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LECTURE 4
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Examples: Displacement operator, Harmonic Oscillator, Free field
Theory

What is Squeezed States?

Complexity of Purification

Today

©)

©)

©)

©)

©)

Cosmological Perturbation Model

Cosmological Squeezed states

Operator Complexity for cosmological perturbation
Sate Complexity for cosmological perturbation

Open System: Complexity of Purification for Cosmological
Perturbation
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Closed system: Closed system: State

Operator Method Method
Squeezing Two-mode
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Open System:
State Circuit
Complexity: Decoherence
Field Theory
Limit

Complexity of
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COSMOLOGICAL PERTURBATION MODEL

-

\_

To get the Action for

linearized cosmological >

perturbations

We expand the action
to quadratic order in
the fluctuating d.o.f.

~

)

The linear terms cancel because the background is
taken to satisfy the background equations of motion.

The Einstein-Hilbert action for gravity and the action of a scalar matter field
Mukhanov, Brandenberger

/ A2/ =g~ 1o R+ 50,000 — V(©)

The simplest way to proceed 1s to work in a fixed gauge, longitudinal gauge

The metric & d 82 —

matter take

the form (p(?], X) =

a®(n)[(1 +2¢(n,x))dn* — (1 — 2¢(t,x))dx”]

wo(n) + dp(n,x).

Ansatz



COSMOLOGICAL PERTURBATION MODEL

o The off-diagonal spatial Einstein equations force ¥ = ¢ since §T;; = 0 for scalar field\
(no anisotropic stresses to linear order).

o The two remaining fluctuating variables d¢p and ¢ must be linked by the Einstein
constraint equations since there cannot be matter fluctuations without induced
K metric fluctuations. /

Calculation:

o 1nsert the ansatz into the action,

o expand the result to second order in the fluctuating fields,

o make use of the background and the constraint equations, and dropping total
derivative terms from the action

Then the action quadratic in the perturbations:

1 "
52 = §/d4m[v’2 — v,V + z?vz]

Mukhanov v = a[5<p+ ﬁqﬁ] , H = a’/a, z = % |:> z(n) ~ a(n).
variable H H

Note: v=2zR (curvature perturbation R = + (,% Q)
0



COSMOLOGICAL PERTURBATION MODEL

14
The action : §(2) = %/d‘lac[v'2 — VU + Z—’U2]

J*—“ kth Fourier Mode
The EOM in " z
(7 —I—kzvk—— =0

2

momentum space

124
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COSMOLOGICAL SQUEEZED STATES

/ Background metric — Cosmology

Cosmological Perturbations

ds* = a.(n)Q (_(1 + 2¢(z, n))dn? + (1 —2¢(x, 77))d:1—:'2)

"
KAction: S = %/dﬂ >z [v'2 — (0v)* + %v2]

Brandenberger, Mukhanov

: ‘ ‘ ‘ : : ‘ , /(1+3w)
ds? = —dt2 + a.(t)zdfz — av('r))z (—d772 + d;i"z) equation of state a(n) ~ (1)2 1+3

Scalar Field

p(z) = p(n) + dp(n, z)

Hamiltonian: A

/
cosmo = /d"”k?—t,; = /d3k [k (alag +a_zal ) —i= (aga_ —ala’ )]

Free-particle Inverted Oscillator

Dominates when mode
\ outside horizon k <K H
\
/ \
{ mode k l Time-dependent
LUV AVAVAVAVAVAVAVAN ! frequency
\ / N _J
. 2 Y
) ‘H\ubble Horizon 7 R
<« N - — >

—

Two-mode squeezed state (k, —E)
Accelerating background
Stretches modes outside

horizon (horizon-exit)

Grishchuk, Sidorov
Albrecht, Ferreira, Joyce, Prokopec

I will discuss de Sitter, w = —1



COSMOLOGICAL COMPLEXITY

The complexity of quantum cosmological perturbations

|7~/}T> = Ucosmo |¢R>
Squeezed

Cosmological |T'k, ¢kr 6k> = g(Tk, ¢k) jé(gk) |07(’, 0_7(’)

Perturbations

Operator Circuit Complexity

SH, Jana, Underwood

A 7 . .
R _ 1 R S =exp [?k (8‘2‘¢k aza_3 — eZ“i’kdz c“z&)] squeezing
Urarget = P exp [ j Vi(s) O, ds] ) A operator
0 R =-exp [—i@k (AE &E + &_E d_E>] rotation operator

Characterize gates by structure
constants

 Minimization:
10:,0,] =i ff§ Ok

= Euler-Arnold eq on group manifold

J
. o AV’ _ ke vyl
alzaﬁa_ﬁ+aﬁa_7( GI] ds —fU G, V'V
2
~ A AT AT VI(s): tangent vectors
O, =i e > su(1,1) = solve for V/(s), construct Usarget
2
Gz dz + &fz a_z * Operator Circuit Complexity
03 = 2 /

c@=/GWW
Two-mode Operators can 1

be generated from this
fundamental operators.



