W-symmetries, anomalies and heterotic backgrounds with SU holonomy

Loukas Grimanellis

King's College London

NKUA Xmas Theoretical Physics Workshop

18 December 2024

Based on arXiv:2305.19793 with G. Papadopoulos and E. Perez-Bolaños

- \bullet σ -models play a central role in string theory as they describe the string propagation in an n-dim spacetime M.
- \bullet Given a connection $\hat{\nabla}$ on a manifold M one can investigate its holonomy $hol(\hat{\nabla}).$
- If $\exists \hat{\nabla}$ -covariantly constant ℓ -form L on M , $\hat{\nabla}L=0 \Rightarrow \hat{R}_{\mu \rho}{}^{\sigma}{}_{[\nu_1}L_{|\sigma|\nu_2...\nu_\ell]}=0$.
- **•** This is the condition for invariance under the group action of $ho/(\hat{\nabla})$, following from $L_{\nu_1...\nu_\ell} O^{\nu_1}{}_{\mu_1} \ldots O^{\nu_\ell}{}_{\mu_\ell} = L_{\mu_1...\mu_\ell}$.
- \bullet Thus, $\hat{\nabla}$ -covariantly constant forms are invariant forms of $hol(\hat{\nabla}).$
- Given a $\hat{\nabla}$ -covariantly constant form, the $hol(\hat{\nabla})$ reduces to a subgroup of $U(\frac{n}{2})$, $SU(\frac{n}{2})$, $Sp(\frac{n}{4})$, $Sp(\frac{n}{4})$ $Sp(1)$, $G_2(n=7)$ and $Spin(7)(n=8)$.
- **Such forms generate symmetries in 2-dim supersymmetric** σ **-models with couplings a** metric g , and a Wess-Zumino term b, with $H = db$. [Odake (1989); Delius, Rocek, Sevrin, van Nieuwenhuizen (1989); Howe, Papadopoulos (1991 & 1993)]

- \bullet As these symmetries arise from the reduction of holonomy of $\hat{\nabla}$ to a subgroup of SO, are called holonomy symmetries.
- They satisfy a W-algebra as the structure constants depend on the conserved currents of the theory. [Howe, Papadopoulos (1991 & 1993)]
- Such forms arise naturally in heterotic string backgrounds that preserve some spacetime supersymmetry, because of the gravitino KSE, $\hat{\nabla}_{\mu}\epsilon = 0$. [Moore, Nelson; Gaume, Ginsparg; Bagger, Nemeschansky, Yankielowicz (1985)]

$$
\hat{\nabla} = \nabla + \frac{1}{2}H.
$$

• Integrability condition of the gravitino KSE

$$
[\hat{\nabla}_{\mu}, \hat{\nabla}_{\nu}]\epsilon = \frac{1}{4}\hat{R}_{\mu\nu, AB}\Gamma^{AB}\epsilon = 0.
$$

Introduction

The existence of Killing spinors requires that $hol(\hat{\nabla})$ must be a subgroup of their isotropy group in $Spin(9,1)$.

When the Killing spinors $(\epsilon_1, \ldots, \epsilon_N)$ have a non-trivial isotropy group,

$$
hol(\hat{\nabla}) \subseteq Stab(\epsilon_1,\ldots,\epsilon_N) \subset Spin(9,1) .
$$

Distinction between compact and non-compact holonomy. It has been shown that [Gran, Lohrmann, Papadopoulos (2006); Gran, Papadopoulos, Roest, Sloane (2007)]

- Compact: $hol(\hat{\nabla}) \subseteq SU(2)$, $SU(3)$, G_2 ,
- Non-compact: $hol(\hat{\nabla}) \subseteq \mathcal{K} \ltimes \mathbb{R}^8$, with

$$
\mathcal{K} = Spin(7)
$$
, $SU(4)$, $Sp(2)$,
 $\times^2 Sp(1)$, $Sp(1)$, $U(1)$, $\{1\}$.

Alternatively, one can characterize the geometry of supersymmetric heterotic backgrounds in terms of spacetime form bilinears of the Killing spinors.

