18 Dec 2024

Houri Christina Tarazi

A journey through the non-geometric Landscape and connections to the Swampland

Kadanoff Center and Kavli Institute for Cosmological Physics

University of Chicago

Based on: 1912.06144 2309.15152 2406.00129 2406.00185 2412.xxx Baykara, HCT, Vafa Baykara, HCT, Vafa Baykara, Hamada, HCT, Vafa Kim, HCT, Vafa

Why quantum gravity is hard?

QFT framework seems insufficient

Theories of QG seem non-predictive

Lack of experimental guidance

Important Questions

- What is the right framework to study quantum gravity?
- Is string theory the right answer and how do we show that?
- How can we make it predictive?
- Where are we within the string theory landscape?
-

Important Questions

- What is the right framework to study quantum gravity?
- Is string theory the right answer and how do we show that?
- How can we make it predictive?
- Where are we within the string theory landscape?

Seems to suggest a hybrid bottom up and top down approach

Imagine the set of EFTs coupled to gravity

Imagine the set of EFTs coupled to gravity

Which subset defines a consistent gravitational UV completion?

Imagine the set of EFTs coupled to gravity

Which subset defines a consistent gravitational UV completion?

- Imagine the set of EFTs coupled to gravity
- Which subset defines a consistent gravitational UV completion?
	- Which subset defines a stringy UV completion?

The study of string theory helps us understand this

The Swampland program tries to understand these boundaries

- Imagine the set of EFTs coupled to gravity
- Which subset defines a consistent gravitational UV completion?
	- Which subset defines a stringy UV completion?

The Swampland - Landscape relationship

There is good motivation to believe that string theory predicts that only a finite number of theories is in the landscape

Could this be true for any EFT with a QG UV completion?

If yes then string theory looks pretty universal!

String theories with 16 Supercharges in $d \geq 4$

- d=10: Heterotic $E_8 \times E_8$, $SO(32)$
	- $r = 1$, M-theory on KB or IIB on DP
	- $r = 9$: CHL string
	- $r = 17$: Heterotic on $S¹$
- On S^1 \cdot d=8:

 $\cdot d=9$:

- $r = 1,3,5,7,11,19$ \bullet d=7:
- \bullet d=6: Chiral (2,0) IIB on K3 Non-chiral (1,1)

The rank of the gauge group is bounded by $rank(G) \leq 26 - d$

 $rank(G) = 1,9,17$

[Dabholkar, Harvey 98']

[Fraiman, Parra de Freitas 22']

[de Boer, Dijkgraaf et al 03']

[Baykara, Parra de Freitas, HCT to appear]

[Font et al 20' 21']

[Aharony, Komargodski, Patir et al 07']

 $rank(G) = 2,10,18$

 $rank(G) = 1 \mod 2$

 $rank(G) = 0 \mod 2$

- $d=7$: $r=1,3,5,7,11,19$
- \bullet d=6: Chiral (2,0) IIB on K3 Non-chiral (1,1)

The rank of the gauge group is bounded by $rank(G) \leq 26 - d$

 $rank(G) = 1,9,17$

 $rank(G) = 2,10,18$

 $rank(G) = 1 \mod 2$

 $rank(G) = 0 \mod 2$

Theories with 16 Supercharges in *d* ≥ 4 **and String Universality**

- d=10: Heterotic $E_8 \times E_8$, $SO(32)$
	- $r = 1$, M-theory on KB or IIB on DP
	- $r = 9$: CHL string
	- $r = 17$: Heterotic on $S¹$
- On S^1 \cdot d=8:

 \cdot d=9:

Kim, HCT, Vafa 19'

- $r = 1$, M-theory on KB or IIB on DP
- $r = 9$: CHL string
- $r = 17$: Heterotic on $S¹$
- On S^1 \bullet d=8:
- $r = 1,3,5,7,11,19$ \bullet d=7:
- \bullet d=6: Chiral (2,0) IIB on K3 Non-chiral (1,1)

The rank of the gauge group is bounded by $rank(G) \leq 26 - d$

- $d=10$: Heterotic $E_8 \times E_8$, $SO(32)$
- $\cdot d=9$: Entire Moduli space
- Bedroya, Raman, Tarazi 23'

Theories with 16 Supercharges in *d* ≥ 4 **and String Universality**

Kim, HCT, Vafa 19'

$$
E_8 \times U(1)^{2/8}, U(1)^{496}
$$
Kim, Shiu, V. 19' Adams, Dewolfe, Taylor 10'
on DP
rank(G) = 1,9,17
rank(G) = 2,10,18
Rank(G) = 1 mod 2
rank(G) = 1 mod 2

$$
rank(G) = 0 \mod 2
$$

String theory

String theory does lots of the heavy lifting!