COSMOLOGICAL SQUEEZED STATES
Operator Circuit Complexity

dvl 9,3
Geodesic s = VIV V1i(s) = wicos(2u3s) — vy sin(2uzs)
: 2
Equations % = 2viv3, |:> V2(s) = w;sin(2uss) + vy cos(2u3s)
d_V3 - 0 VB(S) = U3,
ds ’

The resulting circuit complexity along this minimal path is then simply

Ctarget = mlnD = mln/ V GIJVIV‘] ds. = \/Ul —I—’U2 +U3

{v7}

Now let’s construct the U(s)
Target operator is the s =1

S
boundary condition of the s U (s) = Pexp [—i / VIs)eér ds/]
0

dependent unitary operator

We use this representation A general element of SU(1,1)

10 -1\ . 1f(0 4} ., 1(1 0 As_q(s)p(s)*
1_5(1 o)’ez_z(z' o>’63_2(0 —1)' U()_(p(s) q(s)*>

lg]> — |p* = 1.



with this group element and the  dU(s)

sols of the K A equations in ds
solved by the a(s) = e—ivss‘(cleASﬂ + o) v +v3 = v*
parametrization p(s) = v2 ;2“)1 eivas (01( A — iv3)e*? — coy(A + v3)e e/ 2) A= /v -0}
Then U(S) — q(S) p(S)*
p(s) q(s)*

A

U

COSMOLOGICAL SQUEEZED STATES
Operator Circuit Complexity

A

= —iVI(s) é; U(s)

e~3$ (cos 2—351n As
o - (7 )

etv3s —(v2 w1) ginh ( 2) e"’3% (cosh (%s) — 4% sinh

We will determine the constants v; by applying the boundary conditions:

s = 17 U(S - ]-) — z/A{target: Z/?targ;et:(

e tvas K—M;\wl sinh (ﬁ

>)

(%))

e coshr e (20+9) sinh r)

e~ U(20+9) ginh r e cosh r

)



COSMOLOGICAL SQUEEZED STATES

The complexity of quantum — 9]
cosmological perturbations h'bT) ucosmo ll'bR )

Squeezed Cosmological Perturbations

-k

)l rotation operator

$= exp [% (e—2i¢k aza_z; — ez""’k&;&t)] squeezing

ITies Dres Okc) = S (e, b)) R(6x) |05,0_3) | R=exp |-i0x (a; af +a' 0

operator

(Bunch Davies)
o EOM for ry, ¢y, 6 come from Hamiltonian

Complexity?

/
2 afa oA At A P s P
HA,—k(aEak+a_ka_E) e (aka_k aEa_E)

o Unsqueezed limit r; = 0 is the Minkowski vacuum [0);; _;

Complexity | Cq(n) = /4rg(n)2 + v3(n)?

where v; 1s given in terms of 8,

20 forr <1
lvs| =
O min forr>1

0 6 —2mn  for 2rn < 6 <7m(2n+1)

2tm — 0  for m(2n—1) < 0 < 27n

Time
Dependence?

\
\\-J

—’e—ivg/z




COSMOLOGICAL SQUEEZED STATES

[Yr) = ﬁcosmo [Yr)

Bhattacharyya, Das, SSH, Underwood
Two-mode Squeezed States

Inside 7h, Gres Or) = 5‘( » . i
: ks Ok, Ok) = S(Tk, d1) R(0k)]0) Qutside

Horizon: g Horizon:

k

T »1 o Unsqueezed limit 1, — 0 is the Minkowski k «1
e 7 is fixed vacuum |0); _; (Bunch Davies) H l

’ : . * 1 ~Ina

* ¢y, 0 evolve o EOM for ry, ¢y, 0, come from Hamiltonian . ‘f;{k: 9, fixed

Heisenberg Equations

d /

dLTI; = —z; COS(2¢]€) )

d !

dink = k+ z; coth(2ry) sin(2¢z) ;
doy. 4

a = B — tanh(ry) sin(2¢y,) .




