

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

The low-energy step

Lattice QCD

Other full

QCD only

Effective field theory

Effective Lagrangians

Models with

Conclusions

From lattice QCD to experiment - general introduction

Johan Bijnens Lund University

Vetenskapsrådet

johan.bijnens@hep.lu.se https://www.particle-nuclear.lu.se/johan-bijnens

Probing baryon weak decays - from experiment to lattice QCD

Warsaw, Poland

6-7 March 2023

Introduction

- Why do weak baryon decays?
- Baryon asymmetry of the universe requires (Sacharov)
 - C, P and CP violation
 - Out of equilibrium
 - Baryon number violation
- Generally testing the Standard Model
- C and P violation in baryons and mesons: late 1950s
- CP-violation in kaons: 1964 (indirect)
- *CP*-violation in kaons: indirect 1999 $(\varepsilon'/\varepsilon)$
- *CP*-violation in bottom mesons: ≥ 2001 in lots of places
- CP-violation in charmed mesons: (LHCb 2019)
- all compatible with the Standard Model
- CP-violation in baryons is not observed yet
- $\Lambda_b \to p \pi^- \pi^+ \pi^-$ to 3.3 σ (LHCb 2016)

Lattice QCD to experiment

Johan Bijnens

Introduction

he nderlying

ow-energy tep

Lattice QCD

Other full QCD only

Effective field theory

Effective Lagrangians

Models with

Introduction

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

low-energy step

Lattice QCD

Other full QCD only

Effective field theory

Effective Lagrangians

Models with

Conclusion

• What is needed to see *CP*-violation?

- Need a CP-violating amplitude
- Need another amplitude for it to interfere with
- CP-violation changes from particle to anti-particle
- Strong phases do not
- Interference leads to observable effects
- Baryons ony have indirect CP-violation, no particle anti-particle mixing
- So to make theory predictions:
 - Need to know both amplitudes
 - Or look at observables where the "other" amplitude cancels
- Reminder of this talk:
 - A little bite more about CP-violation and the first steps
 - overview of how these amplitudes are calculated at (low) energies

CP-violation in the Standard Model

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

low-energy step

Lattice QCD

Other full QCD only

Effective field theory

Effective Lagrangians

Models with "Quarks"

- Hidden in the *W*-couplings: $\frac{g_2}{\sqrt{2}}W^{\mu}\left(\overline{u}_L \ \overline{c}_L \ \overline{t}_L\right)V\gamma_{\mu}\begin{pmatrix} d_L \\ s_L \\ b_I \end{pmatrix}$
- V is a general 3 by 3 unitary matrix.
- Redefine phases odf quark-fields: V_{11} , V_{12} , V_{13} , V_{21} and V_{31} real

$$V = \left(egin{array}{cccc} c_1 & -s_1c_3 & -s_1s_3 \ s_1c_2 & c_1c_2c_3 - s_2s_3e^{i\delta} & c_1c_2s_3 + s_2c_3e^{i\delta} \ s_1s_2 & c_1s_2c_3 + s_2s_3e^{i\delta} & c_1s_2s_3 - c_2c_3e^{i\delta} \ \end{array}
ight)$$

- $c_i = \cos \theta_1$, $s_i = \sin \theta_i$
- Unitary implies $\sum_{i} V_{ik}^* V_{il} = \delta_{il}$
- But need all three generations, otherwise can remove the phase
- CP-violation in SM is small because the angles are small

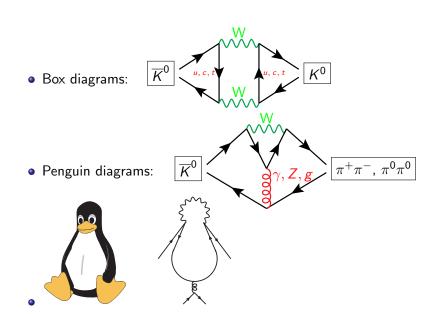
Need loops in the SM

Johan Bijnens

Introduction

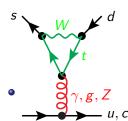
The underlying problem

The low-energy step


Lattice QCD

Other full

Effective fiel


Effective

Models with

BSM etcetera

Heavy particles can contribute in loop

- Also heavy BSM particles can contribute: tree level and loops
- Competition with suppressed SM contributions allows very good limits
- Might need to know the SM very precisely to detect deviations
- Need to be able to calculate amplitudes

