Updates on charm baryon dipole moments

Joan Ruiz-Vidal

Lund University

March 5, 2024

Probing baryon weak decays - from experiment to lattice QCD Warsaw, 4 – 5 March 2024

Joan Ruiz-Vidal (Lund University)

Updates on charm baryon dipole moments

Electric and magnetic dipole moments

Electric Dipole Moment (EDM)

- Matter–antimatter asymmetry
- Sakharov conditions \supset C and CP violation
- Sources of CP Violation: SM (not enough) and BSM
- SM-background free search for CPV sources: Electric Dipole Moment (EDM)

Magnetic Dipole Moment (MDM)

- Gives information on the baryon spin structure
- MDM of lowest-lying baryon octet (p, n, Λ , Σ , ...) was key to assess the quark model
- Baryon MDM nowadays: recurrent benchmark to compare non-perturbative QCD methods

Electric dipole moments

The EDM violates separately T and P \Rightarrow **CP violation**

Map of the EDM field

Experiment concept

How to measure EDMs?

• Spin precession:

In the presence of an electromagnetic field, the spin-polarization rotates due to the magnetic dipole moment. A change on the orthogonal direction signals the presence of an electric dipole moment.

Experiment concept

How to measure EDMs?

• Spin precession:

In the presence of an electromagnetic field, the spin-polarization rotates due to the magnetic dipole moment. A change on the orthogonal direction signals the presence of an electric dipole moment.

Experiment concept

How to measure EDMs?

• Spin precession:

In the presence of an electromagnetic field, the spin-polarization rotates due to the magnetic dipole moment. A change on the orthogonal direction signals the presence of an electric dipole moment.

Requirements:

Polarized particles

EM field Detector

Bent crystals

- Very short-lived $\Lambda_c^+~(\sim$ 5cm) ightarrow need large EM field in small space (\sim 10³ T)
- E field between atomic planes

• Precession induced by the net EM field

$$m{s} pprox m{s}_0 \left(rac{m{d}}{m{g}-2} (\cos \Phi -1), \ \cos \Phi, \ \sin \Phi
ight)$$

$$\Phi \approx \frac{\mathbf{g}-2}{2} \gamma \theta_{\mathsf{C}} \approx \pi$$

see e.g. EPJ C 77 (2017) 828

Initial Λ_c^+ polarization

- Perpendicular to the production plane (\mathcal{P} conservation)
- Magnitude depends on the $\Lambda_c^+ p_T$ and x_F
- Extrapollation from phenomenological models based on A production.

Phys. Lett. B471 (2000) 449

Phys.Rev.D 103 (2021) 7, 072003

• Ongoing LHCb analysis with SMOG data (*p*-gas $\rightarrow \Lambda_c^+ \rightarrow pK^-\pi^+$) Valuable information although in different kinematical range

Proof of principle at E761

 \bullet E761 Fermilab experiment firstly observed spin precession in bent crystals and measured MDM of Σ^+

Phys. Rev. Lett 69 (1992) 3286

- 350 GeV/c Σ^+ produced from 800 GeV/c proton beam on a Cu target
- Used up- and down-bend silicon crystals L = 4.5 cm, $\theta_C = 1.6$ mrad to induce opposite spin precession

First Observation of Magnetic Moment Precession of Channeled Particles in Bent Crystals

Layout for the LHC

Sensitivity with **two years** of data taking (10^{13} PoT)

- EDM sensitivity $\sigma_{\delta} \approx 4 \cdot 10^{-16} ecm$
- First measurement of Λ_c^+ (Ξ_c^+) magnetic moment, $\sigma_{g-2} \approx 2 \times 10^{-2}$

PRD 103 (2021) 7, 072003

Towards the realization

CERN, IFIC Valencia, IJCLab, NSC KIPT Kharkov, Univ. of Bonn, UCAS, Lund Univ., INFN (Ferrara, Genova, Milano, Milano Bicocca, Padova, Pisa)

Location

LHCb

- Point 8: LHCb spectrometer, less instrumentation, potential interference (studied)
- Interaction Region IR3: New spectrometer, higher flexibility/control

