

Studies of strange baryon and antibaryon pairs with the BESIII experiment

Patrik Adlarson and Varvara Batozskaya

March 4, 2024

Lundström-Åmans Foundation

Swedish

Research

Council

Introduction

BESIII Experiment

Hadronic Weak Decays

Semi-leptonic weak decays

Radiative decays

Future prospects

Summary and Outlook

BEPC II and BESIII

Aerial view of BEPC II and BESIII

e+e- collider in CMS range 2.0 – 4.95 GeV Optimized in tau - charm region Data taking since 2009, peak luminosity 10³³ cm⁻²s⁻¹

COSOE

 $\sqrt{\frac{8}{3}}$ coso

 $\frac{6}{6}$

3

BEPC II and BESIII

- Multipurpose detector, excellent resolution, near 4π coverage
- Symmetric particle anti-particle conditions, produced in entangled state
- Low hadronic background
- World's largest charmonia data samples

Fig. 2 | An example $J/\psi \rightarrow (\Lambda \rightarrow p\pi^{-})(\overline{\Lambda} \rightarrow \overline{p}\pi^{+})$ event in the BESIII detector. Cross-section of the detector in the plane perpendicular to the colliding electron-positron beams and a schematic representation of the information collected for the event. The mean decay length of the neutral $\Lambda(\overline{\Lambda})$ is 5cm. The curved tracks of the charged particles from the subsequent $\Lambda(\overline{\Lambda})$ decays are registered in the drift chamber, indicated by the brown region of the display. The momenta of (anti-)baryons are greater than 750 MeV c⁻¹ and pions are less than 300 MeV c^{-1} .

BESIII, Nature Physics 15 (2019) 631

Charged track coverage |cosθ| < 0.93 Mom. res of charged tracks 0.5% at 1 GeV/c

Neutrals $|cos\theta|$ < 0.8 and 0.86 < $|cos\theta|$ < 0.92 Energy resolution 2.5% (5%) at 1 GeV for barrell (end cap)

ToF can be used together with dE/dx MDC for PID

But for fully charged modes e.g. Λ and Ξ momentum requirements enough to separate protons from pions

UPPSALA

UNIVERSITET

Spinning baryons

No CP violation detected for *baryons*

Additional degree of freedom for baryons compared to mesons : spin

Spin behaves differently compared to momentum when inverting spatial coordinates

Studying baryons provides complementary path to understand SM

Focus on *hyperons*, strange quark systems in this talk (see Varvara for other focus)

Non-leptonic two body decays

From CERN Courier cover July-August 2019

UPPSALA UNIVERSITET

Full baryon octet kinematically accessible at J/ψ resonance

7

Asymmetry parameters and Polarization

Polarization of hyperons experimentally accessible in weak parity violating decays

They are *self analysing*: daughter particles are emitted according to polarization of mother hyperon

Example: Angular distribution of $\Lambda \rightarrow p \pi^-$

Asymmetry parameters and Polarization

weak CP-odd phases

$$
S = |S| exp(\xi_S) exp(i\delta_S)
$$

$$
P = |P| exp(\xi_P) exp(i\delta_P)
$$

strong baryon pion phase shift at cm energy of *Y* mass

ξ weak CP-odd phase for $ΔI = 1/2$

strong phases

Asymmetry parameters give relationship of *S* (parity violating) and *P* (parity conserving) amplitudes

$$
\alpha = \frac{2 \text{Re}(S \ast P)}{|S|^2 + |P|^2} \qquad \beta = \frac{2 \text{Im}(S \ast P)}{|S|^2 + |P|^2} = \sqrt{1 - \alpha^2} \sin \phi
$$

HyperCP

UPPSALA

*PRL 93, 262001 (2004) ** PRD 67, 056001 (2003) *** NPB, Proc Suppl 187, 208 (2009)

