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Introduction

Introduction

A given vacuum is characterized as scale-separated, if the dimensions of
the internal compact space are much smaller than those of the external
spacetime ⇒ a lower-dimensional effective description makes sense.

From a top-down perspective, an AdS vacuum is scale-separated if its
radius, LAdS, is much greater than the KK length scale:

LAdS
LKK

≫ 1 . (1)

From a bottom-up perspective, scale separation is the following
hierarchy between the AdS radius and the ultraviolet cutoff of the
effective theory, ΛUV:

ΛUVLAdS ≫ 1 . (2)
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Introduction

Vacua satisfying the last relation are scale-separated and can explain why
only an AdS factor of spacetime is large enough to be visible at low energy.

An advantage of the bottom-up approach to scale separation is that ΛUV

does not necessarily need to have a geometric interpretation, while the KK
scale is typically related to the geometry of the extra dimensions.

This approach has been employed by [Cribiori and Dall’Agata (2022),
Cribiori and Montella (2023)] to prove that maximally supersymmetric
AdS vacua of N = 2 and N = 8 supergravities in 4D and 5D with a
residual abelian gauge symmetry cannot be scale-separated, since

|VAdS| ≳ Λ2
UV , (3)

where ΛUV is the UV cutoff postulated by the magnetic weak gravity
conjecture [Arkani-Hamed, Motl, Nicolis and Vafa (2007)].
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Introduction

N = 1 supersymmetric AdS4 vacua that exhibit scale separation have been
constructed by [DeWolfe, Giryavets, Kachru and Taylor (2005)] by
compactification of massive type IIA supergravity on a CY3 in the presence
of fluxes and O6-planes.

Scale-separated AdS3 vacua have been constructed by flux
compactifications of IIA supergravity on 7D spaces with G2 holonomy
[Farakos, Tringas and Van Riet (2020)].

No scale-separated AdS vacuum in 2D has been constructed so far.

We have provided a bottom-up explanation of why supersymmetric AdS2
vacua cannot be scale-separated.
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Main argument

Main argument

For an AdS2 vacuum the cosmological constant Λ is related to the radius,
L, by

Λ = − 2

L2
. (4)

The 2D Planck scale MPl does not appear in the above equation.

An AdS2 flux vacuum is supported by an (electric) gauge field strength
with components along the AdS2 directions:

− 2

L2
=

1

2
|F2|2 =

1

4
FµνF

µν . (5)
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Main argument

In principle, we can have two different AdS2 vacua supported by fluxes of
the form

F
(α)
2 = αϵ2 , F

(β)
2 = βϵ2 , (6)

separated by a domain wall particle.

The tension of such a particle, T , sets an upper bound on the UV cutoff
of the 2D effective theory:

T > ΛUV . (7)

If the domain wall is a BPS one,

T = |Q| , (8)

thus
|Q| > ΛUV , (9)

which is reminiscent of the magnetic weak gravity conjecture
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Main argument

The change in the flux F2 induced by the domain wall is

∆F2 = F
(β)
2 − F

(α)
2 = (β − α)ϵ2 = Qϵ2 . (10)

If we impose flux quantization,

α = N Q , β = (N + 1)Q (11)

for some integer N, the radius of the AdS2 background with F2 = F
(α)
2

satisfies
1

L(α)
=

1

2
|NQ| = 1

2
|N|T ≳ ΛUV . (12)

The natural interpretation of (12) is that supersymmetric AdS2 flux vacua
are not scale-separated.
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Main argument

There can be a contribution to the cosmological constant not related to
any 2-form flux:

− 2

L2
=

1

2
|F2|2 ± λ2 . (13)

The positive sign is beyond the scope of our work, since a positive
contribution to the cosmological constant means that there is at least
one sector that spontaneously breaks supersymmetry.

An additional negative contribution to the cosmological constant that
is not induced by a flux can only make things worse as far as scale
separation is concerned. Indeed, we have

2

L2
= −1

2
|F2|2 + λ2 ≥ −1

2
|F2|2 ≳ Λ2

UV . (14)

Thus, the presence of a flux-induced term in the vacuum energy is enough
to exclude scale separation for supersymmetric AdS2 vacua.
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2D supergravity analysis JT supergravity and one-form dilaton multiplet

JT supergravity and one-form dilaton multiplet

N = (1, 1) supersymmetric extension of Jackiw-Teitelboim (JT) gravity:

field content: supergravity multiplet (eaµ, ψµ,A) +
dilaton multiplet (ϕ, λ,F )

off-shell action [Chamseddine (1991)]:

S =

∫
d2x e

(
ϕR − 2

(
A+

1

L

)
F − 2

L
ϕA+

1

2L
ϕϵµνψ̄µγ3ψν

−2ϵµν λ̄γ3Dµψν +
1

L
λ̄γµψµ

)
,

(15)

where L is a real constant with dimensions of length.
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2D supergravity analysis JT supergravity and one-form dilaton multiplet

Euler-Lagrange equations for component fields of dilaton multiplet:

δF : A = −1

L
, (16)

δλ : ϵµνD̂µψν = 0 , (17)

δϕ : R = − 2

L2
− 1

2L
ϵµνψ̄µγ3ψν , (18)

where

D̂µψν ≡ Dµψν −
1

2
Aγνψµ . (19)

Equation (18) indicates the presence of an AdS2 vacuum with length scale
L.
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2D supergravity analysis JT supergravity and one-form dilaton multiplet

Dualization of the auxiliary scalar F to a 2-form H2 = dB1:

⋆H2 =
1

2
ϵµνHµν = ϵµν∂µBν = F +ϕA− 1

2
λ̄γµψµ −

1

4
ϕϵµνψ̄µγ3ψν . (20)

Resulting action:

S1-form =

∫
d2x e

(
ϕR − 2A ⋆ H2 + 2ϕA2 − Aλ̄γµψµ

− 1

2
ϕAϵµνψ̄µγ3ψν − 2ϵµν λ̄γ3Dµψν

)
.

(21)

After integrating out A, the e.o.m. for the 1-form B1 reads

∂µ

(
1

ϕ
⋆ H2

)
= 0 , (22)

so
1

ϕ
⋆ H2 = c . (23)
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2D supergravity analysis JT supergravity and one-form dilaton multiplet

Then, varying S1-form with respect to ϕ, we find

R = − 1

2ϕ2
(⋆H2)

2 = −1

2
c2, (24)

which for c ̸= 0 describes an AdS2 spacetime with length scale L related
to the constant value of 1

ϕ ⋆ H2 by

c2 =
4

L2
. (25)
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2D supergravity analysis Coupling to a domain wall particle

Coupling to a domain wall particle

Action for a particle in 2D coupled to B1:

Sp =− |Q|
∫
W1

dτ

√
−gµν(X ρ)ẊµẊ ν |ϕ(X ρ)|

+ Q

∫
W1

dτBµ(X
ν)Ẋµ , (26)

where

W1 is the worldline of the particle, parametrized by τ .

Xµ(τ) are the values of the spacetime coordinates on W1.

Q is the real charge of the particle under B1.

Ẋµ ≡ dXµ

dτ .
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2D supergravity analysis Coupling to a domain wall particle

We consider the action
S = S1-form + Sp . (27)

Euler-Lagrange equation for ϕ:

R =− 1

2ϕ2
(⋆H2)

2 (28)

+ e−1|Q| ϕ
|ϕ|

∫
W1

dτ δ(2)(xρ − X ρ(τ))

√
−gµνẊµ(τ)Ẋ ν(τ) .

E.o.m. for B1:

∂µ

(
1

ϕ
⋆ H2

)
= Qe−1ϵµν

∫
W1

dτ δ(2)(xρ − X ρ(τ))Ẋ ν(τ) . (29)

E.o.m. for gµν :

∇µ∂νϕ− gµν∇ρ∂
ρϕ+

1

4ϕ
(⋆H2)

2gµν

+
1

2
e−1|Qϕ|

∫
W1

dτ δ(2)(xλ − Xλ(τ))
ẊµẊ ν√

−gρσẊ ρẊ σ
= 0 . (30)
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2D supergravity analysis Coupling to a domain wall particle

Let xµ = (t, x) be the coordinates of the 2D target spacetime. If the
particle lies on the axis x = 0, then in the static gauge, in which T = τ ,
the x component of (29) becomes

∂x(ϕ
−1 ⋆ H2) = −Qδ(x) . (31)

Integrating (31) over an interval [−ϵ, ϵ], where ϵ > 0, we find

α+ − α− = −Q , (32)

where α+ and α− are the constant values of ϕ−1 ⋆H2 for x > 0 and x < 0
respectively.
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2D supergravity analysis Coupling to a domain wall particle

If neither of α± is zero, then the regions x > 0 and x < 0 are both AdS2
spaces with length scales L+ and L− respectively, which are given by

1

L±
=

1

2
|α±| . (33)

