

[SM prediction](#page-47-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

The Standard Model prediction of the muon anomalous magnetic moment

Johan Bijnens Lund University

Vetenskapsrådet

johan.bijnens@fysik.lu.se <https://www.particle-nuclear.lu.se/johan-bijnens>

Celsius-Linnaeus Lectures Uppsala, Sweden 15 February 2024

CC BY-SA 3.0, https://commons.wikimedia. org/w/index.php?curid=142136

- Spin it around: angular momentum (\vec{L})
- Put charges on the rim: current: will react with a magnetic field: magnetic moment $\Delta E = -\vec{\mu} \cdot \vec{B}$
- For a (single) rotating charge q : $\vec{\mu} = \frac{\dot{q}}{2}$ $rac{q}{2m}\vec{L}$
- More complicated system: $\vec{\mu} = g \frac{Q}{2\mu}$ $rac{\mathsf{Q}}{2M}\bar{\mathsf{L}}$
	- g : gyromagnetic or Landé factor

for $(g - 2)$ _u Johan Bijnens

[SM prediction](#page-0-0)

LIIND **INIVERSITY**

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[Contributions](#page-13-0)

[QED](#page-14-0)

[Electroweak](#page-18-0) [Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

2/47

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

Angular momentum $=$ spin $= \vec{S} = \frac{1}{2}$ 2 \hbar

Charge $= -e$ (basic unit of charge) \bullet

Source: Nobel Foundation Archive

Dirac (Nobel 1933): Dirac equation $g \equiv 2$

Now to fundamental particle physics: all fundamental particles are pointlike

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

- But they can have charge, angular momentum and magnetic moment \bullet
- **Electron and muon have all**
- Angular momentum $=$ spin $= \vec{S} = \frac{1}{2}$ 2 \hbar
- Charge $= -e$ (basic unit of charge)

 \bullet

Source: Nobel Foundation Archive

Dirac (Nobel 1933): Dirac equation $g \equiv 2$

[SM prediction](#page-0-0) for $(g - 2)$ _µ

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

 $g_p \neq 2$:

Source: Nobel Foundation archive

• After WWII: $a_e = 0.00119$ (Polykarp Kusch, Nobel 1955)

(Lamb (shift) the other half)

(Otto Stern, Nobel 1943) Proton has substructure

Source: Nobel Foundation archive

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0) [Hadrons: why](#page-21-0)

difficult [HVP](#page-25-0)

[HLbL](#page-38-0)

• Now known very precisely $g_e = 2.00231930436118(27)$ or $1.3 \cdot 10^{-13}$ (Fan, Gabrielse,... 2023) define the anomaly: $a_e = \frac{g_e - 2}{2}$ 2 • $a_e = 0.00115965218062(12)$ or $1.0 \cdot 10^{-10}$ (PDG average) • $a_{\mu} = 0.00116592059(22)$ or $1.9 \cdot 10^{-7}$ see previous talk $g_{\mu} = 2.00233184118(44)$ or 2.2 · 10^{-10} (experimentalists are (too?) modest)

Can we calculate this to the same precision?

[SM prediction](#page-0-0) for $(g - 2)_{\mu}$

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[Contributions](#page-13-0)

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

[Conclusions](#page-45-0)

Source: Fermilab

Source: CERN

Do these two agree?

How many people do we need?

Many people involved: Fermilab (St. Charles) 2017:

Berne 2023:

[SM prediction](#page-0-0) for $(g - 2)$ _µ

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[Contributions](#page-13-0)

[QED](#page-14-0)

[Electroweak](#page-18-0) [Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

How many people do we need?

Muon g-2 Theory Initiative <https://muon-gm2-theory.illinois.edu/>

Chaired by: Aida El-Khadra

University of Illinois Urbana-Champaign

[SM prediction](#page-0-0) for $(g - 2)$ _µ

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[Contributions](#page-13-0)

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

The Standard Model

Source: CERN

- What is the Standard Model of particle physics?
- We have to go down in scale:
	- start at 1 meter
	- divide by ten a total of 18 times
	- Reach lengths scale of LHC experiments
		- or alternatively about 1 TeV (fundamental) energy scale
- Matter and forces are unified: everything is a quantum field

These are what the symbols signify as well as how they interact

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0) [Hadrons: why](#page-21-0)

difficult

[HVP](#page-25-0)

The Standard Model: particles and fields

Source: CERN

LUND **UNIVERSITY**

[SM prediction](#page-0-0) for $(g - 2)$ _µ

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[QED](#page-14-0)