 $862M \text{ E } 8230M \overline{\Xi}$ $A_{CP \Sigma\Lambda} = \frac{\alpha_{\Sigma}\alpha_{\Lambda} + \overline{\alpha}_{\Sigma}\overline{\alpha}_{\Lambda}}{\alpha_{\Sigma}\alpha_{\Lambda} - \overline{\alpha}_{\Sigma}\overline{\alpha}_{\Lambda}} = (-6.0 \pm 2.1 \pm 2.0) \times 10^{-4}$ *** **UNIVERSITET**

 $E^- \to A \pi^-$, $\Lambda \to p \pi^-$

strong contribution $\phi_{\overline{s}} \approx 0$ weak phase diff - potentially CPV

 $\it \Delta\phi_{CP}$ more sensitive to CP-violating effects cf $A_{CP}^{\Xi^-\star^-}$

* Phys. Rev Lett 55 162 (1985)

*** arXiv: 2203.03035

In strange sector most precise probe is $\Delta S=1$ direct CPV (ε') relative to indirect CPV (ε) in $K_{S,L}\to\pi\pi$ decays

CPV mechanism in SM requires penguin diagrams involving all three quark families

 $\epsilon'/\epsilon)_{EXP} = (16.6 \pm 2.3) \times 10^{-4}$ *

$$
(\varepsilon'/\varepsilon)_{SM} = (17.4 \pm 6.1) \times 10^{-4} + (\varepsilon'/\varepsilon)_{BSM} = (-4 - +10) \times 10^{-4} \cdot \text{*}
$$

SM calculation involves partial cancellation of QCD and EW penguins which posed challenge until recently

Strangeness $\Delta S = 1$ **SM + BSM**

$$
A_{CP} = \frac{\alpha + \bar{\alpha}}{\alpha - \bar{\alpha}} = -\sin \phi \tan(\xi_P - \xi_S) \frac{\sqrt{1 - \alpha^2}}{\alpha}
$$

$$
\Phi_{CP} = \frac{\phi + \bar{\phi}}{2} = \cos \phi \tan(\xi_P - \xi_S) \frac{\alpha}{\sqrt{1 - \alpha^2}}
$$

BSM

SM

$$
-3 \times 10^{-5} \le A_{\Lambda \, SM} \le 4 \times 10^{-5}
$$

$$
0.5 \times 10^{-5} \le A_{\Xi \, SM} \le 6 \times 10^{-5}
$$

Decay
\nmode
\n
$$
\begin{array}{c|c}\n\text{Decay} & \xi_P - \xi_S & *** \\
\hline\n\text{mode} & [10^{-4} \text{rad}] \\
\hline\n\Lambda \rightarrow p \pi^- & -0.2 \pm 2.2 \\
\Xi^- \rightarrow \Lambda \pi^- & -2.1 \pm 1.7\n\end{array}
$$

 $|A_\Lambda + A_\Xi| \leq 11 \cdot 10^{-4}$

Decay

 $\Lambda \to p \pi^-$

 $\Xi^- \to \Lambda \pi^-$

Chromomagnetic BSM penguin operators
\n
$$
Y \to B\pi \quad (\xi_P - \xi_S)_{BSM} = \frac{C'_B}{B_G} \left(\frac{\epsilon'}{\epsilon}\right)_{BSM} + \frac{C_B}{\kappa} \epsilon_{BSM}
$$

** Phys. Rev. D 67, 056001 (2003) ** Phys. Rev. D 69, 076008 (2004)* *** PRD105 (2022) 116022

UPPSALA NIVERSITET

BESIT

Polarization

When initial state is *unpolarized* and process is parity conserving, hyperons polarized perpendicular to production plane

Phase is production related, depending on CMS energy and scattering angle $\Delta \Phi \neq 0$ from interfering amplitudes (e.g. s- and d- waves) $\Delta \Phi = 0$ threshold

Analyticity requires that SL FF ~ TL FF as $|q^2|$ approaches $\infty \Delta \Phi = 0$

Formalism $e^+e^- \rightarrow \overline{YY}$

Production parameters of spin 1/2 baryons at ccbar : angular distribution parameter α_{ψ} and relative phase $\Delta\Phi$ Decay parameters for 2-body decays: α and $\overline{\alpha}$

