vss) — vacos(vzs); that minimizes
= = VI the circuit depth
ds V3(s) = us; p
v
ds

Resulting circuit complexity along this minimal path

1 °
Ctarget = / \/GIJVI(S)VJ(S) ds = \/v% +v3 + 03,
0




OPERATOR COMPLEXITY FOR DISPLACEMENT OPERATOR

Operator Circuit Complexity

Since the operator e, is the central element, it just gives an overall phase

exp

1 - 1 ) -
_i/ Vi ds] Y)r = exp —i/ (Vi(s)ér + V2(s)éa) ds| e ™3t [y)r
0 I 0 |

—~ 1 =
— exp |—i / (Vi(s)r + V2(s)é2) ds| e~ [9)r.
L 0 .

— 2 a2
we can set v; =0 Ctarget = \/ V1 + 03 .

Now let’s construct the U(s)

Target operator is the s =1 A s
boundary condition of the s- U(s) = Pexp [—i / Vi(s)eér ds’]
dependent unitary operator 0

010 0 0 0 0 0 2
ét=|0 0 0|, é=]00 1], é3=|(0 0 0
0 0 0 0 0 0 0 00

General Element of
Heisenberg Group



OPERATOR COMPLEXITY FOR DISPLACEMENT OPERATOR

Operator Circuit Complexity

with this group

element and the sols of dU(S) 71 AT
—==—V'(s) e U(s
the E A equations in ds ( ) I ( )
f
a(s) = ag—v18;
solved by the
parametrization < b (5) = bg—v2s;
1
\ ¢(s) = co+bovis— 51}1’0232
Then
1 ia(s) c¢(s) A ) 1 —ivs —%’01’0282
Us)=|0 1 ib(s) s=0,U(s=0)=1 U(s)=10 1 —1V98
0 0 1 0 0 1

We will determine the constants v; and v, by applying the boundary conditions:

S = 1, 0(8 = 1) = Z/A{target,
v1 = —V2 Im[a(t)],v2 = —v2 Re[a(t)]

Complexity CHeis = V2 |,



OPERATOR COMPLEXITY FOR DISPLACEMENT OPERATOR
Operator Circuit Complexity

Complexity [CHeis =2 |a|}

Note: the average number density — or equivalently,
the average energy — of a vacuum coherent state

(E) ~ No = (ald'dla) = |eof?.
Cdisplacement ~V <E > .

[ In QI protocols, the energy needed to prepare a state}

or set of gates can be an important resource.

The energy required to build a coherent state with some fixed complexity
grows quadratically with that complexity (E) ~ C2.

These scaling might have general lessons for building QI protocols?

Next: Operator circuit complexity for free scalar field




COMPLEXITY: FREE HARMONIC OSCILLATOR

Operator Circuit Complexity

Example: Free Harmonic Oscillator
|1/)T) = ﬁtarget w}R)

1 A :
o ~ s I ~ {O0;}: Dbasis of gates
[r) = e ol |hg) Utarget = P exp [ fo Vi(s) O dS] VI(s): tangent vectors

Model as continuous application of operators

a+afz a?—al

4 4

f, = %(a*a +aal) 0,

SH, Jana, Underwood

_ ala+aal
O3= 4

Characterize gates by structure constants [(51, (5]] =i flif Ok

[0,,0,] = =05,  [05,0,] =i0,,  [0,,05] =i0, su(1,1)
Minimization = Euler-Arnold eq on group manifold (G;; = 6;)

av’
GUE = fff G, VI VE



COMPLEXITY: FREE HARMONIC OSCILLATOR

Operator Circuit Complexity

Minimization = Euler-Arnold eq on group manifold (G;; = §)

vt=0o,
avli J ol 2 _ g
GI]EZfI]GKLVV > Ve = ’
V3 = min 2(wt — 21n)
B 2(2nn — wt)
Complexity
Crree = (V12 + (V2)2 + (V3)2
= V7]
an
2n an an ¢ W
w w @ ""e—iv3/2