Spin 1 fields **•** Bosons **•** Gauge fields • Interactions

 \bullet Spin $1/2$ fields **•** Fermions Quarks **•** Leptons **Spin 0 field:**

• Higgs boson

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

The Standard Model: Quantum-Electro-Dynamics (Nobel 1965)

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

Source: Nobel Foundation archive Sin-Itiro Tomonaga Julian Schwinger Richard P. Feynman

QED: $-\frac{1}{4}$ $\frac{1}{4}F_{\mu\nu}F^{\mu\nu}+i\overline{\psi}_{e}\gamma^{\mu}(\partial_{\mu}-ieA_{\mu})\psi_{e}-m_{e}\overline{\psi}_{e}\psi_{e}$

The Standard Model: Feynman Diagrams

• QED:
$$
-\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + i\overline{\psi}_e\gamma^{\mu}(\partial_{\mu} - ieA_{\mu})\psi_e - m_e\overline{\psi}_e\psi_e
$$

• Feynman diagrams: correspond to amplitude (quantum field theory)

Photon e [−], p¹ e [−], p³ e [−], p⁴ e [−], p² =⇒ ψ^e (p3)γµψ^e (p1) 1 (p¹ − p3) 2 ψe (p4)γµψ^e (p2)

More complicated diagrams: (much) more complicated expressions

[SM prediction](#page-0-0) for $(g - 2)$ _µ

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[Contributions](#page-13-0)

[QED](#page-14-0)

[Electroweak](#page-18-0) [Hadrons: why](#page-21-0)

difficult [HVP](#page-25-0)

Contributions

- The blob can get very complicated
- QED contribution: only γ , e, μ , τ (photons and charged leptons)
- Electroweak: add W , Z, Higgs, neutrinos
- Hadronic: add quarks and gluons Two main parts: HVP and HLbL

for $(g - 2)$ _u Johan Bijnens

[SM prediction](#page-0-0)

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[Contributions](#page-13-0)

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

QED contribution

cob

QED contribution

- one-loop: 1 diagram
- \bullet Two-loop: 4 diagrams Petermann 1957, Sommerfield 1958 a_e , a_μ start to differ
	- $a_e = 0.00115965218062(12)$
	- $a_{\mu} = 0.00116592059(22)$
- Heroic effort at higher orders:
	- 3-loop: 72 diagrams (known analytically)
	- 4-loop: 891 diagrams (essentially known analytically)
	- 5-loop: 12672 diagrams (only known numerically)

Source: Cornell Toichiro Kinoshita

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0) [Hadrons: why](#page-21-0) difficult [HVP](#page-25-0) [HLbL](#page-38-0)

QED contribution: people

- **Kinoshita, Nio, Aoyama, Cvitanovic, Lindquist, Remiddi, Laporta, Hayakawa,** Volkov, Passera,. . .
- $a_e = C_1 \frac{\alpha}{\pi} + C_2 \left(\frac{\alpha}{\pi} \right)$ $\left(\frac{\alpha}{\pi}\right)^2+\zeta_3\left(\frac{\alpha}{\pi}\right)$ $\left(\frac{\alpha}{\pi}\right)^3 + C_4 \left(\frac{\alpha}{\pi}\right)$ $\left(\frac{\alpha}{\pi}\right)^4 + \mathcal{C}_5 \left(\frac{\alpha}{\pi}\right)$ $\frac{\alpha}{\pi}$)⁵ + \cdots
- \bullet C_i known to sufficient precision (some discrepancies in C₅)
- Problem: need a value for α to sufficient precision (atomic physics)
- \bullet 1/ α = 137.035999206(11) (Rubidium, Paris 2020) \bullet • $1/\alpha = 137.035999046(27)$ (Cesium, Berkeley 2018)
	- $1/\alpha = 137.035999166(15)$ (from a_e)

Sometimes in theory experiment is the problem \bullet

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

OED

[Electroweak](#page-18-0) [Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

QED contribution

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

OED

[Electroweak](#page-18-0) [Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

- No problem for QED a_{μ}
- $a_{\mu} = 0.00116584718931(30)$ (QED, White paper)
- $a_{\mu} = 0.00116592059(22)$ (experiment)
- $a_{\mu} = 0.00000007340(22)$ (experiment-QED)

- Largest part explained by QED
- From now on will work in 10^{-11} units
- The 7340 $\cdot 10^{-11}$ to be explained from elsewhere

Electroweak

Electroweak theory introduced by (Nobel 1979)

 $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu \rightarrow W_{\mu\nu} = \partial_\mu W_\nu - \partial_\nu W_\mu - ig_W (W_\mu W_\nu - W_\nu W_\mu)$