 $\sigma_0 - \sigma_6$ are functions with experimentally measured observables

Unpolarized part Polarized part Spin correlated part $W(\xi) = \mathcal{T}_0(\xi) + \alpha_{\psi} \mathcal{T}_5(\xi) - \alpha \overline{\alpha} [\mathcal{T}_1(\xi) + \sqrt{1 - \alpha_{\psi}^2 \cos(\Delta \Phi)} \mathcal{T}_2(\xi) + \alpha_{\psi} \mathcal{T}_6(\xi)]$ $+\int_0^1 1 - \alpha_\psi^2 \sin(\Delta \Phi) \left[\alpha T_3(\xi) - \overline{\alpha} T_4(\xi)\right]$

Polarization necessary to "disentangle" α from $\overline{\alpha}$

 $\mathcal{T}_0(\xi)=1$

- $\mathcal{T}_1(\xi) = \sin^2 \theta \sin \theta_1 \sin \theta_2 \cos \phi_1 \cos \phi_2 + \cos^2 \theta \cos \theta_1 \cos \theta_2$
- $\mathcal{I}_2(\xi) = \sin \theta \cos \theta (\sin \theta_1 \cos \theta_2 \cos \phi_1 + \cos \theta_1 \sin \theta_2 \cos \phi_2)$
- $\mathcal{T}_3(\xi) = \sin \theta \cos \theta \sin \theta_1 \sin \phi_1$
- $\mathcal{I}_4(\xi) = \sin \theta \cos \theta \sin \theta_2 \sin \phi_2$

 $\mathcal{I}_5(\xi) = \cos^2 \theta$

 $\mathcal{T}_6(\xi) = \cos \theta_1 \cos \theta_2 - \sin^2 \theta \sin \theta_1 \sin \theta_2 \sin \phi_1 \sin \phi_2$

UPPSALA

UNIVERSITET

• Two spin- $\frac{1}{2}$ particle state:

$$
\rho_{1/2,\overline{1/2}} = \tfrac{1}{4} \sum_{\mu\bar{\nu}} C_{\mu\bar{\nu}} \sigma^{Y_1}_{\mu} \otimes \sigma^{\bar{Y}_1}_{\bar{\nu}}
$$

$$
C_{\mu\bar{\nu}} = \begin{pmatrix} 1 + \alpha_{\psi} \cos^2 \theta & 0 & \left(\beta_{\psi} \sin \theta \cos \theta\right) & 0 \\ 0 & \sin^2 \theta & 0 & \gamma_{\psi} \sin \theta \cos \theta \\ \hline -\beta_{\psi} \sin \theta \cos \theta & 0 & \alpha_{\psi} \sin^2 \theta & 0 \\ 0 & 0 & 0 & -\alpha_{\psi} - \cos^2 \theta \end{pmatrix}
$$

$$
\bar{Y}_1
$$
 transverse polarisation

$$
\bar{Y}_2
$$

where $\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \sin(\Delta \Phi)$ and $\gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \cos(\Delta \Phi)$

• Decay can be presented via decay matrices:

$$
\sigma_{\mu}^{Y_1} \rightarrow \sum_{\mu'=0}^3 a_{\mu\mu'}^{Y_1} (\alpha_{Y_1}, \phi_{Y_1}; \theta_{Y_2}, \varphi_{Y_2}) \sigma_{\mu'}^{Y_2}
$$

• Full angular distribution:

$$
\mathcal{W}(\boldsymbol{\xi},\boldsymbol{\omega})=\text{Tr}\rho_{Y_2\bar{Y}_2}=\textstyle\sum_{\mu,\bar{\nu}=0}^3C_{\mu\bar{\nu}}a_{\mu 0}^{Y_1}a_{\bar{\nu}0}^{\bar{Y}_1}
$$

 $\langle \alpha(A \rightarrow p\pi^{-}) \rangle_{\Lambda} = 0.754(1)(2)$ $\langle \alpha(A \rightarrow p\pi^{-}) \rangle_{\mathbb{E}} = 0.760(6)(3)$

