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Introduction

CC BY-SA 3.0,

https://commons.wikimedia.

org/w/index.php?curid=142136

Spin it around: angular momentum
(L⃗)

Put charges on the rim: current: will
react with a magnetic field: magnetic
moment ∆E = −µ⃗ · B⃗
For a (single) rotating charge q:

µ⃗ =
q

2m
L⃗

More complicated system: µ⃗ = g
Q

2M
L⃗

g : gyromagnetic or Landé factor
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Introduction

Now to fundamental particle physics: all fundamental particles are pointlike

But they can have charge, angular momentum and magnetic moment

Electron and muon have all

Angular momentum = spin = S⃗ =
1

2
ℏ

Charge = −e (basic unit of charge)

µ⃗ = −gS⃗

Source: Nobel

Foundation Archive

Dirac (Nobel 1933): Dirac equation g ≡ 2
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Introduction

gp ̸= 2:

Source: Nobel

Foundation archive

(Otto Stern, Nobel 1943) Proton has substructure

After WWII: ae = 0.00119 (Polykarp Kusch, Nobel 1955)

Source: Nobel

Foundation archive

(Lamb (shift) the other half)
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Introduction

Now known very precisely
ge = 2.00231930436118(27) or 1.3 · 10−13 (Fan, Gabrielse,. . . 2023)

define the anomaly: ae =
ge − 2

2
ae = 0.00115965218062(12) or 1.0 · 10−10 (PDG average)

aµ = 0.00116592059(22) or 1.9 · 10−7 see previous talk

gµ = 2.00233184118(44) or 2.2 · 10−10 (experimentalists are (too?) modest)

Can we calculate this to the same precision?
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Introduction

Source: Fermilab

⇔

Source: CERN

Do these two agree?
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How many people do we need?

Many people involved: Fermilab (St. Charles) 2017:

Berne 2023:
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How many people do we need?

Muon g-2 Theory Initiative
https://muon-gm2-theory.illinois.edu/

Chaired by: Aida El-Khadra

University of Illinois

Urbana-Champaign

https://muon-gm2-theory.illinois.edu/
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The Standard Model

Source: CERN

What is the Standard Model of
particle physics?

We have to go down in scale:

start at 1 meter
divide by ten a total of 18 times
Reach lengths scale of LHC
experiments
or alternatively about 1 TeV
(fundamental) energy scale

Matter and forces are unified:
everything is a quantum field

These are what the symbols signify as
well as how they interact
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The Standard Model: particles and fields

Source: CERN

Spin 1 fields

Bosons
Gauge fields
Interactions

Spin 1/2 fields

Fermions
Quarks
Leptons

Spin 0 field:

Higgs boson
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The Standard Model: Quantum-Electro-Dynamics (Nobel 1965)

Source: Nobel Foundation archive

Sin-Itiro Tomonaga Julian Schwinger Richard P. Feynman

QED: −1

4
FµνF

µν + iψeγ
µ (∂µ − ieAµ)ψe −meψeψe
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The Standard Model: Feynman Diagrams

QED: −1

4
FµνF

µν + iψeγ
µ (∂µ − ieAµ)ψe −meψeψe

Feynman diagrams: correspond to amplitude (quantum field theory)

Photon

e−, p1

e−, p3 e−, p4

e−, p2

=⇒ ψe(p3)γµψe(p1)
1

(p1 − p3)2
ψe(p4)γµψe(p2)

More complicated diagrams: (much) more complicated expressions
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Contributions

Magnetic field

µ in µ out

The blob can get very complicated

QED contribution: only γ, e, µ, τ
(photons and charged leptons)

Electroweak: add W ,Z ,Higgs,neutrinos

Hadronic: add quarks and gluons
Two main parts: HVP and HLbL
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QED contribution

Main diagram: (four in total)