Joan Ruiz-Vidal (Lund University)

Updates on charm baryon dipole moments

Proton flux

Eur.Phys.J.C 80 (2020) 10, 929

 Detailed simulations of beam optics to asses realistic proton flux of deflected beam

 \blacktriangleright $\sim 10^6 p/s$

out of $\sim 10^{18} p/s$ (full LHC beam)

• Ocupancy and redout capabilities may limit the proton flux as well

Measurement of final polarization

• $\Lambda_c^+
ightarrow p K^- \pi^+$ dominated by intermediate resonances

Initially considered exclusive quasi-two-body decays

$$\Lambda_{m{c}}^+
ightarrow \Delta^{++} K^- \;\;, \;\;\;\;\; rac{dN}{d\Omega'} \propto 1 + lpha_{
m eff} m{s} \cdot \hat{m{k}}$$

LHCb analysis

 Precise amplitude model allows sensitivity to the Λ⁺_c polarization across the phase space: statistics x6,

 Λ_c^+ final state B (%) $\epsilon_{3trk} \mathcal{B}_{eff}$ (%) $pK^-\pi^+$ 6.28 ± 0.32 0.996.25 $\Sigma^+ \pi^- \pi^+$ 4.50 ± 0.25 0.542.43 $\Sigma^{-}\pi^{+}\pi^{+}$ 1.33 1.87 ± 0.18 0.71 0.461 ± 0.028 1.00 0.46 $\Xi^- K^+ \pi^+$ 0.45 0.62 ± 0.06 0.73 $\Sigma^+ K^- K^+$ 0.35 ± 0.04 0.510.18 pK^-K^+ 0.106 ± 0.006 0.98 0.11 $\Sigma^+\pi^-K^+$ 0.21 ± 0.06 0.54 $pK^{-}\pi^{+}\pi^{0}$ 4.46 ± 0.30 0.994.433.200.541.72 2.1 ± 0.4 0.711.49 $\Sigma^{+}[n\pi^{0}]\pi^{-}\pi^{+}$ 2.32 0.46 1.06 $\Sigma^{+}[p\pi^{0}]K^{-}K^{+}$ 0.08 0.180.46 $\Sigma^{+}[p\pi^{0}]\pi^{-}K^{+}$ 0.110.460.05All 20.2

Phys.Rev.D 103 (2021) 7, 072003

Phys.Rev.D 108 (2023) 1, 012023

• Combined with other Λ_c^+ decay channels

Crystal specifications and manufacturing

Crystal optimization

- Two parameters: crystal length L and bending θ_C
- Sensitivity evaluated as a function of (L, θ_C)

 $L \approx 10 \text{cm} \ \theta_C \approx 16 \text{mrad}$ (LHCb) $L \approx 7 \text{cm} \ \theta_C \approx 7 \text{mrad}$ (dedicated)

EPJ C 77 (2017) 828

First prototypes

• Manufactured by INFN Ferrara; tested at CERN

PRD 103 (2021) 7, 072003

Updates on charm baryon dipole moments

Goniometers

- Insert and retract target and crystal. Tune crystal orientation
- Two crystals/goniometers
 - Beam splitter: short crystal, 50µrad bending. Goniometer (TCCS) from previous LHC machine tests with crystals
 - Spin precession crystal: long, 7mrad bending Goniometer (TCCP) in construction

TCCS

3rd workshop on EDM of unstable particles; P.Hermes

Spectrometer

3rd workshop on EDM of unstable particles; E.Spadaro

- Layout optimization ongoing with full simulations
- Concrete experimental solutions identified
 - Tracker: Tiles of VELOpix (LHCb)
 - ▶ Magnet: Re-use orbit correction MCBW (1.1T) or dedicated (~ 5T)
 - Roman pot (beam pipe access): re-use ATLAS/ALFA, TOTEM (CMS)
 - Also under study: PID with dedicated RICH for TeV-particles (!)

3rd workshop on EDM of unstable particles: S.Cesare, E. Matheson, N.Neri, S.Jakobsen, M.Sorbi, R.Forty ...