Caution !

Geometric Landscape

- Much of our string theory intuition comes from string theory and especially geometric models
	- How safe is this?

- Kodaira condition for elliptic threefolds $12T_{Graw} \ge \sum v_i T_{G_i}$ *i* Tension of gravitational instanton
- Geometric models always come with a volume modulus (neutral scalar)

Tension of gauge instanton

Landscape We provide non-geometric models that provide such examples! Expanding our intuition of the landscape

Geometric

Caution !

Lesson : It's a give and take relationship

By trying to understand if something is universal we end up looking for counterexamples or constructions in string theory and hence improving our understanding of what is possible and what the right questions are

Swampland String theory

The more we understand the string landscape the more we can understand the boundaries

Then we can turn them into consistency conditions and check if they are universal

What do we want from the string landscape?

This brings us to the Landscape

Supersymmetric Landscape

Dualities

The right swampland principles

String universality

Dualities

The right swampland principles

String universality

What do we want from the string landscape?

Non-Supersymmetric Landscape

Standard Model physics

Cosmological physics

Naturalness questions

Dualities

The right swampland principles

String universality

Non-Supersymmetric Landscape

Standard Model physics

Cosmological physics

In non-susy Naturalness questions

context?

What do we want from the string landscape?

Dualities

String universality

Generic features Realistic models

The right swampland principles

Non-Supersymmetric Landscape

What we want from them?

What do we want from the string landscape?

Standard Model physics

Cosmological physics

Naturalness questions

In non-susy context?

Exotic corners

Moduli stabilization

Dualities

String universality

The right swampland principles

Non-Supersymmetric Landscape

What we want from them?

Standard Model physics

Cosmological physics

Naturalness questions

In non-susy context?

Realistic models

What do we want from the string landscape?

Moduli stabilization

Exotic corners need exotic models

Exotic corners need exotic models

Asymmetric orbifolds are non-geometric

Compactifications on *S*¹

Compactifications on *S*¹

Compactifications on *S*¹

Compactifications on *S*¹

Compactifications on interval

 S^1/\mathbb{Z}_2

Compactifications on *S*¹

Compactifications on interval

Stringy effects resolve these singularities Modular invariance on the string worldsheet specifies consistency

Compactifications on *S*¹

Compactifications on interval

Stringy effects resolve these singularities Modular invariance on the string worldsheet specifies consistency

String charge lattice $\Gamma^{1,1}$ (even unimodular) \to orbifold by \Z_2 symmetry of the lattice, modular invariance requires

Untwisted Sector (invariant under orbifold action) and Twisted Sector (strings closed up to \mathbb{Z}_2)

- Choose the starting point: IIA, IIB, Heterotic
-

$\Gamma^{D,D}(q) + \Gamma^{16,0}(E_8 \times E_8)$ **•** Choose even self-dual lattice: $\Gamma^{D,D}(\mathfrak{g}) = \{ (p_L, p_R) | p_L \in \Lambda_W(\mathfrak{g}), p_R \in \Lambda_W(\mathfrak{g}), p_L - p_R \in \Lambda_R(\mathfrak{g}) \}$

- Choose the starting point: IIA, IIB, Heterotic
-

Lattice Automorphisms/crystallographic symmetries on *T^D*

• Choose even self-dual lattice: $\Gamma^{D,D}(\mathfrak{g}) = \{ (p_L, p_R) | p_L \in \Lambda_W(\mathfrak{g}), p_R \in \Lambda_W(\mathfrak{g}), p_L - p_R \in \Lambda_R(\mathfrak{g}) \}$ $\Gamma^{D,D}(\mathfrak{g}) + \Gamma^{16,0}(E_8 \times E_8)$

- Choose the starting point: IIA, IIB, Heterotic
-

- Choose the twist:
- Choose the shift:

 $[g_L, g_R] = [\exp(2\pi i \phi_L), \exp(2\pi i \phi_R)]$

• Choose even self-dual lattice: $\Gamma^{D,D}(\mathfrak{g}) = \{ (p_L, p_R) | p_L \in \Lambda_W(\mathfrak{g}), p_R \in \Lambda_W(\mathfrak{g}), p_L - p_R \in \Lambda_R(\mathfrak{g}) \}$ $\Gamma^{D,D}(\mathfrak{g}) + \Gamma^{16,0}(E_8 \times E_8)$