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

The low-energy step

Lattice QCD

Other full

Effective field theory

Effective Lagrangians

Models with "Quarks"

Methods of effective field theory

- Separate the problem at different scales
- High scale: $\geq M_W$
 - Reduce everything to quarks, leptons, gluons, photos
 - Integrate out everything else (W, Z, top, heavy BSM)
 - End up with a number of local operators of varying dimensions
 - Can be done using Feynman diagrams or other methods
 - Example: W exchange to $\bar{b}_L \gamma_\mu c_L \bar{u}_L \gamma^\mu d_L$
 - But many more options possible: full classification: low-energy effective field theory
 - Matching BSM/SM to effective operators
- Intermediate scale: M_W to hadronic scale
 - Do renormalization group running down
 - Known typically to 2 and sometimes 3 loops
 - Running involves gluons and photons
- These two stages are under control and no problem in principle
- Can be very tedious though

Lattice QCD to experiment

Johan Bijnens

Introduction

The

underlying problem

> ow-energy tep

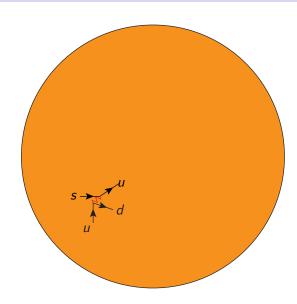
Lattice QCD

Other full QCD only

Effective field theory

Effective Lagrangians

Models with


The underlying problem: the low energy stuff

to experiment Johan Bijnens

The underlying problem

The underlying problem

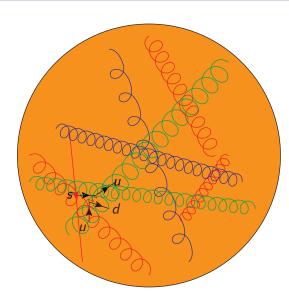
Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

The low-energy step


Lattice QCD

Other full

Effective field theory

Effective Lagrangians

Models wit

The underlying problem

LUND UNIVERSITY

Lattice QCD to experiment

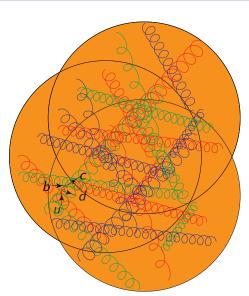
Johan Bijnens

Introduction

The underlying problem

The low-energy

Lattice OCD


Other full

Effective field

Effective Lagrangians

Models wit

Conclusi

• add gluons

• quark-antiquark

Two body decay

The underlying problem

• Flavour and Hadron Physics: need structure of hadrons

• Why is this so difficult?

• QED
$$\mathcal{L} = \overline{\psi} \gamma_{\mu} \left(\partial^{\mu} - i e A^{\mu} \right) \psi - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

• QCD:
$$\overline{q}\gamma_{\mu}\left(\partial^{\mu}-i\frac{g}{2}G^{\mu}\right)q-\frac{1}{8}\mathrm{tr}\left(G_{\mu\nu}G^{\mu\nu}\right)$$

• $G_{\mu} = G_{\mu}^{a} \lambda^{a}$ is a matrix

•
$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$$

•
$$G_{\mu\nu} = \partial_{\mu}G_{\nu} - \partial_{\nu}G_{\mu} - ig\left(G_{\mu}G_{\nu} - G_{\nu}G_{\mu}\right)$$

- gluons interact with themselves
- $e(\mu)$ smaller for smaller μ , $g(\mu)$ larger for smaller μ
- QCD: low scales no perturbation theory possible

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

The low-energy step

Lattice QCD

Other full QCD only

Effective field theory

Effective Lagrangians

Models with "Quarks"

The low-energy step

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

The low-energy step

Lattice OCD

Other full

Effective field

theory

Effective Lagrangians

Models with "Quarks"