COSMOLOGICAL SQUEEZED STATES

|¢T> = ﬂcosmo |¢R>

Bhattacharyya, Das, SSH, Underwood
Two-mode Squeezed States

Inside 75, G, Or) = S(r, ¢k)7%(9k)|0>];§ Outside
Horizon: Horizon:
E > 1 o Unsqueezed limit r;, — 0 is the Minkowski f «1
. ‘7;.[ S fied vacuum |0); _ (Bunch Davies) H
k ’ ) ) * 1. ~Ina
* ¢y, 0y evolve o EOM for ry, ¢y, 0; come from Hamiltonian . b0, fixed
: f f 2 N
Hp=k ( g+ a_Ea_E) —i— (a,—c'a_,; - aEa_E)
Heisenberg Equations Exact Solutions for de Sitter
dry, 2! | 1 | a
hadt .. S : = h ——— ) = sinh
dn . cos(2¢x) ; Tk sin ( 2Tk sin S Hys
doy. 2z T 1 o 1 T 1 wll a
L | S — 1 . = —— — =% — = —— — -t
3 k + y coth(2ry) sin(2¢) ; Ok i 27k 4 g tan ShH s
d9k Z/ . = 1 kHdS o a
e _ tanh(ry) sin(2¢y) k |kn| — tan 27k 2 S Ty




Cos[2¢x]

COSMOLOGICAL SQUEEZED STATES
WJT) = ﬂcosmo hpR)

Two-mode Squeezed States

Bhattacharyya, Das, SSH, Underwood

Inside 7y Ok, O) = 3( > = i
- ks Qs Ok) = S(ri, or)R(0k)[0) Outside

Horizon: g Horizon:

k

T > 1 o Unsqueezed limit r, —» 0 is the Minkowski f «1
. 7, is fixed vacuum |0); _z (Bunch Davies) H ,

! . . * 1, ~Ilna

* ¢y, 0y evolve o EOM for ry, ¢y, 6, come from Hamiltonian . ‘I;(k: el

B z
He=pl(ata-a1a -at Y —iZ (6-6 -—atal
A arap+a_ga - i—(aga_g—aza .

z
When Mode exits the horizon squeezing Squeezing begins to grow
angle freezes when mode exit the
horizon

0.5

o
=)
N

|
o
[3))

001 10 10°

001 10 10o°

Cos[264]




COSMOLOGICAL PERTURBATIONS:

Complexity Ciz(n) = \/47'k(77)2 + v3(n)?

IR (Super-horizon modes) Limit

1 No of e-folds
Cz(n) ~ 2rg ~2In (2|k7l|) ~ 21In (a(n)/ae) ~ 2N, after the

horizon-exi
Scale fgor at the ex1t
horizon-exit

30" ]
Inside Horizon: 25" . ; ; )
: Outside Horizon:
* K1 20" * Grows with squeezing, e-folds

* Complexity oscillates

. () a

© \ i C =71, ~In ( )
Ccosmo < 27t. 'k 15" cosmo , Qexit
due to rotation phase 6 : e Growth is linear in

10+ cosmic time t, a(t) = eHast
i C(O) _ H \_ J
5[ cosmo — dSt
0" i
0.01 10 104



COSMOLOGICAL PERTURBATIONS: FIELD THEORY LIMIT

A
G 2\/ / (4rk(n)? + v3(n)?) d3k .

IR limit |kn| < 1, @ UV Limit [kn| > 1

In|—1 i A
Coo ~ L / 4ri(n)? d3k + / v3(n)2 d3k ~ L3/ / k2 In? (—) dk + / k2dk
IR Uv 0 Lyl In|—1
~ (132 \/|a_|13 +a@ upto some (1) factors absorbed in a; constants
n

\

Proportional to growth of the de Sitter volume ~ H3.a(n)?3

Even for Planck-scale UV cut-off and 60 e-folds, IR terms dominates for Hubble scale down to H;g > 1 keV

During inflation, complexity of the universe grows by a factor

tot 3/2
C**(ny) (e ~ e3NVe/2 L 90 ~ 1039)for N, ~ 60 e-folds of inflation
Cto'(m)  \ai

Now we will consider the (Gaussian) State Circuit Complexity




OUTLINE

Goal: Complexity
in Cosmology

Cosmological
Perturbation

Not talking about AdS/CFT

Decomplexification

Closed system: State
Method

Two-mode
squeezed state

Open System:

State Circuit

Decoherence

U

Complexity of
Purification




COoSMOLOGICAL COMPLEXITY

(Gaussian) State Circuit Complexity

Squeezed Cosmological 7%, Dre, 01 ) = S(T‘k, br) jé(gk) |07€‘ 0_7{,>

Perturbations

k 1/4 v )
Reference State wR(qE’q—l_c') - <qE’q—E|0>E L= <;) e 5 (az+a” )

vacuum
2 2
eA(q,;+q_,;)—Bq,;q_,;

cosh 7y, \/77\/1 — e—4%i%k tanh? ry,

A k (6—41f¢k tanhz i + 1) . B2 ( e'—ziqsk ta;‘h re )
2 \ e~4%k tanh“r, — 1 e—4%k tanh“r; — 1

Target State

cosmological squeezed state

\psq(qgaq_i{;) — <ql_{;’ q_]}’|\Ijsq>E =

1 + e—2i%x tanh ry 2

1 — e—21%x tanh ry

2
) + (’can_1 (2sin 2¢g, sinh 7 cosh rk))

Cz(k) = %\/(ln

= ——cos(2¢k);
We have dr o

d /
di; = k+ z; coth(2r) sin(2¢yx) ;




COoSMOLOGICAL COMPLEXITY

(Gaussian) State Circuit Complexity

Squeezed Cosmological _ & S ~ .
Perturbations Tk, D1 Orc) = & (1, i) R(6r) |0k’ 0—k>

Calk) = %\/ (ln

1+ e~ 2%k tanh i 2

1 — e 2%k tanh ry

2
) + (tam‘1 (2 sin 2¢, sinh 7 cosh 'rk))

Ik

50+

40

30

20}

10
0 001 10000 10f 100 1o 1o @ 001 10000 10° 100 10" 10 2
on super-horizon ., _ 1 | L+ e tanhry %Lln( a )
scales we expect V2| |1 —e %% tanhry V2 \Gexit




C (s)

cosmo

COoSMOLOGICAL COMPLEXITY

(Gaussian) State Circuit Complexity

the complexity of quantum — .a
cosmological perturbations hpT) cosmo |7~/)R>

Squeezed

Cosmological |rk» D 9k> — <SA‘(T'kr ¢k) jé(ek) |0E' 0—7{’)

Perturbations

Tk

60+

50F

40}

30

20+

10+

"

e el /%

0.01 10 T R

Unbounded growth of
complexity depends
sensitively on

squeezing angle ¢




C (s)

cosmo

COoSMOLOGICAL COMPLEXITY

(Gaussian) State Circuit Complexity

the complexity of quantum lYr) = ﬁcosmo |Yr)

cosmological perturbations

Squeezed

Cosmological |rk» D 9k> — <SA‘(T'kr ¢k) jé(ek) |0E' 0—7{’)

Perturbations

Tk

60+

50F

40}

30

20+

10+

"

NN V)

Tk

Vi

0.01 0 10 k a

Vk

Unbounded growth of
complexity depends
sensitively on
squeezing angle ¢

O Complexity of dS is

maximal w.r.t. ¢
Why?



COSMOLOGICAL COMPLEXITY

the complexity of quantum
cosmological perturbations

Squeezed
Cosmological
Perturbations

(Gaussian) State Circuit Complexity

|¢T> = ﬁcosmo |l/)R>

76, 1 O1) = S (e, d1) R(6y) [07,0_)

Bhattacharyya, Das, SH, Underwood

+ Characterize U.ysmo by its action on Gaussian states What is the. long-term
A(q2+q2 )_B 0 q behavior of
Ysq = (QQ: q_Elrkr i, O ) ~ e” Ve 7=k ke -k cosmological complexity?
/ Unbounded?
e 1 C(S) e
Inside Horizon: cosmo / QOutside Horizon:
10} : : . .
c K1 ‘ EE)(()irtlzon - = Saturate *  Grows with squeezing, e-folds
- Gaussian State J N ? OIS 1n< a
v 1 141 [ cosmo 'k ~
Son;lplexﬁ%fs)msens;tlve | Decrease Aexit
0 phase < , Lo .
. cosmo ) 6 ? * Growth is linear in
; cosmic time t, a(t) = e'last
4 e o~ H )
: cosmo ~ Hgst
2!
001 10 10° 10/  10° a



