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Why is this useful?

Inclination: Probes unification model of AGNSs

Slope: Probes departure from classical thin disk theory

lnner structure: Can measure environment at the BH,
spin?

No other way to do this!
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Reverberatiop Mapping

- Time-delay gives physical size

Video credit: Wikipedia [Blandford, McKee ’82]
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Intensity Interferometry gives angular size
Vided credit: Wikipedia [N. Dalal, MG, C. Gammie, S. Gralla, N. Murray, 2024]
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Distance error per AGN - spectroscopy
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e Modern ultrafast photodetection +
e Spectroscopy

Applications:

» (Geometric measurement of the Hubble constant
* enough to resolve tension

» Detailed properties of AGN accretion disks
» Sensitivity to the innermost part of the disk and the hole
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AGN Extras
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HO redshifts

SNe la Riess: 0.023 <z < 0.15
Just Cepheids, z<0.011

HOLICOW: z=0.41, HE 0435-1223
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Future

Tidal Disruption Events

Fainter, magnitude 16

[N. Dalal, MG, C. Gammie, S. Gralla,
31
Video credit: NASA’s Goddard Space Flight Center/Chris Smith (USRA/GESTAR) N. Murray’ March 2024, to appear]




Future

Tidal Disruption Events

Fainter, magnitude 16, SNR ~ 30 in 24hrs

a1 [N. Dalal, MG, C. Gammie, S. Gralla,
Video credit: NASA’s Goddard Space Flight Center/Chris Smith (USRA/GESTAR) N. Murray’ March 2024, to appear]




Future

Tidal Disruption Events

Fainter, magnitude 16, SNR ~ 30 in 24hrs
Last weeks to months

a1 [N. Dalal, MG, C. Gammie, S. Gralla,
Video credit: NASA’s Goddard Space Flight Center/Chris Smith (USRA/GESTAR) N. Murray’ March 2024, to appear]




Future

Tidal Disruption Events

Fainter, magnitude 16, SNR ~ 30 in 24hrs
Last weeks to months
Physics poorly understood

a1 [N. Dalal, MG, C. Gammie, S. Gralla,
Video credit: NASA’s Goddard Space Flight Center/Chris Smith (USRA/GESTAR) N. Murray’ March 2024, to appear]




Future

Tidal Disruption Events

Fainter, magnitude 16, SNR ~ 30 in 24hrs
Last weeks to months
Physics poorly understood

Measures BH spin

a1 [N. Dalal, MG, C. Gammie, S. Gralla,
Video credit: NASA’s Goddard Space Flight Center/Chris Smith (USRA/GESTAR) N. Murray’ March 2024, to appear]
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Distance error per AGN - one pixel
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Zero-baseline