Schwinger (1947): ae(= aµ) =
α

2π

Jacob

Bourjaily, Wikipedia
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QED contribution

one-loop: 1 diagram
Two-loop: 4 diagrams Petermann 1957, Sommerfield 1958 ae , aµ start to differ

ae = 0.00115965218062(12)
aµ = 0.00116592059(22)

Heroic effort at higher orders:
3-loop: 72 diagrams (known analytically)
4-loop: 891 diagrams (essentially known analytically)
5-loop: 12672 diagrams (only known numerically)

Source: Cornell

Toichiro Kinoshita
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QED contribution: people

Kinoshita, Nio, Aoyama, Cvitanovic, Lindquist, Remiddi, Laporta, Hayakawa,
Volkov, Passera,. . .

ae = C1
α
π + C2

(
α
π

)2
+ C3

(
α
π

)3
+ C4

(
α
π

)4
+ C5

(
α
π

)5
+ · · ·

Ci known to sufficient precision (some discrepancies in C5)

Problem: need a value for α to sufficient precision (atomic physics)

1/α = 137.035999206(11) (Rubidium, Paris 2020)
1/α = 137.035999046(27) (Cesium, Berkeley 2018)
1/α = 137.035999166(15) (from ae)

Source: Phys. Rev. Lett. 130, 071801

Sometimes in theory experiment is the problem
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QED contribution

No problem for QED aµ

aµ = 0.00116584718931(30) (QED, White paper)

aµ = 0.00116592059(22) (experiment)

aµ = 0.00000007340(22) (experiment-QED)

Largest part explained by QED

From now on will work in 10−11 units

The 7340 · 10−11 to be explained from elsewhere
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Electroweak

Electroweak theory introduced by (Nobel 1979)

Source: Nobel Foundation archive

Sheldon Lee Glashow Abdus Salam Steven Weinberg

Fµν = ∂µAν − ∂νAµ → Wµν = ∂µWν − ∂νWµ − igW (WµWν −WνWµ)
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Electroweak

Electroweak theory valid at loop level (Nobel 1999)

Source: Nobel Foundation archive

Gerardus ’t Hooft Martinus J.G. Veltman

W ,Z ,H
µ µ

νµ, µ νµ, µ
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Electroweak

W ,Z ,H
µ µ

νµ, µ νµ, µ

Calulated by many people 1972 and on

Jackiw, Weinberg, Fujikawa, Lee, Sanda,
Bardeen, Gastmans, Lautrup

Modern input: aµ = 194.79(1) · 10−11

Two loops:

Z
µ

γ

e, µ, τ,
b, t, u, d , s

Large logarithms (many mass scales)

Quarks at low energy (nonperturbative)

Axial anomaly

Czarnecki, Vainshtein, de Rafael, Knecht,. . .

Modern input: aµ = −41.2(1.0) · 10−11

Add some more small (White paper): aµ = 153.6(1.0) · 10−11
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Why are quarks difficult?

Quantum Chromodynamics: very similar to QED and Electroweak at gauge
level: Gell-Mann, Fritzsch, Leutwyler

But asymptotic freedom and infrared slavery (confinement) (Nobel 2004)

Source: Nobel Foundation archive

David J. Gross H. David Politzer Frank Wilczek
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Why are quarks difficult?

But asymptotic freedom and infrared slavery

αs(mZ
2) = 0.1180 ± 0.0009

August 2023

α
s(

Q
2
)

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)

Heavy Quarkonia (NNLO)
HERA jets (NNLO)

e+e- jets/shapes (NNLO+NLLA)
e+e- Z0 pole fit (N3LO)

pp/p-p jets (NLO)
pp top (NNLO)

pp TEEC (NNLO)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  10  100  1000

Source: pdg.lbl.gov

Can use perturbation theoy at larger Q, but not at the lower Q
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What to do then?