18

$$
\overline{\text{BCSII}}
$$

$$
J/\psi \to \Sigma^+ \overline{\Sigma}^- \to p \pi^0 (n \pi^+) \overline{p} \pi^0 (\overline{n} \pi^-)
$$

First CP measurements for Σ decay

$$
A_{CP\Sigma} = \frac{\alpha_{\Sigma} + \alpha_{\overline{\Sigma}}}{\alpha_{\Sigma} - \alpha_{\overline{\Sigma}}} = -0.004 \pm 0.037_{stat} \pm 0.010_{syst}
$$

 $\Sigma^+ \rightarrow p \pi^0$ based on 83k events $\Sigma^+ \rightarrow n \pi^+$ based on 310k events

The formalism polarisation, entanglement and sequential decays * **

$$
\mathcal{W}(\boldsymbol{\xi};\boldsymbol{\omega}) = \sum_{\mu,\nu=0}^{3} \underbrace{C_{\mu\nu}}_{\mu'\nu'=0} \sum_{a}^{3} \underbrace{a_{\mu\mu'}^{\Xi} a_{\nu\nu'}^{\Lambda} a_{\nu'0}^{\Lambda}}_{\mu'\nu'=0}
$$

- Nine-dimensional phase space given by nine helicity angles
- Eight free parameters determined by maximum log likelihood method:

 α_{ψ} , $\Delta\Phi$, $\alpha_{\bar{z}}$, $\overline{\alpha}_{\bar{z}}$, $\phi_{\bar{z}}$, $\overline{\phi}_{\bar{z}}$, α_{Λ} , $\overline{\alpha}_{\Lambda}$ \uparrow \uparrow \uparrow \uparrow **not measured before**

* Phys. Rev. D 99, 056008 (2019) ** Phys. Rev. D 100, 114005 (2019) **Formalism** $J/\psi \rightarrow \Xi \overline{\Xi} \rightarrow \Lambda(\rightarrow p\pi) \overline{\Lambda} \pi(\rightarrow \overline{p}\pi^{+})$

Here $\Delta \Phi \neq 0$ is not needed to measure decay parameters! ***, ****

* Phys. Rev. D 99, 056008 (2019) ** Phys. Rev. D 100, 114005 (2019)

21

CP and weak phase difference

Analysis steps

at least one proton, one anti-proton, two positively and two negatively charged pion candidates

momentum criteria used to select proton (*p > 0.32 GeV/c*) and pion (*p < 0.30 GeV/c*) candidates

 Λ and Ξ candidates formed with succesful vertex fits

Mass windows $| m(p\pi) - m_{\Lambda} |$ < 11.5 MeV/*c*²) and $| m(\Lambda \pi) - m_{\Sigma} |$ < 12.0 MeV/*c*²

4C-kinematic fit on the hypothesis $e^+e^- \rightarrow J/\Xi \rightarrow \Xi^- \overline{\Xi}{}^+$ is used as veto

The decay lengths of Λ and Ξ candidates greater than 0.

For improved data-MC consistency only events with |cosθ|< 0.84

Analysis summary

73 200 exclusively measured $\Xi^{-} \overline{\Xi}{}^{+} \rightarrow \Lambda \pi^{-} \overline{\Lambda} \pi^{+}$ events

Very low level of background, 199±17 events

Here *entanglement* from spin correlations allows us to "*disentangle"* the weak and strong contributions

$E^{-}\overline{E}^{+} \to \Lambda(p\pi^{-})\pi^{-}\overline{\Lambda}(\overline{p}\pi^{+})\pi^{+}$

Table 1 | Summary of results

The J/ $\psi \rightarrow \Xi^{-\Xi^{+}}$ angular distribution parameter a_{ψ} , the hadronic form factor phase $\Delta \Phi$, the decay parameters for $\bar{z} \to \Delta \pi^-$ ($\alpha_{\bar{z}}, \phi_{\bar{z}}$), $\bar{\bar{z}}^+ \to \bar{\Delta} \pi^+$ ($\bar{\alpha}_{\bar{z}}, \bar{\phi}_{\bar{z}}$) $\Delta \to p\pi^-$ (α_{Δ}) and $\bar{\Delta} \to \bar{p}\pi^+$ ($\bar{\alpha}_{\Delta}$); the CP asymmetries $A_{\text{CP}}^{\bar{z}}$, $\Delta \phi_{\text{CP}}^{\bar{z}}$ and A_{CP}^{\wedge} , and the average $\langle \phi_z \rangle$. The first and second uncertainties are statistical and systematic, respectively.