Johan Bijnens

[SM prediction](#page-0-0) for $(g - 2)$ _u

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[Contributions](#page-13-0)

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

Electroweak

[SM prediction](#page-0-0) for $(g - 2)$ _µ

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[Contributions](#page-13-0)

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

 W, Z, H μ μ

 $\nu_{\mu}, \mu \not\!\!\!\!\!\nearrow \quad \sqrt{\nu_{\mu}}, \mu$

NNV

[Conclusions](#page-45-0)

Electroweak theory valid at loop level (Nobel 1999)

Source: Nobel Foundation archive Gerardus 't Hooft Martinus J.G. Veltman

19/47

Electroweak

• Add some more small (White paper): $a_{\mu} = 153.6(1.0) \cdot 10^{-11}$

for $(g - 2)$ _u Johan Bijnens

[SM prediction](#page-0-0)

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

Why are quarks difficult?

- Quantum Chromodynamics: very similar to QED and Electroweak at gauge level: Gell-Mann, Fritzsch, Leutwyler
- But asymptotic freedom and infrared slavery (confinement) (Nobel 2004)

Source: Nobel Foundation archive David J. Gross H. David Politzer Frank Wilczek

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

Why are quarks difficult?

• But asymptotic freedom and infrared slavery

• Can use perturbation theoy at larger Q, but not at the lower Q

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

What to do then?

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

• "Standard" theory

- Use other theoretical methods: dispersion theory, with (lots of) experimental input
- All possible QCD based constraints one can think of
- In the worst case: use models (but in a smart way)
- Brute force: lattice QCD (but needs a lot of thinking too)

Hadronic contributions

- \bullet Muon and photon lines, representative diagrams
- The blobs are hadronic contributions ö
- There are higher order contributions of both types: known accurately enough
- $a_\mu^{HVP}=6845(40)~10^{-11}~(\rm LO+NLO+NNLO)$ (White paper; error has increased)
- $a_\mu^{HLbL}=92(18)~10^{-11}~(\text{LO+NLO})(\text{White paper})$
- $a_\mu^{exp} a_\mu^{QED} a_\mu^{EW} = 7186(22)\cdot 10^{-11}$
- Difference: $\Delta a_{\mu} = 249(49) \cdot 10^{-11}$

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

HVP

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[dispersive](#page-26-0) [Lattice QCD](#page-32-0) [MUonE](#page-37-0)

$$
\bullet\quad \text{WW} = \text{Two-point function of two electro-magnetic currents } \Pi
$$

- Integrate over a weight function
- Can do that in:
	- Minkowski momentum space (dispersive approach)
	- Euclidean momentum space (early lattice QCD and MUonE)
	- Euclidean space (in principle lattice QCD)
	- Time-momentum representation (mixed; present lattice QCD)
- These are all related due to the analyticity property of two-point functions
- Simple: only one variable
- Problem: need 0.3% precision to match experimental a_{μ}

Dispersive: idea

\n- \n
$$
a_{\mu}^{LO-HVP} = \frac{\alpha^2}{3\pi^2} \int_0^\infty ds \frac{m_{\mu}^2}{3s^2} \hat{K}(s)R(s)
$$
\n
\n- \n
$$
\hat{K}(s)
$$
 goes smoothly from 0.63 at threshold to 1 at large s\n
\n- \n
$$
R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)_{LO}}
$$
\n*(R*-ratio)\n
\n

- large s: use perturbative QCD (from which s on?)
- · low-to-medium s: just use data

[SM prediction](#page-0-0) for $(g - 2)$ _µ

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[Contributions](#page-13-0)

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[dispersive](#page-26-0) [Lattice QCD](#page-32-0) [MUonE](#page-37-0)

[HLbL](#page-38-0)

Dispersive: some of the main people involved

Source: IN2P3 Michel Davier

Source: Humboldt universität Fred Jegerlehner

Source: University of Liverpool Thomas Teubner

[SM prediction](#page-0-0) for $(g - 2)$ _µ

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[Contributions](#page-13-0)

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[dispersive](#page-26-0) [Lattice QCD](#page-32-0) [MUonE](#page-37-0)

$R(s)$: overview of data

- Above 5 GeV: perturbative QCD, and integrate over Υ resonances
- 3-5 GeV: Integrate over ψ resonances, data and perturbative QCD
- 2-3 GeV: data and pQCD
- **Below 2 GeV: data** in exclusive channels