Angular diameter

Narrabri Stellar Intensity Interferometer

Star number  Star name Type correlation % 103 sec of arc Temperature
cxto ol}l)i o OLD;’-_O [TC(F)i O'J/K
472 a Eri B3 (Vp) 0-98 + 0-05 1:85+ 0-07 1:92 4 0-07 13 700 + 600
1713 B Ori B 8 (Ia) 098+ 0-08 2:43+0-05 2:55+0-05 11 500+ 700
1790 y Ori B 2 (III) 1:03+0-07 070+ 0-04 0-72+0-04 20 800 + 1300
1903 € Ori B O (Ia) 0-86+0-07 0-67 + 0-04 0-69+ 0-04 24 500 + 2000
1948 { Ori 0 9-5 (Ib) 0-60 + 0-06 0-47 + 0-04 0-48+ 0-04 26 100 + 2200
2004 « Ori B 0-5 (Ia) 1-18+ 0-09 0-44+0-03 0-45+0-03 30 400 + 2000
2294 B CMa B 1 (II-III) 1:07 + 0-08 0-50+0-03 0-52+0-03 25 300+ 1500
2326 « Car F 0 (Ib-II) 0-75+0-22 6:1+0-7 6:6+0-8 7500 + 250
2421 y Gem A0 (IV) 1-17 + 0-09 1-:32+ 0-09 1-:39+0-09 9600 + 500
2491 a« CMa Al(V) 0-91+ 0-06 5:60+0-15 5-89+0-16 10 250 + 150
2618 e CMa B 2 (II) 0-89+ 0-06 0-77+0-05 0-80+ 0-05 20 800+ 1300
2693 3 CMa F 8 (Ia) 0-93+0-18 3-29+0-46 3-60+ 0-50 - —
2827 n CMa B 5 (Ia) 0-99 + 0-09 0-72+0-06 0-75+0-06 14 200+ 1300
2943 a CMi F5 (IV-V) 0-98+0-10 510+ 0-16 5:-50+0-17 6500 + 200
3165 { Pup 05 (f) 1-04 + 0-08 0-41+0-03 0-42+0-03 30 700 + 2500
3207 y* Vel WC8-+09(I) - 0-43+0-05 0-44+0-05 29 000 + 3000
3685 B Car A1l (IV) 1-:01 + 0-06 1-:51+0:07 1:59 4 0-07 9500 + 350
3982 o Leo B7(V) 1-12+ 0-07 1-32+0-06 1-:37+ 0-06 12700 + 800
4534 B Leo A3 (V) 1174+ 0-10 1:254+0-09 1:33+0-10 9050 + 450

1965—-1974



Narrabri Stellar Intensity Interferometer

Zero-baseline Angular diameter

Star number  Star name Type correlation % 10-3 sec of arc Temperature
cxto ol;ni o Owio [TC(F)_t a]/K
472 a Eri B3 (Vp) 0-98 + 0-05 1:85 4+ 0-07 1:92+ 0-07 13 700 + 600
. 1713 Ori B8 (la 098+ 0-08 2:43+0-05 2:55+0-05 11 500+ 700
M8T7* Apl“ll 11, 2017 1790 ﬁOri B2 211;) 1034007  070+004  072+004 20 800 + 1300
1903 € Ori B O (Ia) 0-86+0-07 0-67 + 0-04 0-69+ 0-04 24 500 + 2000
1948 { Ori 0 95 (Ib) 0-60+ 0-06 0-47 + 0-04 0-48 + 0-04 26 100 + 2200
2004 « Ort B 0-5 (Ia) 118+ 0-09 0-44+0-03 0-45+0-03 30 400 + 2000
2294 B CMa B 1 (II-11I) 107+ 0-08 +0:03 0-52+ 003 25 300+ 1500
2326 a Car F 0 (Ib-II) 0-75 +.0.27 +0-7 6:6+0-8 7500 + 250
2421 y Gem A0 (IV) 17+ 0: 1-32+0-09 1-39+0-09 9600 + 500
2491 a CMa Al + 006 5:60+0-15 5-89+0-16 10 250+ 150
2618 e CMa B 2 (IT) 0-89+ 0-06 0-77+0-05 0-80+ 0-05 20 800+ 1300
2693 Ia E a) 0-93+0-18 3-29+0-46 3-60+ 0-50 e -
28 7 CM B 5 (Ia) 0-99+ 0-09 0-72+0-06 0-75+0-06 14 200+ 1300
2943 Mi F5 (IV-V) 0-98+0-10 5:10+0-16 5:50+0-17 6500 + 200
316 { Pup 05 (f) 1-04 + 0-08 0-41+0-03 0-42+0-03 30 700 + 2500
1207 »? Vel WC8+009(I) — 0-43 + 005 0-44+ 0-05 29 000 + 3000
3685 B Car Al (IV) 1-01+0:06 1-51+0-07 1:59+0-07 9500+ 350
3982 a Leo B7(V) 1-12+ 0-07 1-32+0-06 1-37+ 0-06 12 700 + 800
4534 B Leo A3 (V) 1-174+0-10 125+ 0-09 1:33+0-10 9050 + 450