First measurement of polarization

First direct determination of all $E^{-}E^{+}$ decay parameters

Previous experiments determined product *α α*

Independent measurement of Λ decay parameters. Excellent agreement with previous BESIII results. Similar precision despite 6x smaller data sample

> * PRD 93, 072003 (2018) ** PDG 2020 *** Nat. Ph. 15, 631 (2019) **** PRL 93, 011802 (2004)

 $E^{-}E^{+} \rightarrow \Lambda(p\pi^{-})\pi^{-}\overline{\Lambda}(\overline{p}\pi^{+})\pi^{+}$

Table 1 | Summary of results

The $J/\psi \rightarrow \Xi^{-} \overline{\Xi}^{+}$ angular distribution parameter a_{ψ} , the hadronic form factor phase $\Delta \Phi$, the decay parameters for $\bar{z} \to \Delta \pi^-$ ($\alpha_{\bar{z}}, \phi_{\bar{z}}$), $\bar{\bar{z}}^+ \to \bar{\Delta} \pi^+$ ($\bar{\alpha}_{\bar{z}}, \bar{\phi}_{\bar{z}}$) $\Delta \to p\pi^-$ (α_{Δ}) and $\bar{\Delta} \to \bar{p}\pi^+$ ($\bar{\alpha}_{\Delta}$); the CP asymmetries $A_{\text{CP}}^{\bar{z}}$, $\Delta \phi_{\text{CP}}^{\bar{z}}$ and A_{CP}^{\wedge} , and the average $\langle \phi_z \rangle$. The first and second uncertainties are statistical and systematic, respectively.

First extraction of weak phase diff for *any* weakly decaying baryon

 $(\xi_p - \xi_s) = (1.2 \pm 3.4 \pm 0.8) \times 10^{-2}$ rad

Consistent with SM expectation $(\xi_n - \xi_s)_{SM} = (1.8 \pm 1.5) \times 10^{-4}$ rad

New method for direct weak phase extraction!

Two CP-tests in single measurement

* PRD 93, 072003 (2018) ** PDG 2020 *** Nat. Ph. 15, 631 (2019) **** PRL 93, 011802 (2004)

 $E^{-}E^{+} \rightarrow \Lambda(p\pi^{-})\pi^{-}\overline{\Lambda}(\overline{p}\pi^{+})\pi^{+}$

Table 1 | Summary of results

The J/ $\psi \rightarrow \Xi^{-} \Xi^{+}$ angular distribution parameter a_{ψ} , the hadronic form factor phase $\Delta \Phi$, the decay parameters for $\Xi \to \Lambda \pi^-(\alpha_{\Xi} \phi_{\Xi})$, $\overline{\Xi}^+ \to \overline{\Lambda} \pi^+(\bar{\alpha}_{\Xi} \phi_{\Xi}) \Lambda \to p\pi^-(\alpha_{\Lambda})$ and $\overline{\Lambda} \to \overline{p} \pi^+(\bar{\alpha}_{\Lambda})$; the CP asymmetries $A_{CP}^{\bar{z}}$, $\Delta \phi_{CP}^{\bar{z}}$ and A_{CP}^{Λ} , and the average $\langle \phi_{\bar{z}} \rangle$. The first and second uncertainties are statistical and systematic, respectively.

We obtain the same precision for as HyperCP with *three orders of magnitude* smaller data sample!