COMPLEXITY: FREE SCALAR FIELD
Operator Circuit Complexity

SH, Jana, Underwood
Free scalar field ¢ in (d + 1)-dimensions, mass m, box L with periodic boundary conditions

{\ A = Np.xm/L UV cutoff R .
Nmax Pirn = nn/L

~ 1 . > - ’*‘ . > - M .
_ A~ . ~1 —ip— ode expansion:
$= 0. gy (aa el s agerthus) Nodepumson ) _
ﬁ’ n

The Hamiltonian becomes i
a sum over modes

[
DN | =
M]3
M]3
M8
S
7/ N\
%
§>
_|_
§>
Q>
&

Target Unitary  Utarget = e 2™

Complexity for a
single mode 7

for some integer m
2(2rm — Ezt) for m1(2m —1) < Ezt < 2mm

copies of free oscillator for each mode

= o 2(Ezt —2mm) for 2rm < Ezt < w(2m + 1)
Cfree = |’U3| =

Nmax

. Ay
Complexity .Of the Cp = Z (Vs)z ~ 14/2 j (V3 (p))z dip
free scalar field =




COMPLEXITY: FREE SCALAR FIELD
Operator Circuit Complexity

Complexity of free scalar field

Nmax

Co= | D, () ~ 107 j [(ve@)*at

- ) w & o o

Ce

continuum limit

100}

¥
'
L
L

L2272 (At) early times t < /A

~

L3/2pa/2 T late times t » m/A 80}

60+
\ Linear Growth:
complexity of only one 40}
mode growing \

20+

Tt/ t/m

Saturation:
complexity of all modes
oscillating, average out




Let’s change the gear...
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SQUEEZED STATES

Vacuum States Squeezed Vacuum Squeezed, rotated
State Vacuum State
_q_z _ﬁ iz 2r _p_z =27
Y@ ~e 2, o) ~e 2 Y@ ~e 2%, @) ~e 2°
1 . G+ =psing + X cos ¢
1 1 A2\ _ 2T A2\ 2T G_ =17 — % si
A%y == (apP) =3 (Ag%) = e (8p%) = e q- =pcos$ —Xxsing
1
(025" = 7 (8285 = (00,2007 = 7
P p

P




SQUEEZED STATES

Described by squeezing parameter r, squeezing angle ¢,

and rotation angle 6
7, ¢,6) = S(r, ) R(6) |0)
[Yr) = Utarget [Yr) ‘atarget =S (r,¢) R(6)

where r(t) —2ip 52 _ ,2ib sT2)| Squeezing
s, d))_exp[ 2 ( a e a ) operator

R(O) = exp [—19 (A a+ d&Jf)] rotation operator

Time evolution by generic g At a ( 2 * 42)
quadratic Hamiltonian =al'arty 2 A" HA

We canwrite U =S (r,¢) R(6)

Example, for IHO we get the Squeezed, rotated Vacuum
State (single mode)

2n)!
U(t U|0 —2n% tanh™ r v 2n
Sy m Z 2l
| b“W(;ﬂd record”. Squeezed States found in:
aboratory squeezing . :
-~ 17 Quantum Optics

Vahlbruch, et al, 2016 * Gravitational Wave Detection

* | Cosmological Perturbations

Squeezed, Rotated
Vacuum State

+=psing +Xcos¢
_=pcos¢p —Xsing

)y Q)

1
(83.°%09-%) = 7




WHY SQUEEZED STATES?

Squeezed states appear naturally in Cosmological Scalar
Perturbation Model.

The time evolution can be written as a product of Squeezing
and Rotation Operator.

We can apply both Operator approach and State approach
(by using wave function).

These squeezed states can be realized as a TFD.

We can get mixed (thermal) state by tracing out degrees of
freedom, hence study Decoherence.

Natural setup to study open quantum system and hence
Complexity of Purification.