Therefore,

max

{
1

L+
,
1

L−

}
≥ 1

2

(
1

L+
+

1

L−

)
=

1

4
(|α+|+ |α−|)

≥ 1

4
|α+ − α−| =

1

4
|Q| > 1

4
ΛUV , (34)

which implies the absence of scale separation.
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2D supergravity analysis BPS domain wall solutions

BPS domain wall solutions

Solution of the e.o.m. for a charged domain wall particle lying on the axis
x = 0 in the static gauge:

Ansatzes for metric, dilaton and 1-form:

ds2 = −e2f (x)dt2 + dx2, (35)

B1 = B(x)dt , ϕ = ϕ(x) . (36)

If Qϕ(0) > 0,

ϕ(x) = ϕ(0) exp

[
1

2
(α+ QH(−x))x

]
, (37)

f (x) = ln |ϕ(x)| , (38)

B(x) = (sgnQ)ϕ2(0) exp[(α+ QH(−x))x ] , (39)

where α is a real constant and H is the Heaviside step function.
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2D supergravity analysis BPS domain wall solutions

If Qϕ(0) < 0,

ϕ(x) = ϕ(0) exp

[
−1

2
(α+ QH(−x))x

]
, (40)

f (x) = ln |ϕ(x)| , (41)

B(x) = (sgnQ)ϕ2(0) exp[−(α+ QH(−x))x ] . (42)
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2D supergravity analysis BPS domain wall solutions

Killing spinors associated with the above solutions:

If Qϕ(0) > 0,

ϵ(x) = exp

[
1

4
(α+ QH(−x))x

]
η , (43)

where η is a constant Majorana spinor satisfying the condition

η = −γ1η . (44)

If Qϕ(0) < 0,

ϵ(x) = exp

[
−1

4
(α+ QH(−x))x

]
η , (45)

where η is a constant Majorana spinor obeying

η = γ1η . (46)
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Examples from flux compactifications Example in type IIA

Example in type IIA

Solutions of type IIA supergravity of the form [Lüst and Tsimpis (2020)]

AdS2 × S2 × T6 (47)

with

electric RR flux F2

magnetic RR flux F4 wrapping 4-cycles of the form S2 × T2

H3 = F0 = 0

constant 10D dilaton, φ = φ0

no sources
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Examples from flux compactifications Example in type IIA

E.o.m. in Einstein frame for constant φ:

RMN = e3φ/2
(
1

2
|F2|2MN − 1

16
gMN |F2|2

)
+ eφ/2

(
1

2
|F4|2MN − 3

16
gMN |F4|2

)
, (48)

0 =
3

4
e3φ/2|F2|2 +

1

4
eφ/2|F4|2 , (49)

0 = dFp = d(⋆Fp) , with p = 2, 4 , (50)

where

|Fp|2 ≡
1

p!
FM1...MpF

M1...Mp , (51)

|Fp|2MN ≡ 1

(p − 1)!
FMM2...MpFN

M2...Mp . (52)
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Examples from flux compactifications Example in type IIA

From the Einstein equations and the e.o.m. for the dilaton it follows that

R2D = 2e3φ/2|F2|2 = −2e−3φ/2|F8|2, (53)

where
F8 = −e3φ/2 ⋆ F2 . (54)

Flux quantization: ∫
X8

F8 = (2πls)
7f8 , (55)

where X8 = S2 × T6 and f8 ∈ Z, so

|F8|2 =
(
(2πls)

7f8
)2

(Vol[X8])2
. (56)
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Examples from flux compactifications Example in type IIA

Then, the curvature scalar of the external AdS2 spacetime is

R2D = −2

(
(2πls)

7f8
e3φ/4Vol[X8]

)2

. (57)

For 2κ210 = (2π)7l8s = 1 ⇔ ls = (2π)−7/8, the AdS2 radius, L, is given by

1

L
=

(2π)7/8|f8|
Vol[X8]

e−3φ/4. (58)

This scale is related to the tension of a D0-brane smeared along the
compact directions.

We can deduce this tension by determining its backreaction on the 2D
curvature.
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Examples from flux compactifications Example in type IIA

Action for a D0-brane in 10D in the Einstein frame:

SD0 = −T0

∫
W1

dτe−
3
4
φ
√
−gMN ẊM ẊN + µ0

∫
W1

C1 , (59)

where

T0 =
1
ls
= (2π)7/8

µ0 is the real charge of the brane under the RR 1-form C1 .