Joan Ruiz-Vidal (Lund University)

Updates on charm baryon dipole moments

Proof of principle TWOCRYST

Machine test

- Long crystals tested at 180 GeV. Prove channelling in TeV range
- Validate two-crystal setup (beam splitter/kicker + precession crystal)
- Operational feasibility

3rd workshop on EDM of unstable particles:

P.Hermes, K.Dewhurst, E.Matheson, H.Havlikova, S.Jakobsen, ...

Joan Ruiz-Vidal (Lund University)

Updates on charm baryon dipole moments

Timeline

3rd workshop on EDM of unstable particles; P.Hermes

Project Schedule

Theory status

Big picture

Connection New Physics to heavy baryon EDM

RG: Renormalization group WC: Wilson Coefficients LEFT: Low-energy effective field theory

Joan Ruiz-Vidal (Lund University)

Updates on charm baryon dipole moments

Big picture

RG: Renormalization group WC: Wilson Coefficients LEFT: Low-energy effective field theory

Connection New Physics to heavy baryon EDM

- Effective theories capture high-energy dynamics and are model-independent
- Contributions to EDMs: flavour-diagonal CP-violating effective operators

Big picture

RG: Renormalization group WC: Wilson Coefficients LEFT: Low-energy effective field theory

Connection New Physics to heavy baryon EDM

- Effective theories capture high-energy dynamics and are model-independent
- Contributions to EDMs: flavour-diagonal CP-violating effective operators
- Quark dipole operators. Λ⁺_c EDM uniquely sensitive to valence charm quarks

 $\begin{array}{c} \text{charm EDM} & \text{chromo-EDM} \\ d_q \, \bar{q} i \sigma^{\mu\nu} \gamma_5 q \, F_{\mu\nu} & \tilde{d}_q \, \bar{q} i \sigma^{\mu\nu} \gamma_5 t_a q \, G^a_{\mu\nu} \end{array}$

4 quark op. Weinberg op.

Updates on charm baryon dipole moments

Charm EDM in BSM theories

Standard Model has its leading contribution at 3-loop level

Generic New Physics

Size of dipole operators of dimension 5, originating from NP $(\Lambda_{\rm NP}=1{\rm TeV})$

$$-d_crac{i}{2}\,ar{c}\sigma^{\mu
u}\gamma_5c\,F_{\mu
u}\ o\ d_c\simrac{ extsf{vev}}{\Lambda_{
m NP}^2}e\sim10^{-18}
m e
m cm$$

In concrete NP theories, with phenomenological and theoretical constraints, different story ... Let's see some examples

Charm EDM in BSM theories II

Colour octet scalars (Manohar-Wise model)

• New scalars with colour charge (8,2,1/2)

$$\mathcal{L}_{Y} = -\sum_{i,j=1}^{3} \left[\zeta_{U} Y_{ij}^{d} \overline{Q}_{L_{i}} S d_{R_{j}} + \zeta_{D} Y_{ij}^{u} \overline{Q}_{L_{i}} \widetilde{S} u_{R_{j}} + \text{h.c.} \right]$$

- Predictive theory. Motivated by MFV and GUTs
- Quark (C)EDMs at 1-loop in [Martinez, Valencia, 1612.00561]
- Quark (C)EDMs at 2-loop in [Gisbert, Miralles, JRV, 2111.09397]
- Parameter constraints w/o the nEDM, [X.Q.Li et al., 1504.00839]
 [Eberhardt, Miralles, Pich, 2106.12235]
 allow maximum value

$$d_b \sim 10^{-19} e {
m cm} \;, \;\; d_c \sim 10^{-21} e {
m cm}$$

One loop

Charm EDM in BSM theories III

Scalar leptoquarks

- R_2 leptoquarks (3,2,7/6) generate EDMs at 1 loop
- Solution to $b \to c \tau \bar{\nu}_{\tau}$ and (old) $b \to s \ell \bar{\ell}$ anomalies [Bečirević et al., 1806.05689]
- Charm EDM extremely relevant to assess the CPV in connection to $R_{D^{(*)}}$ [Dekens, de Vries, Jung, Vos, 1809.09114]

$$d_c \sim 10^{-21}~ecm$$

Minimal Supersymmetric model (MSSM)