 $\phi_{\text{E,HyperCP}} = -0.042 \pm 0.011 \pm 0.011$ $\langle \phi_{\overline{z}} \rangle = 0.016 \pm 0.014 \pm 0.007$

Strong phase measurement compatible with SM (1.9±4.9)x10-2 but in tension with HyperCP 2.6σ PRD 67 056001 (2004)

> * PRD 93, 072003 (2018) ** PDG 2020 *** Nat. Ph. 15, 631 (2019) **** PRL 93, 011802 (2004)

Nature 606 64-69 (2022)

 $E^{-}E^{+} \rightarrow \Lambda (n\pi^{0}/p\pi^{-})\pi^{-}\overline{\Lambda} (\overline{p}\pi^{+}/\overline{n}\pi^{0})\pi^{+}$

New determination based on 144k + 123k events

Strong phase difference sign different (but consistent) from charged mode

UNIVERSITET

arXiv:2309.14667

FIG. 2. The ratios of helicity angular distributions for different nucleons in the final states, $R(\cos\theta_p, \cos\theta_{\bar{p}})$ and $R(\cos\theta_n, \cos\theta_{\bar{n}})$ (top) as well as $R(\cos\theta_n, \cos\theta_p)$ and $R(\cos\theta_{\bar{n}}, \cos\theta_{\bar{p}})$ (bottom) versus $\cos\theta$. The dots with errors are determined by independent fits for each $\cos \theta$ bin of the corresponding nucleons. The solid curves in red with 1σ (red) and 3σ (pink) statistical uncertainty bands show the results of the simultaneous fit. The dashed curves in black show the CP-conserving and no $\Delta I = 3/2$ transition expectations.

arXiv:2309.14667

- Test of $\Delta I = \frac{1}{2}$ rule. In presence of $\Delta I = \frac{3}{2}$ transitions
- Ratios $\frac{\alpha 0}{\alpha -}$ and $\frac{\overline{\alpha}0}{\alpha +}$ consistent with 1 if $\Delta I = 1/2$

 $E^0 \overline{E}^0 \to \Lambda (p \pi^-) \pi^0 \overline{\Lambda} (\overline{p} \pi^+) \pi^0$

$E^{0} \overline{E}^{0}$ production and decay parameters with $3.3x10⁵$ events

Weak phase difference $\Xi^0 \to \Lambda \pi^0$

Previous determination of ϕ based on few hundred events

Consistent $\langle \alpha(A \rightarrow p\pi^{-}) \rangle_{\Lambda}$

UPPSALA UNIVERSITET

 $\Lambda \rightarrow p \mu^- \bar{\nu}_\mu$

Phys.Rev.Le.* 127 (2021) 12, 121802

- Possible to determine absolute branching fractions using Double-tag method, pioneered by MARKIII experiment,
- Suitable for rare and/or challenging decay modes

N_{DT}	$B_{\text{sig}} (\times 10^{-4})$	
4 ± 9	1.48 ± 0.21	0.2
1 ± 7	1.43 ± 0.30	0.1
3 ± 6	1.49 ± 0.29	0

$$
\Delta E_{\text{tag}} \equiv E_{\bar{\Lambda}} - E_{\text{beam}} \qquad M_{\text{BC}}^{\text{tag}} c^2 \equiv \sqrt{E_{\text{beam}}^2 - |\vec{p}_{\bar{\Lambda}} c|^2} \qquad \begin{array}{c} 20^{\text{F}} \leftarrow \text{Data}_{\text{total fit}} \\ 18^{\text{F}} \leftarrow \text{Data}_{\text{total fit}} \\ 20^{\text{F}} \leftarrow \text{Data}_{\text{total}} \\ 20^{\text{F}} \leftarrow \text{Data
$$

Potential for precise constraint on BSM from Semi-leptonic hyperon decays PRL 114, 161802 (2015)

$$
\mathcal{L}_{\text{eff}} = -\frac{G_F V_{us}}{\sqrt{2}} (1 + \epsilon_L + \epsilon_R) \sum_{\ell = e,\mu} {\{\bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \cdot \bar{u} [\gamma^\mu - (1 - 2\epsilon_R) \gamma^\mu \gamma_5] s \over \bar{\ell} \bar{\ell} (1 - \gamma_5) \nu_\ell \cdot \bar{u} [\epsilon_S - \epsilon_P \gamma_5] s + \epsilon_T \bar{\ell} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \cdot \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) s \} + \text{H.c.}
$$