COoSMOLOGICAL COMPLEXITY

(Gaussian) State Circuit Complexity

1/4
k/' _k +
Reference State ¢R(qE, q_}-c») — <qqu_E|O>E,—E = (—) e 2 (4p+aZp)
vacuum T
eA(q§+q2_,;)—Bq,;q_,;
Target State \Ilsq(q~ q ~) - (q-. q —»|\Ilsq>—» —
cosmological squeezed state 67 S sy k cosh L \/7_1-\/]_ _ e—4i¢k tanhz L

k ( e~%i%x tanh? 1 —2idk
A:_(e . an 2rk—|— ), B:2k‘( e. taglhrk )
2 \ e4%x tanh“ r, — 1 e~ 4%k tanh“r, — 1

rr = sinh™ ( )

Radiation?
5 T N 1 tanhl 1
= —— + —tan —
g 42 2kn
At sufficiently a mode will start outside the horizon
early times n - 0 kn « 1, then re-enter the horizon later.

We expect that the squeezing of the mode will continue to grow while
outside of the horizon, then “freeze in” when the mode re-enters the horizont




Ik

25¢
20}
15¢

10¢

COSMOLOGICAL COMPLEXITY

(Gaussian) State Circuit Complexity

Radiation?

1
T = sinh_1<

%);

0.01

10

7[ ]. -1 ].
k = —— + - tanh —
¢ 4 2 (2kn>
. Cos[2¢%]
dS | Radiation 1.0 :

E dS Radiation

0.5
01 10 1c§)4 107 10P

-05 :

1(E)4 = -1.0 -

107

10'10

What happens to complexity?




COoSMOLOGICAL COMPLEXITY

(Gaussian) State Circuit Complexity

Tk

the complexity of quantum ¢

. . ‘De-Complexification”:
cosmological perturbations

o Complexity decreases for radiation-dominated,
e then “freezes-in” upon horizon re-entry!
o Modes are still highly squeezed

o dS — radiation transition cuts off complexity
growth

\\

Inflation followed by “Reheating”
dS . Radiation

(s)
Ccosmo i .
10] ‘Horizon

;Exit

: Horizon
: Re-entry

0.01 10 10* 10’ 10'°

Bhattacharyya, Das, SH, Underwood



CoSMOLOGICAL COMPLEXITY

(Gaussian) State Circuit Complexity

the complexity of quantum
cosmological perturbations

Accelerating, Expanding Backgrounds

1o\ ~2/(1+3w)
) Equation of state p = wp

ds? =a(n)? (=dn? +dx?) a(m) = (7

Bound on growth rate % <+2H

(s)
CCOSI’I’IO ys
— w=-18
14} 4 .47 deSitterw=-1
121f w=-16
w=-15 ( . )
10! e Growth rate of complexity
o saturates at w =-5/3
2  de Sitter is not fastest growth in
i cosmological complexity among all
4} S possible accelerating backgrounds...
- (but others violate NEC)
! 7 — w=-08 \ )
YT BT T "/ ) e ) gy PNEEIER 1
103 102 107" Z10° 10" 102 10° 10 NEC:—1<w< ——

Q
w

Bhattacharyya, Das, SH, Underwood

Open Quantum System?



FROM LAST TIME (LECTURE 2)

N s
Thermal fy, = Eze BEn ) (n] |::> ITFD) = \/_Ze BEn/2|n) & |n)anc
n=0

tat e
srate purification

This 1s not a unique purification, and it is possible to include an additional phase

[¥)g = |TFD)y = \/—Z —1)"e 2"e™ "2 n) @ [n)anc

We recognize this as a two-mode squeezed vacuum state

4 )

- . R
[Wag)= ——— >~ (=1)"e ™2 tanh® r/n) & |n)anc = Ssq(7, 4)/0) @ [0)anc
n=0
\ Bw = —Intanh?r /
1 > .
0 ure — \Ds \Ils == - -1 ntme—2i(n—m)ek t hn+m " . " P
Pp W sg) (Psql coshZry n,%;()( ) e an Tk [ng,n_g){mg, m_z|

We can get a reduced density matrix only with diagonal entries
by averaging this density matrix over the squeezing angle  Brandenberger

1 o0
Doy = ———=——— tanh?"r. ln-.n N (n-n -
Pred COSh27‘knz=;) kl L —k>< k? _kl @

Serve as a simple model for decoherence




COSMOLOGICAL COMPLEXITY

(Gaussian) State Circuit Complexity

Reduced density matrix resulting

Decoherence from this simple model of decoherence
is thermal

Pure State Thermal Density Matrix

(0]
Boure = 1T Prer O )T, i, O 5 1 2n
Ppure k» ¥k VIl Tl VR =—> pDreqg = ——5— tanh“" 7y, |n%,n_ﬁ)(ng,n_ﬁ|

cosh? ry, 4
n=

Complexity of Purification

We will calculate the associated
thermal complexity of purification
of the cosmological perturbations.