- Large charm EDM via gluino loops [Aydin, Erkarslan, hep-ph/0204238]
 - Updating this reference with LHC lower limits on the masses

$$d_c \sim 10^{-17}~
ightarrow~d_c \sim 10^{-20} e {
m cm}$$

BLMSSM

- MSSM where B and L gauged symmetries break spontaneously at the TeV scale.
- Many new CPV phases. Charm and top EDM studied in [Zhao, Feng et al., 1610.07314]
 - Accounting for current d_t bounds

$$d_c \sim 10^{-17} \
ightarrow d_c \sim 10^{-19} ecm$$

• Recent analysis [Yang, Feng et al., 1910.05868]

Indirect bounds on charm EDM

• What is the maximum *d_c* allowed, regardless of the NP model?

Indirect bounds on charm EDM

• What is the maximum *d_c* allowed, regardless of the NP model?

Indirect bounds on charm EDM

- What is the maximum *d_c* allowed, regardless of the NP model?
- Up to 2019, best in the literature [Sala, 1312.2589]

 $|d_c| < 4.4 imes 10^{-17}
m ecm$ $| ilde{d}_c| < 1.0 \cdot 10^{-22}
m cm$

 Connection to nEDM is (more) straightforward from chromo-EDM

Bounds on charm EDM

[Gisbert, JRV, 1905.02513]

EDM may contribute to CEDM?

Renormalization group equations

$$\mu \frac{d}{d\mu} \vec{C}(\mu) = \hat{\gamma}^T \vec{C}(\mu) \qquad \vec{C} = \begin{pmatrix} d_q \\ \tilde{d}_q \end{pmatrix}$$
$$\vec{V} = \frac{\alpha_s}{4\pi} \gamma_s^{(0)} + \left(\frac{\alpha_s}{4\pi}\right)^2 \gamma_s^{(1)} + \frac{\alpha_e}{4\pi} \gamma_e^{(0)} * + \dots$$

* First nonzero mixing EDM \rightarrow CEDM

Joan Ruiz-Vidal (Lund University)

Updates on charm baryon dipole moments

Bounds on charm EDM II

Limits from light quark EDM and eN interaction

[Ema, Gao, Pospelov, 2205.11532]

Contribution of d_c

- To 3g-1γ operators, to light-quark EDM, to neutron EDM
- To 2γ-2g operators, to electron-nucleon, to paramagnetic molecule ThO (used for d_e)

 $|d_c| < 6 imes 10^{-22}$ ecm

Limits from electron EDM

[Ema, Gao, Pospelov, 2207.01679]

- Contribution of d_c
 - To 4 γ operators (light-by-light scattering), to electron EDM

Other limits

Bound	Ref.	Measurement	Method
$ d_c < 8.9 imes 10^{-17} \ { m ecm}$	[Escribano:1993×r]	$\Gamma(Z ightarrow c\overline{c})$	Measurement at the Z peak (LEP). Weights electic (d_c) and weak (d_c^w) dipole moments through model-dependent relations.
$ d_c < 5 imes 10^{-17}~ecm$	[Blinov:2008mu]	$e^+e^- ightarrow c\overline{c}$	The total cross section (from the LEP combination <code>[ALEPH:2006bhb]</code>) is enhanced by the charm EDM vertex $c\overline{c}\gamma$.
$ d_{\rm c} < 3 imes 10^{-16}~{\rm ecm}$	[Grozin:2009jq]	electron EDM	Considers contribution of d_c into d_e through light-by-light scattering (three-loop) diagrams.
$ d_c < 1 imes 10^{-15} \ ecm$	[Grozin:2009jq]	neutron EDM	Similar approach than Ref. $[{\tt Sala:2013osa}]$ with different treatment of diverging integrals and more conservative assumptions.
$ d_{\rm c} < 4.4 imes 10^{-17}~{ m ecm}$	[Sala:2013osa]	neutron EDM	Considers contribution of d_c into d_d via W^{\pm} loops. Expressions from Ref. [CorderoCid:2007uc].
$ d_c < 3.4 imes 10^{-16}~ecm$	[Sala:2013osa]	$BR(B \rightarrow X_s \gamma)$	Considers contributions of d_c into the Wilson coefficient C_7 .
$ d_c < 1.5 imes 10^{-21} \ ecm$	[Gisbert:2019ftm]	neutron EDM	Renormalization group mixing of d_c into \tilde{d}_c .
$ d_c < 6 imes 10^{-22}~ecm$	[Ema:2022pmo]	neutron EDM	Contribution of d_c to $3g$ - 1γ operators, to light-quark, to neutron EDM
$ d_c < 1.3 imes 10^{-20} \ e \mathrm{cm}$	[Ema:2022pmo]	electron EDM	Contribution of d_c to $2\gamma\text{-}2g$ operators, to electron-nucleon, to paramagnetic molecule ThO