April 5 April 6 April 10

0 1 2 3 4 5
Brightness Temperature (107 K)

M87 BH Credit: EHT Collaboration
37
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https://doi.org/10.1117/12.2629655

Event: SPIE Astronomical Telescopes + Instrumentation, 2022, Montréal, Québec, Canada

Abstract

The LFAST concept is to use thousands of small telescopes combined by fibers for high resolution
(R=150,000) spectroscopy, in a way that will realize large cost savings and lead to an affordable aperture as
large as 20,000 m2. Such large aperture is needed, for example, to make a comprehensive search for
biosignatures in the atmospheres of transiting exoplanets. Each unit telescope of 0.76 m aperture (0.43 m?)
will focus the image of a single star onto a small (17 um core) fiber, subtending 1.32 arcsec. Our telescope
design calls for a spherical mirror, with a 4-lens assembly at prime focus that corrects not only for spherical
aberration, but also for atmospheric dispersion down to 30° elevation, from 390 nm — 1700 nm, and for rapid
image motion caused by seeing or wind jitter. A method for rapid production of such mirrors has been tested,
in which a disc of borosilicate float glass is slumped over a high-precision polished mandrel to an accuracy
that greatly reduces subsequent optical finishing time. A method for active thermal control of mirror figure
using Peltier devices will be incorporated. The projected cost of each unit telescope, when mass produced by
the thousand, would then be approximately $8,000. The telescopes will be mounted in the open in groups of
20 located 12 m apart. The mirrors will be arrayed on either side of a central, pedestal-mounted alt-az drive
using commercial worm gear bearings. Protection against rain and dust will be provided by automated covers
above and below the mirrors, and by pointing the mirrors down (— 20° elevation). The first LFAST array, some
150 m in diameter, will comprise 132 mounts carrying a total of 2,640 mirrors and having 1,200 m? in
collecting area. The light from all the fibers is combined at the central spectrographs, with little increase in
etendue, by a 5 x 528 array of adjacent hexagonal lenses. A telecentric lens is used to reimage the lens array
at the entrance slits of two echelle spectrographs. Together, these two cover simultaneously the full 390 nm —
1700 nm spectral range of the star being observed. The targeted cost for the installed LFAST telescope and
fiber array is $60M.
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will focus the image of a single star onto a small (17 um core) fiber, subtending 1.32 arcsec. Our telescope
design calls for a spherical mirror, with a 4-lens assembly at prime focus that corrects not only for spherical
aberration, but also for atmospheric dispersion down to 30° elevation, from 390 nm — 1700 nm, and for rapid
image motion caused by seeing or wind jitter. A method for rapid production of such mirrors has been tested,
in which a disc of borosilicate float glass is slumped over a high-precision polished mandrel to an accuracy
that greatly reduces subsequent optical finishing time. A method for active thermal control of mirror figure
using Peltier devices will be incorporated. The projected cost of each unit telescope, when mass produced by
the thousand, would then be approximately $8,000. The telescopes will be mounted in the open in groups of
20 located 12 m apart. The mirrors will be arrayed on either side of a central, pedestal-mounted alt-az drive
using commercial worm gear bearings. Protection against rain and dust will be provided by automated covers

above and below the mirrors, and by pointing the mirrors down (- 20° elevation). The firgt LEAST array, some

150 m in diameter, will comprise 132 mounts carrying a total of 2,640 mirrors and having
collecting area. The light from all the fibers is combined at the central spectrographs, Tittle Increase in
etendue, by a 5 x 528 array of adjacent hexagonal lenses. A telecentric lens is used to reimage the lens array
at the entrance slits of two echelle spectrographs. Together, these two cover simultaneously the full 390 nm —
1700 nm slre of the star being observed. The targeted cost for the installed LFAST telescope and

fiber array § $60M. §
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