Such bilinears are also $\hat{\nabla}$ -covariantly constant, as a consequence of the KSE.

$$
\hat{\nabla}_{\mu}L_{\nu_1...\nu_{\ell}}=0\ .
$$

The converse is also true. [Papadopoulos, Tsimpis (2003)] The isotropy subgroup of Killing spinors does also leave the L invariant.

 \bullet Due to the presence of chiral worldsheet fermions, symmetries of heterotic σ -models are anomalous.

[Moore, Nelson; Gaume, Ginsparg; Bagger, Nemeschansky, Yankielowicz (1985)]

To preserve the geometric interpretation of these theories, the anomalies of some of these symmetries must cancel.

- \bullet We focus on heterotic backgrounds with $hol(\hat{\nabla}) \subseteq SU(2)$ and $SU(3)$.
- \bullet The $\hat{\nabla}$ -covariantly constant forms constructed from Killing spinors are known. [Gran, Lohrman, Papadopoulos (2005)]

Our goal:

- Algebra of symmetries
- **•** Anomalies
- **•** Anomaly cancellation

Let the (1,0)-supersymmetric 2-dim σ -model with $(\sigma^=,\sigma^{\ddagger},\theta^+)$ the coordinates of the superspace $\Xi^{2|1}.$ Classical fields: X,ψ

$$
S = -i \int d^2 \sigma d\theta^+ \left(\left(g_{\mu\nu} + b_{\mu\nu} \right) D_+ X^\mu \partial = X^\nu + i h_{ab} \psi_-^a \mathcal{D}_+ \psi_-^b \right) ,
$$

with metric g , 2-form b with $H = db$, $D^2_+ = i \partial_{\pm}$, h fibre metric on E and

$$
{\cal D}_+\psi_-^a = D_+\psi_-^a + D_+X^\mu\,\Omega_\mu{}^a{}_b\,\psi_-^b\ ,
$$

where $Ω$ connection on E with curvature $F.$ $σ$ -model symmetries:

- Diffeomorphisms of the target space M.
- Gauge transformations u of the gauge sector with connection $Ω$.

Symmetries of σ -model

- Spacetime frame rotations ℓ , with $g_{\mu\nu} = \eta_{AB} e^A_\mu e^B_\nu$, and ω the frame connection.
- **Gauge symmetry of b.**
- \bullet Holonomy symmetries generated by a vector ℓ -form on M

$$
\delta_L X^\mu = a_L L^\mu{}_{\nu_1...\nu_\ell} D_+ X^{\nu_1...\nu_\ell} \ , \quad \Delta_L \psi_-^a \equiv \delta_L \psi_-^a + \delta_L X^\mu \, \Omega_\mu{}^a{}_b \, \psi_-^b = 0 \ ,
$$

with $\partial_{\mu} a_{\mu} = 0$, and provided that

$$
\hat{\nabla}_{\nu} L_{\lambda_1 \dots \lambda_{\ell+1}} = 0 \; , \quad F_{\nu[\lambda_1} L^{\nu}{}_{\lambda_2 \dots \lambda_{\ell+1}]} = 0 \; .
$$

For KS form bilinears, these are consequences of the gravitino and the gaugino KSE. Conserved (holonomy) currents $J_L = L_{\mu_1...\mu_{\ell+1}} D_+ X^{\mu_1...\mu_{\ell+1}}$.

For $\ell = 0$, $L = K$ is a parallel 1-form associated to a Killing vector field.