Baryon EDM in non-perturbative QCD

Baryon EDM in non-perturbative QCD

Baryon EDM in non-perturbative QCD (II)

Chiral Perturbation Theory

• EFT based on the symmetries of QCD with hadrons as degrees of freedom $SU(3)_C$, $SU(3)_L \times SU(3)_R^{\ddagger}$, \mathcal{P} , \mathcal{C}

 \ddagger provided $m_q \rightarrow 0$

- Systematic frameworks developed. Many new interactions and unknown Low Energy Constants (LECs)
- Bottom baryons [de Vries, Hanhart, Severt, Ünal, Meißner, 2111.13000]
 Charm baryons [Ünal, 2306.03639]
 → Baryon EDM in terms of LECs then estimated these with NDA

Baryon EDM in non-perturbative QCD (II)

Chiral Perturbation Theory

• EFT based on the symmetries of QCD with hadrons as degrees of freedom $SU(3)_C$, $SU(3)_L \times SU(3)_R^{\ddagger}$, \mathcal{P} , \mathcal{C}

 \ddagger provided $m_q \rightarrow 0$

- Systematic frameworks developed. Many new interactions and unknown Low Energy Constants (LECs)
- Bottom baryons [de Vries, Hanhart, Severt, Ünal, Meißner, 2111.13000]
 Charm baryons [Ünal, 2306.03639]
 → Baryon EDM in terms of LECs then estimated these with NDA

Baryon EDM in non-perturbative QCD (III)

Heavy Quark Effective Theory

- Considers heavy quark $m_Q \rightarrow \infty$ with constant 4-velocity v^{μ}
- High predictive power: spectrum, masses, decavs

Sum Rules

- Neutron EDM from QCD Sum Rules. Reference for many years [Pospelov, Ritz, hep-ph/0010037] $d_n = (1 \pm 0.5)(1.4(d_d - 0.25d_u))$ $+1.1e(\tilde{d}_{d}+0.5\tilde{d}_{u}))$
- Allows systematic treatment of uncertainties

Baryon EDM in non-perturbative QCD (III)

Lattice QCD

- Numerical method to solve the functional integral of QCD
- Discretize space time and simulate extended wave functions
- nEDM: Uncertainty improvement wrt sum rules e.g. [Cirgliano et al, 1808.07597]

 $d_n = (0.784 \pm 0.030)d_d - (0.204 \pm 0.015)d_u + \dots$

• Charm baryon EDM "doable if there is interest "

Conclusions

- Charm baryon EDM **never tested before**. Sensitivity of this experiment $\delta(d_{\Lambda_{\perp}^{\pm}}) \approx 10^{-17} \text{ecm } 2010.11902$
- Efforts towards a dedicated experiment for Run 4. Letter of Intent coming soon
- Proof-of-principle TWOCRYST (without magnet) to be installed at the end of 2024
- Interpretation in terms of NP needs advanced hadronic methods Theory uncertainty key to assess the restrictive power
- Challenging to beat indirect bounds on charm quark EDM
- Charm baryon MDM at the few % will test the validity of different low-energy QCD methods at the charm scale