- Choose the starting point: IIA, IIB, Heterotic
-

• Choose the twist:

 $[g_L, g_R] = [\exp(2\pi i \phi_L), \exp(2\pi i \phi_R)]$ (*vL*, *vR*)

• Choose the shift:

 $R = L$ **R** \neq *L*

Asymmetric Orbifolds

Symmetric Orbifolds

[Dixon, Harvey, Vafa, Witten 85'/86'] [Narain, Sarmadi, Vafa 87']

• Choose even self-dual lattice: $\Gamma^{D,D}(\mathfrak{g}) = \{ (p_L, p_R) | p_L \in \Lambda_W(\mathfrak{g}), p_R \in \Lambda_W(\mathfrak{g}), p_L - p_R \in \Lambda_R(\mathfrak{g}) \}$ $\Gamma^{D,D}(\mathfrak{g}) + \Gamma^{16,0}(E_8 \times E_8)$

$\Gamma^{4,4}(A_2 \oplus A_2) + 2\Gamma^{8,0}(E_8)$

$$
\phi_R = (\frac{2}{3}, \frac{2}{3}) \qquad \qquad \phi_L = (0, 0)
$$

2 3 , 2 3)

$$
V_L = \frac{1}{3} (1^6, 0^2; 0^8)
$$

$E_6 \times SU(3) \times E_8 \times SU(3)^2 + H_c$

No Neutral Hypers

Geometric **Geometric** Frozen volume

Hamada, Baylara, HCT, Vafa 23'

Matter

$\Gamma^{4,4}(A_2 \oplus A_2) + 2\Gamma^{8,0}(E_8)$

$$
\phi_R = (\frac{2}{3}, \frac{2}{3}) \qquad \qquad \phi_L = (0, 0)
$$

2 3 , 2 3)

$$
V_L = \frac{1}{3} (1^6, 0^2; 0^8)
$$

$$
\times E_8 \times SU(3)^2 + H_c
$$

No Neutral Hypers

Kodaira Condition

Hamada, Baylara, HCT, Vafa 23'

Matter

 $E_6 \times SU(3)$

Geometric **Geometric** Frozen volume

Hneutral

0

 $2(27, 3, 1, 1, 1) + (27, 1, 1, 3, 1) + (27, 1, 1, 3, 1)$

 $+(1, 3, 1, 3, 3) + (1, 3, 1, 3, 3) + (1, 3, 1, 3, 3) + (1, 3, 1, 3, 3)$

Spectrum

Hneutral

Hneutral

0

 $2(27, 3, 1, 1, 1) + (27, 1, 1, 3, 1) + (27, 1, 1, \overline{3}, 1)$

 $+(1, 3, 1, 3, 3) + (1, 3, 1, 3, 3) + (1, 3, 1, 3, 3) + (1, 3, 1, 3, 3)$

Spectrum

Hneutral

Hneutral

0

 $2(27, 3, 1, 1, 1) + (27, 1, 1, 3, 1) + (27, 1, 1, \overline{3}, 1)$

 $+(1, 3, 1, 3, 3) + (1, 3, 1, 3, 3) + (1, 3, 1, 3, 3) + (1, 3, 1, 3, 3)$

Spectrum

Higgsing

Hneutral

 $B = \mathbb{F}_{12}$

Heterotic on K3 with Instanton number (0,24)

Calabi-Yau threefold with base F_{12}

Higgsing/UnHiggsing

Duality

Kachru, Vafa **4d**

[9505105] Kachru, Vafa 4d

Heterotic on K3 with Instanton number (0,24)

Calabi-Yau threefold with base F_{12}

Higgsing/UnHiggsing

Duality

Transitions

*R*self-dual

$\Gamma^{5,5} = \Gamma^{4,4} + \Gamma^{1,1}$ $\Gamma^{21,5} = \Gamma^{20,4} + \Gamma^{1,1}$ **Type II AO Heterotic AO** \mathbb{Z}_N twist Shift **Shift**

Freely Acting Orbifolds

How about 5d models with no hypers ?

Twisted sectors become massive

[Gkoumtoumis, Hull, Stemerdink, Vandoren 23']

Similar examples

Baylara, Tarazi, Vafa 23'

More 5d models with no hypers? Baylara, Tarazi, Vafa 23'

Exotic corners need exotic models

Asymmetric orbifolds are non-geometric

Exotic corners need exotic models

Asymmetric orbifolds are non-geometric

Does it get more exotic?