- So simple QCD perturbation theory does not work
- What else?
- Lattice QCD
- QCD and other sum rules (light-cone sum rules)
- Using dispersion relations
- Schwinger-Dyson equations
- Effective field theor(y)(ies)
- Symmetries
- Models
- Large N_c
- Find observables where most of the difficulties cancel
-

The low-energy step

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

The low-energy step

Lattice OCD

Other full

Effective field

Effective

Models with

- Usually a combination of several methods
- Rest of the talk: giving some indications of strenghts and weaknesses of the different methods (i.e. get everyone angry at me)
- In particular I will not discuss all the extra improvements that are used in practice
- Different observables call for different methods
- Cross checks are always valuable

Lattice QCD

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

The low-energy step

Lattice QCD

Other full QCD only

Effective field theory

Effective

Lagrangians

Models witl "Quarks"

- A recommended read:
 Lattice QCD: A Guide for people who want results, Christine Davies,
 hep-lat/0509046 [hep-lat]
- From first principles (in principle) (there are often extrapolations and other assumptions inherent in the analysis)
- Take the functional integral of QCD and integrate it numerically
- Discretize space and time and take a finite volume
- Go to Euclidean space or imaginary time
- The last two-points are needed to be able to do the functional integral numerically

Lattice QCD

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

The low-energy step

Lattice QCD

Other full QCD only

Effective field theory

Effective Lagrangians

Models with

Conclusion

• $\hbar c = 197.3 \text{ MeV fm}$

- Lattice spacing a needs to be such that 1/a is scale significantly above 1 GeV: match to perturbative QCD
- The lattice size *L* must belarge enough so that (all) the hadrons "fit": need to be several fm.
- E.g. 1/a = 2 GeV and L = 4 fm requires about 40 points in each direction
- Also explains why charm quark is difficult (but there are ways around it for some cases)
- The *b*-quark is typically treated as static (via HQET or NRQCD) but then needs $1/m_b$ corrections.
- Fast moving particles also difficult: wavelengths similar to lattice spacing

Lattice QCD: matrix elements of operators

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

The low-energy step

Lattice QCD

Other full

Effective field theory

Effective Lagrangians

Models with

- Calculate numerically vacuum expectation values: $\langle O_1(x_1) \dots O_n(x_n) \rangle$
- From this (LSZ theorem for the theorists) get lots of physical quantities
- Hard work in lattice QCD summarized in a few words:
 - finding good O_i for the observable
 - Finding ways to get the vacuum expectation values calculated as accurately as possible

Lattice QCD: masses and decay constants

Two-point functions
$$\left\langle O_1(0,\vec{0})O_2(\tau,\vec{0})\right\rangle = \sum_i f_{1i}f_{2i}e^{-E_i\tau}$$

- the sum is over all states i
- ALL: also multiparticle states, states with momentum,...
- $f_{1i} = \langle O_1 | i \rangle$
- Can get energies and couplings of states
- Large τ dominated by E_0 : get at the mass and coupling constants of the ground state.
- Example: O_i axial current: pion mass and decay constants
- Possible problems;
 - Need large τ : lattice length must be big enough (neglect around the end of the world)
 - Excited state contamination can happen
 - Typically: at small τ : $a \neq 0$ artefacts; at large τ : noise

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

The low-energy

Lattice QCD

Other full

Effective field theory

Effective Lagrangians

Models with "Quarks"

Lattice QCD: form factors

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

low-energy step

Lattice QCD

Other full QCD only

Effective field

Effective Lagrangians

Models with

- Form factors: need a matrix element like $\langle i|O_W|j\rangle=f_{Wij}$
- Get from

$$\langle {\it O}_{1}(0){\it O}_{W}(au_{W}){\it O}_{2}(au_{2}) \rangle = \sum_{ij} f_{1i}f_{2j}f_{Wij}e^{-E_{i} au_{W}}e^{-E_{j}(au_{2}- au_{W})} + \sum_{i} f_{1i}f_{2i}e^{-E_{i} au_{2}}$$