Beyond the SM, the most general effective Lagrangian*

Assuming NP above electroweak symmetry breaking scale 246 GeV one is left with Wilson Coefficients, ε assuming real since CP-even

$$
\Gamma_{e,\text{SM}} \simeq \frac{G_F^2 |V_{us} f_1(0)|^2 \Delta^5}{60\pi^3} \left[\left(1 - \frac{3}{2} \delta \right) + 3 \left(1 - \frac{3}{2} \delta \right) \frac{g_1(0)^2}{f_1(0)^2} - 4 \delta \frac{g_2(0)}{f_1(0)} \frac{g_1(0)}{f_1(0)} \right]
$$

 Δ and δ mass dep. terms, vector FF: f₁(q²~0) - f₃(0) axial vector FF f₁(0) - g₃(0) In electron mode f_3 and g_3 scale with m_e/m_A

* Neglecting O(ε2), only SM field relevant at μ=1 GeV, demanding operators color and EM singlets

FIG. 1 (color online). 90% C.L. constraints on $\epsilon_{S,T}$ at $\mu = 2$ GeV from the measurements of $R^{\mu e}$ in different channels (dot-dashed lines) and combined (filled ellipse). LHC bounds obtained from CMS data at \sqrt{s} = 8 TeV (7 TeV) are represented by the black solid (dashed) ellipse.

$$
\Lambda \to p l^- \bar{\nu}_\mu
$$

TABLE II. SHD data for $g_1(0)/f_1(0)$ and theoretical determinations of $f_{S,T}(0)/f_1(0)$ at $\mu = 2$ GeV used in this work. The corresponding $r_{S,T}$ are shown in the last two lines.

$$
R^{\mu e} = \frac{\Gamma(B_1 \to B_2 \mu^- \bar{\nu}_{\mu})}{\Gamma(B_1 \to B_2 e^- \bar{\nu}_e)} \qquad \frac{R^{\mu e}}{R_{\rm SM}^{\mu e}} = 1 + r_S \epsilon_S + r_T \epsilon_T
$$

 $\varepsilon_S = 0.003(40),$ $\varepsilon_T = 0.017(34)$ at 90% CL from SLWD

Potential for $|V_{us}|$ determimation and test of BSM searches from determination of Wilson coefficients $\epsilon_{\rm S}$ and $\epsilon_{\rm T}$

Nice example where low-energy precision experiments with direct searches in collider experiments

PRL 114, 161802 (2015)

FIG. 1 (color online). 90% C.L. constraints on $\epsilon_{S,T}$ at $\mu = 2$ GeV from the measurements of $R^{\mu e}$ in different channels (dot-dashed lines) and combined (filled ellipse). LHC bounds obtained from CMS data at \sqrt{s} = 8 TeV (7 TeV) are represented by the black solid (dashed) ellipse.

$$
\sigma(p \rightarrow e + \text{MET} + X)
$$

$\Lambda \rightarrow n\gamma$

 $\Lambda \rightarrow n\gamma$ decay first observed radiative hyperon decay at BESIII

Double tag technique used. BF off by 5.6σ from PDG

Nr of events: 723 ± 40 $(\Lambda \rightarrow n\gamma)$ + 498 ±41 $(\bar{\Lambda} \rightarrow \bar{n}\gamma)$

 α_{γ} = -0.16±0.10_{stat}±0.05_{syst} agreement with Hara ($\alpha_{\gamma\text{ Hara}}$ = 0)

BF(Λ**→**nγ) = [0.832 ± 0.038*stat* ± 0.054*syst*] × 10-3

Phys. Rev. Lett. 129, 212002 (2022)

UPPSALA UNIVERSITET

 $e^+e^- \to J/\psi \to \Sigma^+ \bar{\Sigma}^- \to (p\gamma)(\bar{p}\pi^0) + \text{c.c.}$