[SM prediction](#page-0-0) for $(g-2)_{\mu}$

Johan Bijnens

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[dispersive](#page-26-0)

[Lattice QCD](#page-32-0) [MUonE](#page-37-0)

Exclusive data: two main methods and an older revival

$e^+e^-\rightarrow \pi^+\pi^-$ largest contribution and error source

- 3 main experiments: KLOE, Babar, CMD-3
- **•** Flat disagreement outside quoted errors
- No reason for the disagreement found despite many private/public discussions
- **•** Dispersive error will need increasing

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0)

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[dispersive](#page-26-0)

[Lattice QCD](#page-32-0) [MUonE](#page-37-0)

$e^+e^-\rightarrow \pi^+\pi^-$ largest contribution and error source

- Combining needs care
- χ^2 inflation needed
- CMD-3 disagrees with all previous measurements
- White paper update in progress
- White paper $-249 + 43 + 29$

[SM prediction](#page-0-0) for $(g - 2)$ _u Johan Bijnens

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[dispersive](#page-26-0)

[Lattice QCD](#page-32-0) [MUonE](#page-37-0)

Lattice QCD

Discretize and euclideanize space-time L = Na

- Quarks on the vertices, gluons and photons on the links
- Limits needed: $a \rightarrow 0$, $L \rightarrow \infty$, quark masses \rightarrow physical
- determine a in physical units (scale setting)
- Largest lattices now $96^3 \times 144$ or about $2 \cdot 10^9$ degrees of freedom
- Do the Feynman path integral numerically
- BMW2020 (after White paper) 0.8% precision (Budapest-Marseille-Wuppertal)

for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[dispersive](#page-26-0)

[Lattice QCD](#page-32-0) [MUonE](#page-37-0)

Laurent Lellouch, Antoine Gerardin, Ruth Van de Water, Christine davies, Christoph Lehner, Harvey Meyer,. . .

Source: CPT Laurent Lellouch

Source: LinkedIn Ruth Van de Water

Source: University of Glasgow Christine Davies

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[Contributions](#page-13-0)

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[dispersive](#page-26-0)

[Lattice QCD](#page-32-0) [MUonE](#page-37-0)

The difficulties

[SM prediction](#page-0-0) for $(g-2)_{\mu}$ Johan Bijnens

Source: Phys.Rev.D 100 (2019) 1, 014510

- **· Long distance** difficult noise/lattice size
- Short distance: lattice artefacts
- o Intermediate: very precise

[The Standard](#page-9-0)

[QED](#page-14-0)

Model

[Electroweak](#page-18-0) [Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[dispersive](#page-26-0)

[Lattice QCD](#page-32-0) [MUonE](#page-37-0)

ö

 \bullet

• Finite size effects • Continuum extrapolation $(a \rightarrow 0)$ • Electromagnetic corrections • Quark masses (accurately and $m_u \neq m_d$) • Noise at long distances Disconnected contributions \bullet Only BMW has it all at precision below 1% Others are compatible but larger errors **• Connected, light quarks, intermediate distances: can compare**

(window observables)

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[dispersive](#page-26-0)

[Lattice QCD](#page-32-0) [MUonE](#page-37-0)

Comparison of intermediate window

- Very good agreement on the light quark connected intermediate window (but it is where the lattice is best)
- \bullet 4 σ disagreement with dispersive for this (not including CMD3 from 2023)

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[dispersive](#page-26-0)

[Lattice QCD](#page-32-0) [MUonE](#page-37-0)

MUonE: measure $\mu e \rightarrow \mu e$

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[Contributions](#page-13-0)

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[dispersive](#page-26-0)

[Lattice QCD](#page-32-0)

[MUonE](#page-37-0)

[HLbL](#page-38-0)

• MUonE: measure $\mu e \rightarrow \mu e$ very precisely

 μ^+

e −

• Needs to be measure very precisely

- Need all other contributions calculated very precisely
- **•** Test have been done at CERN

HLbL: Hadronic light-by-light

 $=$ П $^{\mu\nu\lambda\sigma}(q_1,q_2,q_3)$ of four vector currents (not two)

- 6 variables (not just one)
- Actually we really need $\frac{\delta \Pi^{\mu\nu\lambda\sigma}(q_1, q_2, q_3)}{s}$ $\delta q_{4\rho}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ $a_4=0$

Mixed: q_4 at zero, q_1^2, q_2^2, q_3^2 so three-variables, or Q_1^2, Q_2^2, Q_3^2 $(q_i^2 = -Q_i^2)$

Models, Dispersive methods, Lattice QCD

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0) [Dispersive](#page-39-0)

[Lattice QCD](#page-42-0)

HLbL dispersive: some of the people

and de Rafael, Prades, Hoferichter, Procura, Stoffer, Roig, Sanchez-Puertas, Rodriguez-Sanchez, Hermansson-Truedsson, Rebhan, Leutgeb, Holz,. . .