Assume decoherence occurs at re-entry

Purification with ancillary dof
H->HQHyne

To do this, we expand our Hilbert * Minimize complexity over purification
space to include an ancillary copy Cpurif = 11} Crot

* | Complexity of purification O(1)
s

Cooio A ——
purif 2\/7

1 = :
1\ I E —1)"e~2"? tanh™ r, |nz) ® |nk
| COSIHO,P)IC cosh 7y, nzo( ) k | k> | k> SH, Jana, Underwood

(Suppressing the —k modes here)



COSMOLOGICAL COMPLEXITY

(Gaussian) State Circuit Complexity

Decoherence
Pure State Thermal Density Matrix
(ee]
A . 1
Ppure = |7, Pr, O X1, D, Ok —>  Dred = —Zz tanh®™ 7y, |ng, n_z)ng,n_z|
cosh? ry,
n=
Cpurit Complexity of Purification
10 ds i radiation » Assume decoherence occurs at re-entry
Horizon Horizon
gl exit re-entry Purification with ancillary dof
' H->HQHyne
6; Co. . . e .
* Minimize complexity over purification
al Cpurif = glr}g Ctot
ol * | Complexity of purification 0(1)
: : : n
- e - ————— = === 2 — Courif ® —=
: 2\/5 purif 2\/7
102102107 10° 10" 102 10° 10° 10° 10° 107 10° 10° 10" 107 1072 @

SH, Jana, Underwood



COSMOLOGICAL COMPLEXITY

(Gaussian) State Circuit Complexity

Decomplexification VS Decoherence

Inflation followed by “Reheating” Decoherence

O Cpurif upon re-entry
cosmo : ds : Radiation : 10 dS Radiation
10 iHorizon j { Horizon :
:Exit : i Re-entry Horizon Horizon
: : 8 exit

re-entry

Tk

0.01 10 00 Ta 1072107 1070 10] o

/_/W

¢ m
purif 2 \/E
Complexity of Purification

Complexity of
decohered
mixed state

Rapidly changing
squeezing angle ~




SUMMARY

Small - Scale —~
Quantum U coOsSmo
Fluctuations

‘ What is the (quantum
circuit) complexity of
this process?

“Squeezing”

O Cosmological Complexity in dS grows linearly with time C.osmo = Hgs t

O Complexity depends sensitively on squeezing angle ¢
= Complexity of dS is maximal w.r.t. ¢. Why? Did our Universe choose to be more complex?

0 Growth rate of complexity % 1s bounded from above for accelerating backgrounds

0 De-complexification during radiation-domination phase
= (Connection between decomplexification and decoherence?

Complexity can be a sensitive measure for studying
different models and implementing decoherence




FUTURE DIRECTION
Understanding Gravity and QFT from QI

Quantum Information Theory

V2NN T T B

Complexity for Complexity — Complexity Complexity for
Chaotic System  Complexity Interacting
(RMT) Can we probe to QFT
understand
: 2
For more realistic Mixedness? %1u%§rr£};i%2};'
Chaotic System IE)Iotion of
Complexity
Complexity Black Hole Complexity
for Can we probe Classical and for
—Quantum phase
Cosmology transition? Holography Tensor Network

Go beyond

linear fluctuation?

—_—) Time (or Complexity)



@ WHAT IS COSMOLOGICAL COMPLEXITY?

ChatGPT
Cosmological complexity refers to the intricate and multifaceted
nature of the universe at the largest scales. It encompasses the study
of the formation and evolution of cosmic structures like galaxies,

galaxy clusters, and the vast cosmic web, as well as the complexities

associated with cosmic microwave background radiation, dark matter,

and dark energy. This concept highlights the rich interplay of physical
processes, gravitational interactions, and cosmic phenomena that have

shaped the universe's history and structure over billions of years,

making cosmology a complex and fascinating field of study in

astrophysics and cosmology.




COLLABORATORS

Helped me to put together the lectures

Bret Underwood Arpan Bhattacharyya Ghadir Jafari

Thank You