“Standard” theory

Use other theoretical methods: dispersion theory, with (lots of) experimental
input
All possible QCD based constraints one can think of
In the worst case: use models (but in a smart way)

Brute force: lattice QCD (but needs a lot of thinking too)
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Hadronic contributions

LO-HVP HLbL

Muon and photon lines, representative diagrams

The blobs are hadronic contributions

There are higher order contributions of both types: known accurately enough

aHVPµ = 6845(40) 10−11 (LO+NLO+NNLO)(White paper; error has increased)

aHLbLµ = 92(18) 10−11 (LO+NLO)(White paper)

aexpµ − aQED
µ − aEWµ = 7186(22) · 10−11

Difference: ∆aµ = 249(49) · 10−11
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HVP

= Two-point function of two electro-magnetic currents Π

Integrate over a weight function

Can do that in:

Minkowski momentum space (dispersive approach)
Euclidean momentum space (early lattice QCD and MUonE)
Euclidean space (in principle lattice QCD)
Time-momentum representation (mixed; present lattice QCD)

These are all related due to the analyticity property of two-point functions

Simple: only one variable

Problem: need 0.3% precision to match experimental aµ
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Dispersive: idea

aLO−HVP
µ =

α2

3π2

∫ ∞

0
ds

m2
µ

3s2
K̂ (s)R(s)

K̂ (s) goes smoothly from 0.63 at threshold to 1 at large s

R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−)LO
(R-ratio)

large s: use perturbative QCD (from which s on?)

low-to-medium s: just use data
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Dispersive: some of the main people involved

Source: IN2P3

Michel Davier

Source: Humboldt universität

Fred Jegerlehner
Source: University of Liverpool

Thomas Teubner
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R(s): overview of data

Source: Davier et al., EPJC 2019

Above 5 GeV:
perturbative QCD,
and integrate over
Υ resonances

3-5 GeV: Integrate
over ψ resonances,
data and
perturbative QCD

2-3 GeV: data and
pQCD

Below 2 GeV: data
in exclusive
channels
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Exclusive data: two main methods and an older revival

Direct measurements

e−

e+

Hadron stateSND,CMD-2 at Novosibirsk
Luminosity and efficiency determination at each value of s

Radiative return

Energetic photon

e−

e+

Hadron state
KLOE/KLOE-2 Frascati (1.02 GeV), Babar SLAC (10 GeV),
BES-III Beijing (4 GeV), Belle II KEK (10 GeV)
Luminosity and efficiency determination to be done once
Modelling radiative corrections and interference of photon from hadrons or e+e−

τ → ντ+hadrons

Modelling isospin corrections to e+e− →hadrons
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e+e− → π+π− largest contribution and error source

0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8 0.81
   [GeV]s

700

800

900

1000

1100

1200

1300

1400

C
ro

ss
 s

ec
tio

n 
  [

nb
]

OLYA
CMD
CMD2
KLOE08
KLOE10
KLOE12
BESIII

SND
SND20
CMD3
DM1
CLEO
BABAR

Average

-π+π →-e+e

Source: Davier et al., 2312.02053

3 main experiments:
KLOE, Babar,
CMD-3

Flat disagreement
outside quoted
errors

No reason for the
disagreement found
despite many
private/public
discussions

Dispersive error will
need increasing
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e+e− → π+π− largest contribution and error source

E
x
p

 =
 0

 ±
 2

2

-400 -350 -300 -250 -200 -150 -100 -50 0-450 50

aµ - aµ
   exp    [ × 10

-11
 ]

BABAR (100% of 2π below 1.8 GeV)

−168 ± 38 ± 29

CMD-3 (98.9%)

−50 ± 42 ± 29

KLOEwide
(97.1%)

−263 ± 51 ± 29

KLOEpeak
(75.3%)

−265 ± 23 ± 29

Tau (100%)

−135 ± 34 ± 29

BMW (lattice QCD)
−105 ± 55

Source: Davier et al., 2312.02053

Combining needs
care

χ2 inflation needed

CMD-3 disagrees
with all previous
measurements

White paper update
in progress

White paper
−249± 43± 29
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Lattice QCD