Perform a comparison: Open vs closed system complexity.

Applications in quantum optics and quantum computations
Not today



SQUEEZED STATES: INVERTED HARMONIC OSCILLATOR

“The career of a young theoretical physicist consists of treating
the harmonic oscillator in ever-increasing levels of abstraction.’

Sidney Coleman




SQUEEZED STATES: INVERTED HARMONIC OSCILLATOR
State Circuit Complexity

Why inverted harmonic oscillator (IHO)?
Similar situation happens in cosmological perturbation model

IHO i1s defined by a Hamiltonian with a “wrong sign” of the restoring force
1

=252 _ 13242
2P T2
Using raising and lowering operators based on the non-inverted harmonic oscillator
1 k
A AT A A . AT N
r=—F—1\a +a), =n/=<-(a"—a),
@ra),  p=if5 @ -a)

Hamailtonian H = _g (&2 n &Tz)

If a system starts in the "vacuum state" annihilated by the lowering operator
G0) =0

then it will naturally evolve into a squeezed state at later times.

unitary evolution can -

be parameterized as: U=S(r,$)R(0)



SQUEEZED STATES: INVERTED HARMONIC OSCILLATOR
State Circuit Complexity

Why inverted harmonic oscillator?
Similar situation happens in cosmological perturbation model

Squeezed, Rotated Vacuum State (single mode)

[Yr) = ﬁtarget [Yr) S(r,¢) = exp ? (e'2i¢ 42 — e2i® aTZ)]
ﬁtarget = S'(r, ®) ﬁ(@) R(6) = exp |—i6 (c’iTc’i + dc’i*)]
» ew >0 . (27?,)'

W(t)) =U|0) = —1)" e 2" tanh" r X2 |2n
0 =0) = 7 > ok 2

Schrodinger . d 2

equation i1 (2)) = H[¥(t))

Squeezing - ksin(2¢);

equations .

of motion ¢ = kcoth(2r) cos(2¢)

Solution:  r(t) = kt, o(t) =7/4.




SQUEEZED STATES: INVERTED HARMONIC OSCILLATOR
State Circuit Complexity

Why inverted harmonic oscillator?
Similar situation happens in cosmological perturbation model

Reference state: unsqueezed vacuum (x|0)
Circuit?

Target state: squeezed state (x|y)
1 Q(t)
k

2 Im Q) \?
. I -1
Complexity C: = 2\/ (ln ) + (tan (ReQ ))
k

Qt) = s’ 6+ o2 cos? & (1 — isin(2¢) sinh(2r))

For small amounts of squeezing r < 1 Co =~ 0,

For large squeezing r » 1,¢ ~ % Cop =~ %\/(tan—l 627‘)2 ~ %

Complexity of a single mode vacuum squeezed state saturates at late times

Note: If we do the same computation for operator circuit, we get Co, = 2T
It is insensitive to the squeezing angle.



WHAT NEXT?

Examples:

Displacement operator : Operator complexity
Harmonic Oscillator : State and Operator complexity
Free field Theory: Operator complexity

What 1s Squeezed States?

Inverted Harmonic Oscillator

Complexity of Purification

Open Quantum System




SQUEEZED STATES, THERMAL DENSITY MATRIX AND TFD

Consider 1 =
Thermal state Pth = 7 Z e PEn In)(n

A straightforward purification of this _BEn/2
generic thermal state is the TFD state: |'TFD) = \/— Z € In) ® |n)anc

This is not a unique 1 B2

purification, and it is U)y = |TFD)y = —1 T WPY4INY ® |n ,
possible to include | >¢ | >¢ \/Z nz:;)( ) | > | >anc
an additional phase