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

[Dispersive](#page-39-0) [Lattice QCD](#page-42-0)

- late 1990s: two groups (Kinoshita, Bijnens); models and physics sense: $90(30) \cdot 10^{-11}$ after counting proposed by de Rafael
- Lots of work on the single pion exchange 2000-2015 (Knecht, Nyffeler,...)
- Start of connection with QCD (Melnikov, Vainshtein)
- Always a problem of separating contributions
- **•** Breakthough in 2015: how to do dispersive consistently (Colangelo,...)
- Also connection to short-distance major progress (Bijnens, Hermansson-Truedsson, Rodriguez-Sanchez)
- Main remaining: 3 pion and medium mass resonances: much work in progress

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

[Contributions](#page-13-0)

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

[Dispersive](#page-39-0)

[Lattice QCD](#page-42-0)

Contributions HLbL White paper

LIND

HLbL Lattice QCD

a

• Discretize and euclideanize space-time $\begin{bmatrix} \vert & \vert & \vert & \vert & \vert & \vert & \vert \end{bmatrix}$

- Quarks on the vertices, gluons and photons on the links
- Limits needed: $a \rightarrow 0$, $L \rightarrow \infty$, quark masses \rightarrow physical
- determine a in physical units (scale setting)
- Largest lattices now $96^3 \times 144$ or about $2 \cdot 10^9$ degrees of freedom
- Do the Feynman path integral numerically
- **•** But now needs an integration over three variables and a four-point function
- Tour de force but it got done!!!

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

[Dispersive](#page-39-0)

[Lattice QCD](#page-42-0)

HLbL Lattice QCD: some of the people

[SM prediction](#page-0-0) for $(g - 2)$ _µ

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[Contributions](#page-13-0)

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

Antoine Gerardin

[Dispersive](#page-39-0)

[Lattice QCD](#page-42-0)

Harvey Meyer

Tom Blum

Luchang Jin

But of course many more

HLbL Lattice QCD

Eur.Phys.J.C 81 (2021) 651

- Two independent groups (similar methods), latest results
- RBC/UKQCD $124.7(11.5) \cdot 10^{-11}$
- Mainz $106.8(14.7) \cdot 10^{-11}$
- \bullet Dispersive 92(19) · 10⁻¹¹
- Other lattice methods: calculate formfactors needed in the dispersive method $\pi^0, \eta \to \gamma^* \gamma^*$

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[Introduction](#page-1-0)

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

[Dispersive](#page-39-0)

[Lattice QCD](#page-42-0)

Final plot

Source: Davier et al., 2312.02053

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

An order of magnitude estimate for heavy contributions

- Let's make an order of magnitude estimate for a_{μ}
- $|\vec{\mu}|\equiv 2(1+a_\mu)$ $e\hbar$ $\frac{2m}{2m_{\mu}}$ so $a_{\mu} \propto m_{\mu}$
- Magnetic interaction: spin flips \Rightarrow (usually) one more factor of m_{μ}
- $1/(16\pi^2)$ Loop factor
- coupling constants: g_{BSM}^2
- make dimensionless $1/M_{BSM}^2$
- $a_{\mu} \approx \frac{g_{BSM}^2}{16\pi^2}$ $16\pi^2$ m_μ^2 M^2_{BSM}
- Plug in m_W , g_W : $a_\mu^{EW} \approx 400 \cdot 10^{-11}$
- If discrepancy: new physics at few 100 GeV scale (but other options exist)

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0)

[Hadrons: why](#page-21-0) difficult

[HVP](#page-25-0)

[HLbL](#page-38-0)

- **•** The Standard Model prediction for a_{μ} is the work of $\gg 100$ people
- Large investment both in experiment and theory
- QED, EW and the higher order hadronic: under control
- HLbL: dispersive and lattice QCD in decent agreement and improvements to be expected
- HVP: one full Lattice QCD calculation only, dispersive has problems with experimental inputs but much work ongoing

[SM prediction](#page-0-0) for $(g - 2)$ _u

Johan Bijnens

[The Standard](#page-9-0) Model

[QED](#page-14-0)

[Electroweak](#page-18-0) [Hadrons: why](#page-21-0)

difficult [HVP](#page-25-0)

[HLbL](#page-38-0)