Symmetries of σ -model

- To express $[\delta_L, \delta_M]$ as a sum of symmetry transformations, we require additional generators.
- E.g. the vector $(q+1)$ -form $S^{\mu}{}_{\nu\rho_1...\rho_q} = \delta^{\mu}{}_{[\nu} Q_{\rho_1...\rho_q]}$, with $\hat{\nabla} Q = 0$,

$$
\delta_S X_\mu = \alpha_S \hat{\nabla}_+ D_+ X^\nu S_{\nu,\mu Q} D_+ X^Q + \frac{(-1)^q}{q+1} \hat{\nabla}_+ (\alpha_S S_{\mu,\nu Q} D_+ X^{\nu Q})
$$

$$
- \frac{q+3}{q+1} \alpha_S H_{[\mu\nu\rho} Q_{Q]} D_+ X^{\nu\rho Q} ,
$$

$$
\Delta_S \psi_-^a = - \frac{(-1)^q}{q+1} \alpha_S Q_Q F_{\mu\nu}^{\ \ a}{}_b \psi_-^b D_+ X^{Q\mu\nu} \ ,
$$

with conserved current TJ_Q , where T is the right-handed (super) energy-momentum tensor.

- What about anomalies?
- Suppose that the classical theory is invariant under the algebra of symmetries whose variations on the fields satisfy

$$
[\delta_A, \delta_B] = \delta_{[A,B]}.
$$

If these symmetries are anomalous in the quantum theory, i.e. $\delta_A \Gamma = \Delta(a_A)$, then one gets the Wess-Zumino anomaly consistency conditions

$$
\delta_A\Delta(a_B)-\delta_B\Delta(a_A)=\Delta(a_{[A,B]})\ .
$$

- The anomaly associated to the frame rotations is determined by the descent equations. [Zumino (1984)]
- Starting from $P_4(R) = tr(R(ω) ∧ R(ω))$ for the curvature R of $ω$, $dP_4=0 \Rightarrow P_4(R)=dQ_3^0(\omega)$ (locally), with $Q_3^0(\omega)$ the Chern-Simons form.
- As $\delta_{\ell}P_4 \Rightarrow d\delta_{\ell}Q_3^0(\omega) = 0 \Rightarrow \delta_{\ell}Q_3^0(\omega) = dQ_2^1(\omega,\ell).$

• The frame rotation anomaly is given by

$$
\Delta(\ell) = \frac{i\hbar}{4\pi} \int d^2 d\theta^+ Q_2^1(\omega,\ell)_{\mu\nu} D_+ X^\mu \partial_- X^\nu ,
$$

and similarly for the gauge transformation $\Delta(u)$.

The cancellation of the anomalies follows from assigning an anomalous variation to b at one-loop [Hull-Witten (1985)]

$$
\delta_\ell b = \frac{\hbar}{4\pi} Q_2^1(\omega,\ell) \; , \quad \delta_u b = -\frac{\hbar}{4\pi} Q_2^1(\Omega,u) \; .
$$

• As $[\delta_{\ell}, \delta_{\ell}] = [\delta_{\mu}, \delta_{\ell}] = 0$, one can show that

$$
\Delta(a_L) = \frac{i\hbar}{4\pi} \int d^2\sigma d\theta^+ Q_3^0(\omega,\Omega)_{\mu\nu\rho} \,\delta_L X^\mu D_+ X^\nu \partial_- X^\rho ,
$$

where $Q_3^0(\omega,\Omega)=Q_3^0(\omega)-Q_3^0(\Omega).$

We adopt two different scenarios to cancel the anomalies.

- \bullet First, when L does not receive quantum corrections, one can introduce finite local counterterms to the effective action. As $P_4=dQ_3^0$, then Q_3^0 is specified up to an exact form $\,Q^0_3\rightarrow Q^0_3+dW$.
- Second, when L receives quantum corrections, L^{\hbar} .

$$
\delta_L^{\hbar} \Gamma = \delta_L^{\hbar} (\Gamma^{(0)} + \hbar \Gamma^{(1)}) = \Delta(a_L) \implies
$$

- $i \int d^2 \sigma d\theta^+ (a_L \frac{2(-1)^{\ell}}{\ell+1} \hat{\nabla}_{\mu}^{\hbar} L_{L+1}^{\hbar} \partial = X^{\mu} D_+ X^{L+1})$
- $i a_L L_L^{\hbar \mu} F_{\mu \nu ab}^{\hbar} \psi_-^a \psi_-^b D_+ X^{L \nu} + 2i \Delta_L^{\hbar} \psi_-^a D_+^{\hbar} \psi_{-a}^b = 0 + \mathcal{O}(\hbar^2) ,$

where $\hat\nabla^\hbar$ the quantum corrected connection with $H^\hbar=H-\frac{\hbar}{4\pi}Q_3^0(\omega,\Omega)+\mathcal O(\hbar^2).$