Quasicrystalline orbifolds

[88' Harvey, Moore, Vafa]

Perturbative Narain compactifications $\Pi^{d+x;d} \hookrightarrow \Gamma^{d+x;d} \subset \mathbb{R}^{d+x;d}$

Perturbative Narain compactifications $\Pi^{d+x;d} \hookrightarrow \Gamma^{d+x;d} \subset \mathbb{R}^{d+x;d}$

Symmetries:

 A utomorphism $\theta \in Aut(\Gamma^{d+x;d})$ integral matrix such that $S\theta S^{-1} \in O(d+x,d,\mathbb{Z})$

[86' Narain]

$) := \text{Aut}(\Gamma^{d+x;d}) \cap (\text{O}(d+x,\mathbb{R}) \times \text{O}(d,\mathbb{R})).$

Perturbative Narain compactifications $\Pi^{d+x;d} \hookrightarrow \Gamma^{d+x;d} \subset \mathbb{R}^{d+x;d}$

Symmetries:

Asymmetric $\theta_R \neq \theta_L$
 $\theta_L \neq \theta_L$

 $\theta_R = \theta_L$ **Action Symmetric Action**

[86' Narain]

$) := \text{Aut}(\Gamma^{d+x;d}) \cap (\text{O}(d+x,\mathbb{R}) \times \text{O}(d,\mathbb{R})).$

 A utomorphism $\theta \in Aut(\Gamma^{d+x;d})$ integral matrix such that $S\theta S^{-1} \in O(d+x,d,\mathbb{Z})$

Perturbative Narain compactifications:

- Symmetries:
	-

$\theta_R = \theta_I$ **Action Symmetric Action**

Asymmetric

 θ_R , θ_I automorphisms θ_R , θ_I not separately automorphisms

Crystallographic Symmetry Quasicrystalograhic Symmetry

[87' Narain, Sarmadi, Vafa] [88' Harvey, Moore, Vafa]

\prod *d*+*x*;*d* ← \prod *d*+*x*;*d* ← \prod *Rd*+*x*;*d* [86' Narain]

$) := \text{Aut}(\Gamma^{d+x;d}) \cap (\text{O}(d+x,\mathbb{R}) \times \text{O}(d,\mathbb{R})).$

 A utomorphism $\theta \in Aut(\Gamma^{d+x;d})$ integral matrix such that $S\theta S^{-1} \in O(d+x,d,\mathbb{Z})$

 $\theta = (\theta_I; \theta_R)$

 $\theta_R \neq \theta_L$

Perturbative Narain compactifications:

Symmetries:

 $\theta_R = \theta_L$ **Action Symmetric Action** $\theta = (\theta_I; \theta_R)$

Asymmetric

 θ_R , θ_L automorphisms θ_R , θ_L not separately automorphisms

Crystallographic Symmetry Quasicrystalograhic Symmetry

[87' Narain, Sarmadi, Vafa] [88' Harvey, Moore, Vafa]

$\Pi^{d+x;d} \hookrightarrow \Gamma^{d+x;d} \subset \mathbb{R}^{d+x;d}$ [86' Narain]

$) := \text{Aut}(\Gamma^{d+x;d}) \cap (\text{O}(d+x,\mathbb{R}) \times \text{O}(d,\mathbb{R})).$

 A utomorphism $\theta \in Aut(\Gamma^{d+x;d})$ integral matrix such that $S\theta S^{-1} \in O(d+x,d,\mathbb{Z})$

 $\theta_R \neq \theta_L$

$$
\left(\begin{array}{c}\n0 \\
\sqrt{3} \\
2\n\end{array}\right),\ B_{ij} = \alpha' \begin{pmatrix}\n0 & \frac{1}{2} \\
-\frac{1}{2} & 0\n\end{pmatrix}.
$$

So this models are rigid where all internal radii are fixed

•The location of the symmetry in the target torus $T^d = \mathbb{R}^d/2\pi\Lambda_d$ is at G_{ij}, B_{ij} fixed

Quasicrystalline Symmetry

 $(p_L^1, p_L^2; p_R^1, p_R^2) \in \Gamma_{12}^{2,2}$

Center of ellipsis: (p_L^1, p_L^2)

Orientation and length: (p_R^1, p_R^2)

No translation symmetry

Let's start with 16 supercharges

Baylara, Tarazi, Vafa 24'

K3 sigma model is expected to have the following symmetries:

[12' Gaberdiel, Volpato]

First interesting example

K3 Moduli space [89' Eguchi, Ooguri, Taormina, Yang] We also use the quasicrystals for:

Large discrete symmetries

e.g. a 5d $\mathcal{N} = 1$ with generic \mathbb{Z}_{42} gauge symmetry and $G = U(1)^2$

K3 Moduli space

6d String Islands?