Discretize and euclideanize space-time L = Na

a

Quarks on the vertices, gluons and photons on the links

Limits needed: a → 0, L → ∞, quark masses → physical

determine a in physical units (scale setting)

Largest lattices now 963 × 144 or about 2 · 109 degrees of freedom

Do the Feynman path integral numerically

BMW2020 (after White paper) 0.8% precision
(Budapest-Marseille-Wuppertal)
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A few of the people

Laurent Lellouch, Antoine Gerardin, Ruth Van de Water, Christine davies,
Christoph Lehner, Harvey Meyer,. . .

Source: CPT

Laurent Lellouch
Source: LinkedIn

Ruth Van de Water

Source: University of Glasgow

Christine Davies
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The difficulties

0

0.004

0.008

0.012

0.016

0 0.5 1 1.5 2 2.5 3 3.5 4
t [fm]

Gconn(t)K̃(t)/mµ

Light
Strange (×6)
Charm (×6)

Source: Phys.Rev.D 100 (2019) 1, 014510

aHVPµ =(α
π

)∫ ∞

0
dtK (t)G (t)

G (t) =

−1

3

3∑

k=1

∑

x⃗

Jk(t, x⃗)Jk(0)

Long distance
difficult
noise/lattice size

Short distance:
lattice artefacts

Intermediate: very
precise
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Results

Finite size effects

Continuum extrapolation (a → 0)

Electromagnetic corrections

Quark masses (accurately and mu ̸= md)

Noise at long distances

Disconnected contributions

Only BMW has it all at precision below 1%

Others are compatible but larger errors

Connected, light quarks, intermediate distances: can compare
(window observables)
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Comparison of intermediate window

WA lattice

BMW’20

LM’20

χQCD’22 (Ov/DW)

χQCD’22 (Ov/HISQ)

ABGP’22

Mainz’22

ETMC’22

RBC/UKQCD’23

FHM’23

 200  203  206  209  212

 10
10

 × [a
µ,win
LO-HVP

]
ud
iso

lattice

lattice avg

Source: 2308.04221

BMW’20

Colangelo et al.’22

This work

WA lattice

 227  230  233  236  239

4.0 σ

 10
10

 × a
µ,win
LO-HVP

lattice avg

R-ratio

Source: 2308.04221

Very good agreement on the light quark connected intermediate window (but
it is where the lattice is best)

4σ disagreement with dispersive for this (not including CMD3 from 2023)
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MUonE: measure µe → µe

MUonE: measure µe → µe very precisely

µ+

e−

Needs to be measure very precisely

Need all other contributions calculated very precisely

Test have been done at CERN
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HLbL: Hadronic light-by-light

q1↗ q2↑ q3↖

q4↑

↖q3

↗q2q1↖

q4↙

=Πµνλσ(q1, q2, q3) of four vector currents (not two)

6 variables (not just one)

Actually we really need
δΠµνλσ(q1, q2, q3)

δq4ρ

∣∣∣∣
q4=0

Mixed: q4 at zero, q21 , q
2
2 , q

2
3 so three-variables, or Q2

1 ,Q
2
2 ,Q

2
3 (q2i = −Q2

i )

Models, Dispersive methods, Lattice QCD
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HLbL dispersive: some of the people

Source: Cornell

Toichiro Kinoshita

Source: Lund University

Johan Bijnens
University of Minnesota

Arkady Vainshtein
Source: Universität Bern

Gilberto Colangelo

and de Rafael, Prades, Hoferichter, Procura, Stoffer, Roig, Sanchez-Puertas,
Rodriguez-Sanchez, Hermansson-Truedsson, Rebhan, Leutgeb, Holz,. . .
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HLbL dispersive history

late 1990s: two groups (Kinoshita, Bijnens); models and physics sense:
90(30) · 10−11 after counting proposed by de Rafael