- So need to get the ground state in two legs
- The problems from previous page are amplified
- States should not move too fast so B-decays limited to maximal q^2

Lattice QCD: multi particle final states

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

The low-energy step

Lattice QCD

Other full

Effective field theory

Effective Lagrangians

Models wit

- Problem when looking at scattering and multi (i.e. 2 or more) final states (note leptons don't count)
- Energy is not conserved so the lowest possible state with the same quantum numbers will dominate
- Scattering is in Minkowski: need to relate to Euclidean observables
- Problem for 2-body scattering: Lüscher: via volume dependence of energy levels
- Decays: Lellouch-Lüscher: same but with an insertion of the decay operator
- Three body: active research area

Lattice QCD and Baryons: added problems

- Three quark vs quark-antiquark: operators typically more complicated
- Baryons are bigger: need larger lattices
- Excited states closer by than for mesons
- NOISE MUCH LARGER

Explanation (long known):

- quantity x via $\langle x \rangle$; error is via $\langle x^2 \rangle \langle x \rangle^2$
- baryons: $\langle N^{\dagger}(0)N(\tau)\rangle \sim e^{-m_N \tau}$
- Noise $\langle N^{\dagger}(0)N(0) \ N^{\dagger}(\tau)N(\tau) \rangle \sim e^{-E_0\tau}$
- ullet But $N^\dagger N$ couples to purely mesonic states and $E_0 < m_B$
- signal to noise decays as $e^{-(m_B-E_0)\tau}$: exponentially worse

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

step

Lattice QCD

Other full QCD only

Effective field theory

Effective Lagrangians

Models with "Quarks"

Lattice QCD: status

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

low-energy step

Lattice QCD

Other full QCD only

Effective field theory

Effective Lagrangians

Models with

- Masses and decay constants for lowest lying states: excellent
- Form factors: simple ones and near the largest q^2 : very good
- Two body scattering for light mesons: starting to be good
- Weak decays if not via form factors: only starting
- Note: \bar{B} -B mixing is like a form factor
- I summarized a large community (\geq 500 for a big conference) working for a long time (\geq 40 years) here in a few slides
- I also stuck to lattice topics related to what we might want to do

Other full QCD only

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

low-energy step

Lattice QCD

Other full QCD only

Effective field theory

Effective Lagrangians

Models wit

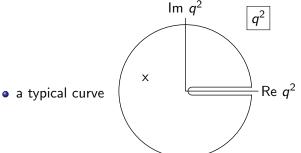
Conclusion

Light cone quantization Brodsky, Pauli, Phys.Rept. 301 (1998) 299-486 [hep-ph/9705477]

- Only physical degrees of freedom (ie no ghosts ...)
- Wave functions are expanded in Fock states: partons directly visible
- The perturbative vacuum is the physical vacuum
- In principle allows for a competing numerical nonperturbative method
- Was a very active field 1990s
- Main (unsolved) difficulty: dealing with the zero mode
 This is where all the trouble of spontaneous symmetry breaking and confinement hides in this approach

Note: this not quark models on the light cone

• Now often combined with holography (Brodsky, de Téramond,...)


Other full QCD only

QCD, Finite Energy Sum Rules, ...

• All rely on analyticity and Cauchy's theorem

$$\frac{1}{2\pi i} \oint_C dz \, f(z) = \sum_{\text{poles}} \text{residues}$$

- Circle and residue points: perturbative QCD
- Axis: data and/or resonance saturation

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

The low-energy step

Lattice QCD

Other full QCD only

Effective field theory

Effective Lagrangians

Models with "Quarks"

Dispersion relations and unitarity

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

low-energy step

Lattice QCD

Other full QCD only

Effective field theory

Effective Lagrangians

Models with

Conclusion

Dispersion relations and unitarity

- Again Cauchy's theorem
- But now choose f(z) e.g. a decay or scattering amplitude
- s, t, u: more parameters
- Unitarity $1 = S^{\dagger}S = 1 + T^{\dagger}T + i(T T^{\dagger})$
- Due to the cuts: phases provide constraints
- Integral equations for the amplitudes
- Questions: subtraction constants, experimental input for phases, asymptotic behaviour