In the presence of the D0-brane,

RMN =
1

2

(
TD0
MN − 1

8
gMNT

D0

)
+ . . . , (60)

where TD0
MN ≡ − 2√

−g(10)

δSD0

δgMN and TD0 ≡ gMNTD0
MN .
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Examples from flux compactifications Example in type IIA

If the D0-brane lies at x1 = x2 = . . . = x9 = 0, then in the static gauge,
in which X 0 = τ , we have TD0

µi = TD0
ij = 0 and

TD0 = gµνTD0
µν = −

√
−g00√
−g(10)

T0e
−3φ/4δ(x1)δ(8)(x i ) . (61)

Contribution of D0-brane to the curvature of the 2D external spacetime:

R2D =
3

8
TD0 + . . . . (62)

Smearing of the D0-brane along the compact 8D internal space:

δ(8)(x i ) →
√
g(8)

Vol[X8]
, (63)

where g(8) = det gij .
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Examples from flux compactifications Example in type IIA

In the smeared approximation,

R2D = −3

8

(2π)7/8

vol[X8]

√
−g00√
−g(2)

e−3φ/4δ(x1) + . . . , (64)

where g(2) = det gµν .

Tension of the smeared D0-brane:

Tsmeared D0 ∼
1

e3φ/4Vol[X8]
, (65)

so
1

L
∼ |f8|Tsmeared D0 ≳ Tsmeared D0 , (66)

in accordance with our general argument against scale separation.

27 / 33



Examples from flux compactifications General argument for flux compactifications

General argument for flux compactifications

In a type II setup with an AdS2 solution supported by a magnetic flux Fn,

R2D ∼ −e
5−n
2

φ|Fn|2 , (67)

Flux quantization: ∫
Σn

Fn ∼ fn , (68)

where fn ∈ Z and Σn is the n-cycle threaded by Fn.

R2D ∼ −
(
e

5−n
4

φ fn
Vol[Σn]

)2

⇒ 1

L
∼ e

5−n
4

φ |fn|
Vol[Σn]

. (69)
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Examples from flux compactifications General argument for flux compactifications

Let the electric flux ⋆Fn be sourced by a Dp-brane with p = 8− n
electrically coupled to the RR potential C9−n.

We split the coordinates of the 8D internal space as x i = (x î , x ĩ ), where

x î , î = 2, . . . , n + 1, are the coordinates tangential to Σn,

x ĩ , ĩ = n + 2, . . . , 9 are the internal coordinates normal to Σn.

The spacetime coordinates (x0, x ĩ ) are parallel to the Dp-brane, while the

coordinates (x1, x î ) are transverse to it.

Internal space metric:

ds28 = gijdx
idx j = gî ĵdx

îdx ĵ + gĩ j̃dx
ĩdx j̃ . (70)
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Examples from flux compactifications General argument for flux compactifications

If the D(8− n)-brane lies at x1 = x î = 0, its backreaction on the 2D
external curvature is

R2D =
1

8
(5− n)(2π)

n−1
8 e

5−n
4

φ

√
−g00

√
g̃(8−n)√

−g(10)
δ(x1)δ(n)(x î ) + . . . , (71)

where g̃(8−n) = det gĩ j̃ .

Smearing of the D(8− n)-brane along Σn:

δ(n)(x î ) →
√
ĝ(n)

Vol[Σn]
, (72)

where ĝ(n) = det gî ĵ .

R2D =
1

8
(5− n)

(2π)
n−1
8

Vol[Σn]

√
−g00√
−g(2)

e
5−n
4

φδ(x1) + . . . . (73)
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Examples from flux compactifications General argument for flux compactifications

Thus, the D(8− n)-brane behaves as an effective D0-brane with tension

Teff. D0 ∼
e

5−n
4

φ

Vol[Σn]
(74)

and
1

L
∼ |fn|Teff. D0 ≳ Teff. D0 , (75)

so such flux-supported AdS2 vacua in type II compactifications are not
scale-separated.
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Discussion

Discussion

We have provided a bottom-up argument excluding the existence of
supersymmetric scale-separated AdS2 vacua supported by fluxes.

It relies on the existence of a fundamental BPS domain wall between
two such vacua, whose tension is an upper bound for the UV cutoff of
the 2D effective theory.

If scale separation is possible at all in 2D, it is most likely to occur in
setups with at most one supercharge.

Such a model could be constructed by compactifying type II
superstring theory on a manifold with Spin(7) holomony, which
indeed preserves 1/16 of the original supersymmetry, and then
performing an appropriate orientifold projection to reduce it further by
a factor of 1/2.
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