Lots of work on the single pion exchange 2000-2015 (Knecht, Nyffeler,. . . )

Start of connection with QCD (Melnikov, Vainshtein)

Always a problem of separating contributions

Breakthough in 2015: how to do dispersive consistently (Colangelo,. . . )

Also connection to short-distance major progress (Bijnens,
Hermansson-Truedsson, Rodriguez-Sanchez)

Main remaining: 3 pion and medium mass resonances: much work in progress
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Contributions HLbL White paper

“Long distance”: under good control

Dispersive method: Berne group around G. Colangelo
π0 (and η, η′) pole: 93.8(4.0) · 10−11 S.Leupold

Pion and kaon box (pure): −16.4(2) · 10−11

ππ-rescattering (include scalars below 1 GeV):−8(1) · 10−11

Charm (beauty, top) loop: 3(1) · 10−11

“Short and medium distance”

Scalars, tensors: −1(3) · 10−11

Axial vector: 6(6) · 10−11

Short-distance: 15(10) · 10−11

aHLbLµ = 92(19) · 10−11

Since then:

Short distance constraints improved
Axial vectors better understood
Work in progress to put all together better
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HLbL Lattice QCD

Discretize and euclideanize space-time L = Na

a

Quarks on the vertices, gluons and photons on the links

Limits needed: a → 0, L → ∞, quark masses → physical

determine a in physical units (scale setting)

Largest lattices now 963 × 144 or about 2 · 109 degrees of freedom

Do the Feynman path integral numerically

But now needs an integration over three variables and a four-point function

Tour de force but it got done!!!
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HLbL Lattice QCD: some of the people

Source: UCONN

Tom Blum

Source: UCONN

Luchang Jin

Mainz University

Harvey Meyer
A. Gerardin

Antoine Gerardin

But of course many more
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HLbL Lattice QCD

Eur.Phys.J.C 81 (2021) 651

Two independent groups (similar methods), latest results

RBC/UKQCD 124.7(11.5) · 10−11

Mainz 106.8(14.7) · 10−11

Dispersive 92(19) · 10−11

Other lattice methods: calculate formfactors needed in the dispersive method
π0, η → γ∗γ∗
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Final plot

E
x
p

 =
 0

 ±
 2

2

-400 -350 -300 -250 -200 -150 -100 -50 0-450 50

aµ - aµ
   exp    [ × 10

-11
 ]

BABAR (100% of 2π below 1.8 GeV)

−168 ± 38 ± 29

CMD-3 (98.9%)

−50 ± 42 ± 29

KLOEwide
(97.1%)

−263 ± 51 ± 29

KLOEpeak
(75.3%)

−265 ± 23 ± 29

Tau (100%)

−135 ± 34 ± 29

BMW (lattice QCD)
−105 ± 55

Source: Davier et al., 2312.02053

White paper −249 ± 40 ± 29

One large source of
uncertainty

Situation unclear
but SM prediction
typically low
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An order of magnitude estimate for heavy contributions

Let’s make an order of magnitude estimate for aµ

|µ⃗| ≡ 2(1 + aµ)
eℏ
2mµ

so aµ ∝ mµ

Magnetic interaction: spin flips ⇒ (usually) one more factor of mµ

1/(16π2) Loop factor

coupling constants: g2
BSM

make dimensionless 1/M2
BSM

aµ ≈ g2
BSM

16π2
m2

µ

M2
BSM

Plug in mW ,gW : aEWµ ≈ 400 · 10−11

If discrepancy: new physics at few 100 GeV scale (but other options exist)
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Conclusions

The Standard Model prediction for aµ is the work of ≫ 100 people

Large investment both in experiment and theory

QED, EW and the higher order hadronic: under control

HLbL: dispersive and lattice QCD in decent agreement and improvements to
be expected

HVP: one full Lattice QCD calculation only, dispersive has problems with
experimental inputs but much work ongoing
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