- Provided that $\hat{\nabla}^{\hbar}L^{\hbar}=0$ and $i_{L^{\hbar}}F^{\hbar}=0$, the anomaly cancels.
- KSEs of heterotic supergravity retain their form up to and including two loops in the σ-model perturbation theory provided one replaces H with H^{\hbar} [Bergshoeff, de Roo (1989)]

•
$$
\hat{\nabla}^{\hbar} \epsilon = 0 \Rightarrow \hat{\nabla}^{\hbar} L^{\hbar} = 0
$$
. Similarly, the gaugino KSE implies $i_{L^{\hbar}} F^{\hbar} = 0$.

The algebra of holonomy symmetries closes as

$$
[\delta_L, \delta_M] = \delta_N + \delta_S + \delta_{JP} .
$$

- \bullet δ_N : symmetry generated by a $\hat{\nabla}$ -covariantly constant form N with parameter a_N constructed from a_l and a_M .
- \bullet δ_S : it has been given earlier, with parameter a_N constructed from a_L and a_M ,
- \bullet δ_P : symmetry generated by $\hat{\nabla}$ -covariantly constant forms collectively denoted by P, with parameters constructed from a_L , a_M and conserved currents J of the theory.

- The $\hat{\nabla}$ -covariantly constant forms are six 1-forms e^a , and three 2-forms I_r .
- The spacetime can be modeled as a principal bundle, $M=P(G,N^4,\pi)$, where N^4 is a 4-dimensional conformally hyperkähler manifold with torsion, principal bundle connection e^a , and metric $g = \eta_{ab}e^ae^b + \delta_{ij}e^i e^j$.
- The symmetries generated by e^a and I_r are

$$
\delta_K X^\mu = a_K^a e_a^\mu \ , \quad \delta_I X^\mu = a_I^r (I_r)^\mu{}_\nu D_+ X^\nu
$$

For the closure of the algebra we need to include the following symmetry

$$
\delta_C X^a = \alpha_C \hat{\nabla}_+ D_+ X^a + \hat{\nabla}_+ (\alpha_C D_+ X^a) ,
$$

associated to the quadratic Casimir operator of the Lie algebra of isometries, with conserved current $\mathcal{C}=\eta_{ab}e^a_\mu e^b_\nu D_+X^\mu\hat{\nabla}_+D_+X^\nu$.

SU(2) holonomy backgrounds

The algebra of the symmetries reads

- $[\delta_K, \delta'_K] = \delta''_K$,
- \bullet $[\delta_K, \delta_I] = 0$,
- $[\delta_I, \delta'_I] = \delta_{\tau} + \delta_{\mathcal{C}} + \delta_{\mathcal{K}} + \delta''_I$, $a^a_{\mathcal{K}} = a'^s_I a^r_I \delta_{rs} H^a{}_{bc} J^b_{\mathcal{K}} J^c_{\mathcal{K}}$.

The parameter of δ_K depends quadratically on the currents $J_K^a = e_\mu^a D_+ X^\mu$ associated to isometries. Thus, we have a W-algebra.

• Remark: The δ_K symmetry of the last commutator, could have been written as

$$
\delta_{\bar{H}}X^a = a_{\bar{H}}H^a{}_{bc}D_+X^{bc} ,
$$

for $\partial_=a_{\bar{H}}=0$, generated by the $\hat{\nabla}$ -covariantly constant form $\bar{H}=\frac{1}{3!}H_{abc}e^{abc}$.

Then, we would have a standard Lie algebra instead of a W-algebra.