We recognize this as a two-mode squeezed vacuum state

1 G n_—2in n Q
|\I/3q>: cosh Z(—l) € 2 ¢tanh r|n) & |n>anc = Ssq('f’, ¢)|O> ® |O>anc

n—

Bw = —Intanh?r

1 oo

k2 o Z (_1)n+me_2i(n_m)¢k tanh™ ™ 7y |1, Ngne M, Man
cosh” ry, —

pApure — |\I’sq><\Psq| —




SQUEEZED STATES, THERMAL DENSITY MATRIX AND TFD
SH, Jana, Underwood

Now consider the circuit |’¢T> = L? |’</) R>

with (purified)
ground state as [YR) = |0) ® |0)anc

Reference State

o, e 1
Position space <q, qanc|¢R> — NR exp [— —w(q2 + qgnc)]

wavefunction 2

For Target state |¢T> = |\I'>d>

position space

W
Usq (9, ganc) = (g, qanc|\11)¢ = N exp {—5 A(q2 + qgnc) —wB q qanc}

wavefunction
A 1+ e %% tanh?r B— 2 tanhr e~ 2
1 — e 4%dtanh2y’ 1 — e4idtanhr |
1 o |1+ e 2@ tanhr o/ . .

Following the Cy = ﬁ In P r— + arctan®(sin 2¢ sinh 2r)
outline at the PR o
beginning of the - L In? 1+e _© + arctan? [ 2sin 2¢ ‘
lecture V2 1 — e—2ipe—Bw/2 1 — e—Bw

Complexity of the pure state



COMPLEXITY OF PURIFICATION

L A thermal state I:> A pure state j

For any mixed state pni, on the Hilbert space H, one can construct a

purification of p,,;, which consists of a pure state |¥) in an enlarged Hilbert

space e ™~
Hpure = H ® Hanc'.

\ ancillary d.o.f. Y

Trace of the density matrix of this pure state |¥) over the ancillary degrees of

freedom gives the original mixed state
Tranc (|O)(¥|) = fprix. —=> |¥)is a “purification” of p,,;,.
Note that expectation values of operators acting in H are preserved under purification,

(O) = Tranc ((xp|c§|\p>) — Tr (ﬁmix@)

Observables are preserved by purification.



COMPLEXITY OF PURIFICATION

The purification is not unique =p Many choices for the ancillary Hilbert space

Just needs to meet the

H,,.1s arbitrar pe - -
anc Y purification requirement.

Example: There may be a set of pure states {|¥), 5.}, parameterized by «, 3, .1,

To distinguish among |:> Minimize a quantity with
the set of purifications respect to the parameters.

E. E. or Complexity

We are interested in the complexity of the mixed thermal state

So, we will minimize the complexity

Complexity of ¢, (8) = n%in C(|¥)as,...|YR))

purification



SO, WHAT ARE WE DOING?

Thermal
Mixed State

@ Purification

TEFD
(Pure State)

Add Phase

Two Mode

Squeezed State L~

Why?

State Complexity  Because sensitive
to squeezing angle

Complexity
of Pure State

@ Minimize ancillary

Complexity
of Purification




SQUEEZED STATES, THERMAL DENSITY MATRIX AND TFD

1 + e=2ibg—Bu/2
1 — e—2ipe—Buw/2

e—Bw/2

-+ a.rCta.nz (2 sin 2¢1—_

Complexity for 1 2
C In o

The purified state ~® /2

) tanhr = e—Aw/2

COP for Thermal State

. PR . T
C 1s minimized at "

1 . 1 e_ﬁw/z
Cn(B) = C¢,|¢=7r/4 = E| arctan(sinh 2r)| = 7 arctan 2m

—Bw/2 s System and ancillary
V2 e low temperature limit fw >1 r -0 entangled, B ~ 0

high temperature limit, fw — 0 7 > 1 Wavefunctionis off
diagonal A ~ 0,B ~ i

Q

important when we study
decoherence in the next lecture

C

3.0

: Co=0
25
2.0

15

0.5
f - ‘ Tw

5 10 5 20

Fig:Complexity of purification COP, as a function of
temperature T = 87! for ¢ = 0 and ¢ = 7 /4.




End of Lecture 2

Thank You




