
 Quantum Information
Lecture 5

TheCircuitModel of Quantum Computation

In the circuitmodel of quantum computation we have our logical qubits that
are carried by wives The physical realizationof a qubitmay involve manycomponentsystems physical qubits

As the qubitsmove from left to rightwith time unitaryoperators act on them
In quantum computationwecall themgates Unitary operations are reversible and s

we use gateswhich are reversible This is in contrast with classicalgates which

can be irresible

Measurements on the qubits are usually done in the computational basis and they ar
denoted by 4 symbol Depending on the operation we are interested in we can

have gates that act on one or more qubits
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Ancilla qubits
Often in quantum computationwerequire extra scratch bits which help with the

computationbutwhich are discarded at the end of computation Suchbits are known



as ancillabits and Thy are usually initialized in the 107 state
classical channels

In addition to wives through which quantum states propagate sometimes we make
a measurement and use the result of the measurement in a quantum computation down
the line We denote these classical channels by dashed lines

LN
classicalchannels

E

Converting classicalgates intoquantum gates

Since quantumgates are reversible whenwe are converting a classical circuit

componentto its quantum counterpart we mayhave to carry extra information E g
the classical NOTgate is reversible
NOT gate NOT 1



So it is easy to implementquantum mechanically
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We implement the ANDgate as a Toffoligate
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We can represent quantumgates as matrices expressed in the computational basis

NOT la.by la a b CNOT



UniversalGateSet

A gate sets is universal if a product of gatesfrom 5 whichgives
an arbitrary unitary 4 S4 2N

For classical computation Toffoli is universal
For quantum computation CNOT all single qubit rotations 5412

NOT is a two qubitgate
Examples of one qubitgates I Y 2

E E
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Comment

1 We only need to define theaction of a gate on the computational basis The

actionof thegate on all other statesfollowby linearity E g

Ro 2107 BID 2107 e ID

2 It mayappear that a universalgatesetmust include an infinite variety of
one qubit gatesbut that is not necessary A set of 1 qubitgates is said

to be universal for 1 qubitgates if any onequbit gate can be approximated
to arbitrary accuracy by a quantum circuit using onlygates from that set

3 The phase gate is givenby T o which is equivalent

Then the set H T is universal for 1 qubitgates

4 The set CNOT H.TT is a universal set of gates



Controlled U gate
The CNOT gate can begeneralized by replacing the NOToperation byany 4

4

von Neumann Measurement Circuit
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How to Make the Bell Basis
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Next we apply NOT on 1427 andget

1437 C i i j II I j Bij



Thuswe see 1βoo 1007 1117

IPOD 101 1107

Iβ10 1117 1007 100 111

I β 1107 1017 f 101 1107

Superdense Coding

Suppose AliceWants to send Bobtwo classical bits If Alice and Bob share an enta

gled state Alice can accomplish this task with sending just one qubit
suppose the entangled state is

Poo 1007 1117

Then to send the following classical bits Alice applies the following transformati
00 1011 βoo IPod
1 I Poo X I f2 1007

111
2
1107 1017 IβoD



10 Z I for Z I 1007 1117 1007 1117 Iβ o

11 IX 1 IPod Z I 2400 1117 110 1017 1PM

Then Bobjust have to do a measurement in the Bell basis
A b
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Quantum Teleportation

In often used subroutine in quantum algorithms is quantum teleportation
which allows Alice to send a qubit to Bob by using an entangled pair
Suppose Alice has a qubit in some unknown state 147 that she wants to

send to Bob who is far away from her



If Nice could copyher qubit 147 then she could send a copy But quantum
mechanics doesnot allow for a cloningmachine w̅ exist This is a simple
consequence linearity

Proof of NoCloningTheorem

Suppose such a machine exists

147 Q 147

107
XEROX

147

Then its action the computational basis would be 10 107107

11 11 117

Now if we feed it an arb qubit 147 2107 β 17 then by linearity
we get 21007 β in 2107 β d 2107 β D

Thus such a machine doesnotexist



Teleportation

147 this a
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Nice andBob's initial state

147 Boo 107 β D 1007 1117

After CNOT weget

14,7 210 1007 1117 β is 1107 1017

Then we apply H on thefirst qubit

1427 α 10 117 1007 1117 β o 117 1107 1017

100 107 β D 1017 2117 β07 1107 2107 β D



1117 2117 β 07

After measurementby Alice and BOB

00 1437 2107 β it

01 143 2117 β07

10 1437 107 BID
11 1437 117 β107

Bob then applies thefollowing operators conditional on the resultof the joint
measurement

00 I 2107 β D 147
01 2117 β 7 2107 BID 147
10 Z 2107 β117 107 β IT 147
11 Zx 117 8107 2 2107 β117 2107 β D 147



Phase kick Back
Consider theCNOTgate 1a by 197 a b7

Written in terms of the computational basis it appears that thefirst qubit is

just a spectator qubit
But if we feed it different states in the target bit we get somethingVen
different

CNOT 10711
21 1

117 10 7 117 107

11 1 1
Which we can summarize as

CNOT 1a D 1 514 III
Suppose we have a unitary operator 4g which implements the function

f 0,13 0,1



as a controlled 4g gate

C Ug 1 7197 127 y f a

then we cangeneralize phase kick back by

Hf 197 107 117
4

E fE

1 7 1

If f x 0 then it has no effect But if f x 1 then it leads to bitflip
Thus we get

C 4g 1a
1 9 7 1



The Deutsch Jozsa Algorithm
TheDeutsch problem is a toy problem that demonstrates the
massive parallelism of quantum computing but also shows
a limitation on the kind of measurements that is useful

Suppose f is a function of see 0,1 2 I such that

f is either a constant function or it is a balanced

functioni e f x for half of the values of x while it is
f x 1 for the other half of the values of a

The problem is to find out whether its a balanced function
or not The best classically deterministic algorithm has to

invoke at most 2 1 calls of f x to determine whether

f x is balanced or not

There exists a quantum algorithm that can solve this problem



by one call of the function The trick is to prepare a

state that is the sum 127 tree 0,1 2117 The
the function f x can act on all valuesof its argument
with just one call

107 H or H
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141 Σ
0,1

M Phase kickback

147 I d
1437 will depend on the nature of f x If f x is a constant

function that all the phases will be either 1 or 1 And
the action on H N

on 127 will yield 10 07 In this

case an observation of the first N qubits will all yield 0

On the other hand if fix is balanced then the positive
and negative contributions to the 10 07 state will cancel
and an observation of the first N qubits will yield some

1 values