• The remaining commutators read

$$
[\delta_{\mathcal{C}}, \delta_{\mathcal{I}}] = 0 \ , \quad [\delta_{\mathcal{K}}, \delta_{\mathcal{C}}] = \delta_{\mathcal{K}}' \ , \quad [\delta_{\mathcal{C}}, \delta_{\mathcal{C}}'] = \delta_{\mathcal{C}}'' + \delta_{\mathcal{K}}'' \ ,
$$

where the parameters of δ'_{K} and δ''_{K} depend again on the current $J^{\mathsf{a}}_{\mathsf{K}}.$

Anomaly cancellation and finite local counterterms:

There is a
$$
\tilde{P}_4
$$
 on N^4 such that $P_4 = \pi^* \tilde{P}_4$
As $d\tilde{P}_4 = 0$, there is \tilde{Q}_3^0 such that $\tilde{P}_4 = d\tilde{Q}_3^0$, thus
 $Q_3^0 = \pi^* \tilde{Q}_3^0 + dW$

with W a 2-form on M .

Adding the finite local counterterm to the effective action

$$
\Gamma^{\text{fl}}_{(1)} = -\frac{i\hbar}{4\pi} \int d^2\sigma d\theta^+ W_{\mu\nu} D_+ X^{\mu} \partial_- X^{\nu} ,
$$

$$
\Delta(a_L) + \delta_L \Gamma_{(1)}^\text{fl} = \frac{i\hbar}{4\pi} \int d^2\sigma d\theta^+ \, (\pi^* \tilde{Q}_3^0)_{\mu\nu\rho} \, \delta_L X^\mu \, D_+ X^\nu \, \partial_= X^\rho = 0 \ ,
$$

the anomaly cancels for $L=K$ or C , as $i_L\pi^*\tilde{Q}_3^0=0.$

Re-expressing the anomalies by replacing Q^{0}_3 with $\pi^*\tilde{Q}^{0}_3$ results their cancellation. In a similar way we cancel the anomaly of I.

SU(3) holonomy backgrounds

- The $\hat{\nabla}$ -covariantly constant forms are four 1-forms e^a , one 2-form I, and two real 3-forms L_r .
- Additional type of symmetry: $\delta_L X^{\mu} = a_L^r (L_r)^{\mu}{}_{\nu_1 \nu_2} D_+ X^{\nu_1 \nu_2}$

$$
[\delta_K, \delta_L] = \delta'_L \ ,
$$

with no dependence on currents,

 $[\delta_l, \delta_l] = \delta'_l + \delta_K$, $[\delta_{l_1}, \delta_{l_2}] = \delta_S + \delta_l + \delta_K + \delta_C$, $[\delta_{l_r}, \delta_{l_r}] = \delta_l$, $[\delta_l, \delta_C] = \delta'_l + \delta_K$.

All parameters (excl. α_S) may depend on one or more currents J_K, J_I, J_L or C.

- The anomalies of K, C and I can be canceled as in $SU(2)$ with counterterms.
- All anomalies coming from the $\hat{\nabla}^{\hbar}$ -covariantly constant forms L^{\hbar} will vanish.

Conclusions

- We showed that the Killing spinor bilinears of heterotic backgrounds with $hol(\nabla) \subset SU(2)$ and $SU(3)$, satisfy a W-algebra.
- We calculated the anomaly of holonomy symmetries using the Wess-Zumino consistency conditions.
- We argued that these anomalies can be cancelled either by adding finite local counterterms or with an appropriate quantum correction of the bilinears.
- \bullet Heterotic backgrounds with G_2 holonomy. Can we approach them in a similar way?

Conclusions

- We showed that the Killing spinor bilinears of heterotic backgrounds with $hol(\nabla) \subset SU(2)$ and $SU(3)$, satisfy a W-algebra.
- We calculated the anomaly of holonomy symmetries using the Wess-Zumino consistency conditions.
- We argued that these anomalies can be cancelled either by adding finite local counterterms or with an appropriate quantum correction of the bilinears.
- \bullet Heterotic backgrounds with G_2 holonomy. Can we approach them in a similar way?

Thank you!