 $\Sigma^+ \rightarrow$ py decay first observed radiative hyperon decay

Its large decay asymmetry in violation of Hara's theorem

Double tag technique used

Nr of events: 1189±38 + 1306±39

 $\mathcal{B} = (0.996 \pm 0.021 \pm 0.018) \cdot 10^{-3}$ $\langle \alpha_{\gamma} \rangle = -0.651 \pm 0.056 \pm 0.020$

$$
\Delta_{CP} = \frac{B - \bar{B}}{B + \bar{B}} = 0.006 \pm 0.011 \pm 0.004
$$

$$
A_{CP} = \frac{\bar{\alpha}_{\gamma} + \alpha_{\gamma}}{\bar{\alpha}_{\gamma} - \alpha_{\gamma}} = 0.095 \pm 0.087 \pm 0.018
$$

The BESIII future

- With 10¹⁰ J/ ψ data set there are many more modes which can be analyzed by BESIII
- In particular reactions with neutral final state particles n, γ
- In pipeline: $\Xi^{-} \overline{\Xi}{}^{+} \to \Lambda (p \pi^{-}) \pi^{-} \overline{\Lambda} (\overline{p} \pi^{+}) \pi^{+}$ 10M data set.
- More results from semi-leptonic and radiative hyperon decays in future

SM and BSM sensitivity

Experiment still few orders of magnitude from SM

From BESIII many proof-of-concept determinations

Other ex

PANDA@FAIR

The potential of ΛΛ and Ξ-Ξ- studies w Eur. Phys. J. A 57 No. 154 (2021), arXiv: 2

Super τ charm factories

FCC-ee?

Case study Super τ **charm factories**

Using polarized electron beam can greatly enhance sensitivity!

Non-polarized beam

$$
C_{\mu\nu} = (1 + \alpha_{\psi} \cos^2 \theta) \begin{pmatrix} 1 & 0 & P_y & 0 \\ 0 & C_{xx} & 0 & C_{xz} \\ -P_y & 0 & C_{yy} & 0 \\ 0 & -C_{xz} & 0 & C_{zz} \end{pmatrix}
$$

polarized beam

Phys. Rev. D **105**, 116022

S*TCF:* **single weak decay**

UNIVERSITET

Phys. Rev. D **105**, 116022

STCF: sequential weak decay

Using polarized electron beam can greatly enhance sensitivity!

$$
\mathcal{I}_0(\Phi_{\text{CP}}) = \frac{2N}{27} \left(1 - \alpha_{\text{E}}^2\right) \alpha_{\Lambda}^2 \left[\left(3 + \alpha_{\text{E}}^2 \alpha_{\Lambda}^2\right) \langle \mathbb{P}_{\text{E}}^2 \rangle + \frac{2}{3} \left(\alpha_{\text{E}}^2 \left(3 - 2\alpha_{\Lambda}^2\right) + 3\alpha_{\Lambda}^2\right) \langle \mathbb{S}_{\text{E}}^2 \rangle \right]
$$
\n
$$
\sigma(\Phi_{\text{CP}}) = 1/\sqrt{\mathcal{I}(\Phi_{\text{CP}})}
$$
\n
$$
\phi_{\text{CP}}
$$
\n
$$
\phi_{\text{CPI}}
$$
\n
$$
\phi_{\
$$

 P_e

Super τ **charm factories**

It becomes beneficial to also include single-tag events

We have presented a novel *model-independent method that uses spin entanglement in sequential weak decay chain* $E^- \rightarrow A\pi^-$, $A \rightarrow p\pi^-$

First measurement of weak phase difference for any baryon decay published yesterday. First Nature publication of BESIII

The benefits of using entangled pairs can be adopted by other experiments e.g. PANDA, BELLE-II and Super-tau Charm factories. Polarization of 0.8 possible?

BESIII recently collected 1.0 x 10¹⁰ *J*/ ψ events. More results to be expected in future!

Thank you for your attention!