Schwinger-Dyson equations

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

low-energy step

Lattice QCD

Other full QCD only

Effective field theory

Effective

Lagrangians

Models wit

- Idea (ϕ^3): + -
- Full three-point function involves full four-point function
- Four involves five, ...
- An infinite set of consistency equations
- Need to truncate: here the model aspects start
- Need for a starting ansatz to make life bearable (usually a full gluon propagator)
- Usually kept at the "quenched" approximation

Effective Field Theory (EFT)

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

low-energy step

Lattice QCD

Other full

Effective field theory

Effective Lagrangians

Models with

- \bullet gap in the spectrum \Longrightarrow separation of scales
- with the lower degrees of freedom, build the most general effective Lagrangian
- $\infty \#$ parameters
- Where did my predictivity go ?
- \Longrightarrow Need some ordering principle: power counting Higher orders suppressed by powers of $1/\Lambda$
- Taylor series expansion does not work (convergence radius is zero when massless modes are present)
- Continuum of excitation states need to be taken into account
- Use field theory and loops

Examples of low-energy EFTs

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

The low-energy step

Lattice QCD

Other full QCD only

Effective field theory

Effective Lagrangians

Models wit

- Chiral perturbation theory
- Heavy quark effective theory
- Combinations of the above
- Main drawbacks:
 - many parameters, often unknown
 - Not always (often?) in range of validity
- Beware: Just because it says chiral perturbation theory or effective field theory doesn't mean it is (they are not protected trade marks)

Effective Lagrangians

- Basic degrees of freedom: hadron fields
- Beware of product (mis)labelling
 - Chiral Perturbation Theory
 - Chiral Effective Theory
 - Are very popular names and "de vlag dekt niet altijd de lading" since they are not protected names (free flag doesn't make free bottom)
- Note field redefinitions: same Lagrangian can look very different
- Hope: find a simple Lagrangian and then refine it
- A full classification attempt: Resonance chiral theory (R χ T), also attempts to go to one-loop.
- This includes e.g. also hidden local symmetry implementations of the vectors
- many other partially successful attempts (e.g. by next speaker)
- In some ways holography belongs to this class as well
- Difficult to find a proper power counting (so not EFT)

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying

low-energy step

Lattice QCD

Other full QCD only

Effective field theory

Effective Lagrangians

Models with "Quarks"

Models with "Quarks"

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

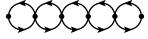
low-energy step

Lattice QCD

Other full QCD only

Effective fiel theory

Effective Lagrangian


Models with "Quarks"

Conclusion

- Nonrelativistic constituent quark models: understanding the spectrum (fill up octets and nonets)
- Chiral guark model: guarks plus pseudo-scalars, no confinement
- Nambu-Jona-Lasinio models: Quarks with a four quark interaction
 - Has spontaneous chiral symmetry breaking
 - Produces a constituent quark mass from a gap equation:

mesons from a bubble sum

Mesons but no confinement

Models with "Quarks"

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

The low-energy step

Lattice QCD

Other full QCD only

Effective field theory

Effective Lagrangians

Models with "Quarks"

- Add vector-like four quark interactions ⇒ vectors and axial-vertex
- Add a 't Hooft vertex to get η' better (or a variation on that vertex)
- make the vertex non-local
- Add Polyakov loop
- Many more variations possible
- ullet Usually large N_c or tree level at the "meson" level
- Some attempts to go beyond that: many difficulties and not clear if it ever yielded something useful

Conclusions

Lattice QCD to experiment

Johan Bijnens

Introduction

The underlying problem

ow-energy step

Lattice QCD

Other full

Effective field

Effective Lagrangians

Models wit

- Why we want to study CP-violation
- Baryons give us more information beyond what we have (just mentioned really)
- Overview of lattice QCD
- Lightning overview of other methods
- Be aware of the advantages and drawbacks of what you use
- Do the best you can, sometimes using a model is all you can do
- Often best results by combining several methods