Free action

[98' Dabholkar, Harvey] [22' Fraiman, Parra de Freitas]

Free Quasicrystals in 5d

String Islands

- In [22' Fraiman, Parra de Freitas] a classification of string islands was suggested
- with 16 supercharges
- Some have a discrete theta angle:

Baykara, Parra de Freitas, HCT to appear

• We have constructed them all and completed the classification of all stringy vacua

 RR axions \rightarrow fractional charge shift occupied by non-BPS particle

Counterexamples to BPS completeness and lattice weak gravity conjecture

• S-dual to the free quasicrystals

[95' Sen, Vafa]

- Moduli are sources of instabilities so models with no or limited moduli are particularly interesting
- Maybe non-susy dualities can give us a hint on the scalar potential

How about non-susy string islands?

Non-susy 10d theories with no tachyons:

- Heterotic $O(16) \times O(16)$ string
- •Type O'B string
- •USp(32) open string

All have positive leading cosmological constant, chiral matter, no tachyons and one neutral scalar

[Dixon, Harvey; Alvarez-Gaume, Ginsparg, Moore, Vafa]

[Sagnotti]

[Sugimoto]

4d Non-Susy \mathbb{Z}_5 Quasicrystalline orbifold

Massless Spectrum

Note quasicrystal not at special point and hence $r = 16$

- Narain Lattice: $\Gamma(E_8) \oplus L\Gamma_5^{2,2} \oplus \Gamma_5^{2,2}\Gamma_5^{2,2}$
- Twist by: $\phi = (4, 4, 4, 0^8; 2, 2, 2)$ /5
- Shift by: $v = (2,0,3,0,1,4,0,0,4,3,0,3,3,3,4,0)$ /5

No tachyon at tree level

- No Tachyons at tree level
- Chiral Matter
- Positive CC
- One neutral scalar

*V*1−*loop*(*ϕ* ̂ $\approx e^{-2\sqrt{2}\phi}$ (3.13 × 10⁻²) M_s^4

Massless Spectrum

4d Non-Susy \mathbb{Z}_5 Quasicrystalline orbifold

How about in other dimensions?

6d Non-Susy \mathbb{Z}_5 asymmetric orbifold

fermions+bosons

- ng point: Heterotic string
- Narain Lattice: $\Gamma(E_8 \times E_8) \bigoplus \Gamma^{4;4}(A_4)$
- Twist by: $\phi = (0^{10}, 2, 4)/5$
- Shift by: $v = (3,3,1,4,4,1,2,2,4,4,1,1,2,4,2,3,3,3,2,3)$ /5.

- No Tachyons at tree level
- One neutral scalar
- Chiral Matter
- Positive CC

• *V*(*ϕ* **Õ**)1-loop ≈ *e*−3*^ϕ* (2.89 × 10−³) *M*⁶ *s* .

8d Non-Susy \mathbb{Z}_3 asymmetric orbifold

- Narain Lattice: $\Gamma(E_8 \times E_8) \bigoplus \Gamma^{2,2}(A_2)$
- Twist by : $\phi = (0^9; 2/3)$
- Shift by: $v = (2,1,0,2^3,1,2,0,2,0,2^2,0,2^2,1,0)/3$

- No Tachyons at tree level
- One neutral scalar
- Chiral Matter
- Positive CC :

$$
V_{1-loop}(\hat{\phi}) \approx e^{\frac{-8}{\sqrt{6}}\hat{\phi}} (1.26 \times 10^{-4}) M_s^8
$$

So we have three theories in 4, 6 and 8 dimensions

We have no tree level tachyons

They all have chiral matter

They all have positive CC

Concluding remarks

- Better understanding of the string theory landscape
- Better understanding of non-susy dualities
-

• Better understanding more exotic model. Non-perturb compactifications?

Swampland String theory

Thank you very much for listening

and

Lotus & Swamplandia

Naxos Greece

4-6 June 2025

www.swamplandia.com

