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Motivation

Symmetry is a powerful organising principle

IR constraints
Landau paradigm,
’t Hooft anomaly matching

Selection rules
allowed transition, decays,
particles in the spectrum...

Topological protection
topological insulators,
topological superconductors,
fracton phases...

Infinite dimensional symmetries are ultra powerful

Suffices to look at 2d CFT: Virasoro

fixes spectrum exactly

underpins (worldsheet of) string theory

further connections to quantum gravity

Internal symmetries also enhance: Kac–Moody

more constraints: rational CFTs

even more power: connection to 3d TQFT and
topological order

physical example: entanglement spectrum of fQHE
states [Li, Haldane; 2008]

Downside: Only in 2d?
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Motivation
O(700) papers

[IYKYK 2014–2024]Recently vast generalisation of the notion of symmetry

One kind of generalisation: higher-form symmetries [Gaiotto, Kapustin, Seiberg,Willet 2014]

ontinuous symmetry: 𝜕µJµ = 0 ⇐⇒ d⋆ J[1] = 0

=⇒ codimension-one topological operator U(Σd−1) ··= exp

�
i

∫
Σd−1

⋆J[1]

�
p-form continuous symmetry: 𝜕µJµν1···νp = 0 ⇐⇒ d⋆ J[p+1] = 0

=⇒ codimension-(p+ 1) topological operator U
�
Σd−p−1

� ··= exp

 
i

∫
Σd−p−1

⋆J[p+1]

!
Act on p-dimensional extended operators by linking

Other generalisations: higher-group, non-invertible, subsystem symmetries, andmore.
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Free fields and current algebras

The star of the show is a free p-form field.

Very simple dynamics: = 0 and = 0.

Describes generalised photons A[p] or their magnetic cousins eA[d−p−2] .

Has a lot of symmetry =⇒ can (and will) solve exactly on any topology

p-form U(1) symmetry (electric)

generated by: exp

 
iα

∫
Md−p−1

⋆J[p+1]

!

acts on: Wilson= exp

 
i

∫
γp

A[p]

!

(d − p−2)-form U(1) symmetry (magnetic)

generated by: exp

 
iα

∫
Mp+1

⋆eJ[d−p−1]

!
acts on:

’t Hooft= exp

 
i

∫
γd−p−2

eA[d−p−2]

!
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Free fields and current algebras

There’s muchmore to it: infinitely many more zero-form symmetries

Conserved currents: JΛ,eΛ = ⋆�J[p+1] ∧ eΛ[d−p−2] + eJ[p+1] ∧Λ[p]
�

Conserved charges: Q(Λ) =
∫
Σd−1

⋆JΛ,eΛ
Commutators:

�
Q(Λ),Q(Λ′)

�
= i k

∫
Σ

Λ ∧ dΛ′ .

In d = 2, p = 0  free compact scalar J(z)α(z) and J̄(z̄)ᾱ(z̄) conserved�
Q(α),Q(α′)

�
= i k

∫
αdα′ =⇒ [Qn,Qm] = k nδn+m,m =⇒ it’s a Kac–Moody!

In higher d [ , ] =
∫ · · · is again a spectrum-generating , infinite-dimensional current algebra.
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act on local and non-local operators (wait for Gift 1)
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Free fields and current algebras

To get the spectrum, turn [ , ] =
∫ · · · into amode algebra =⇒ �

An,A†
m
�
= Enδnm

Plus zero modes!

�
r ∈ Zbd−p−1(Σ)

s ∈ Zbp+1(Σ)

�
=

�
electric
magnetic

�
fluxes= higher-form charges

Hamiltonian: HΣ = kr 2 + k−1 s2 +
∑

n
A†

nAn

States:

▷ Primary states: |r , s〉. Fixed fluxes, annihilated by allAn . Energy= kr 2 + k−1 s2 =··∆r ,s

▷ Descendants:

Non-trivial check: ch(q) =
∑
r ,s

chr ,s (q) =
∑
r ,s

tr qHΣ =
ΘΣ(q; k)
ηΣ(q)2

= Z
�
S1β ×Σ

�
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Outline

1 Motivation

2 Free fields and current algebras

3 Gift 1: State-operator correspondence [2406.02662 w/ D.M. Hofman]

4 Gift 2: Topological entanglement entropy [2310.18391 w/ J.R. Fliss]

5 Gift ideas (outlook)
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State-operator correspondence

d⋆J=0

Claim:[Hofman, Iqbal 2018] A unitary CFT in d = 2p+ 2 with a p-form U(1) symmetry is realised by
free p-form fields.

Sketch of proof: 〈 J(x) J(y)〉= f(x − y) =⇒ 〈dJ(x) dJ(y)〉= 0 =⇒ dJ = 0.

▷ d = 2  standard result: free field realisation

▷ d = 4  free photon realisation (photonisation)

  precise one-to-one correspondence between states on HΣ and nonlocal operators

sets the stage for understanding higher-dimensional CFTs on compact manifolds

such a correspondence is not possible for generic CFTs [Belin, de Boer, Kruthoff 2018].
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State-operator correspondence

unique holonomy
unique fluxFor illustration, take d = 4 (p = 1) and quantise onΣ = S2 × S1

Recover the spectrum of states by path integrals onB3 × S1 with insertions of line operators

|L〉 ··=
∫

DAe−S[A]L
�{0} × S1�=

Rd

O(0)

HSd−1 ∋ |O〉

R×Sd−1

R×S2×S1

B3×S1

S2×S1

L
�
S1 × {0}�

L

A surprise: |1〉 ̸= |vacuum〉= |0,0〉
 An |1〉 ̸= 0 but

�
#nAn +#nA†

n
� |1〉= 0

 Vacuum is prepared by photons of all frequencies smeared on S1 (consistent with [Belin, de Boer, Kruthoff 2018])
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State-operator correspondence

The rest is straightforward

Primary states

|r, s〉¡ Wilson–’t Hooft lines
dressed with squeezing operator

=S† × exp

�
i r

∫
S1

A+ i s

∫
S1
eA�

Descendants
Representation theory at work  sprinkle oscillators

That’s it. That’s the entire spectrum.
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Outline
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Gift 2
Σ

R

𝜕R

time

log(total quantum dimension)

Topological order= patterns of long range entanglement

In (2+1)d: SEE =
|𝜕R|
ϵ
− γ [Kitaev, Preskill; Levin,Wen 2006]

IR effective field theories  3d TQFTs

bulk/edge correspondence

anomaly/symmetry inflow (cf. SPTs, SymTFTs)

entanglement spectrum= edge spectrum [Li, Haldane 2008; Chandran et. al 2011]

edge spectrum organised by Kac–Moody algebra [Elitzur, Moore, Seiberg 1989]

Here: Consider higher-dimensional topological order and study its entanglement
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The theory: a (d-dim) theory of (p-dim) surface-net condensates [Bombin, Martin-Delgado 2006]

IR TQFT: S =
k

2π

∫
B[d−p−1] ∧ dA[p]

Presence of boundary: gauge transformations that survive  global charges

Here: Q(α) =
k

2π

∫
𝜕Σ
α ∧ B, eQ(β) = k

2π

∫
𝜕Σ
β ∧ A

Satisfy
�
Q(α), eQ(β)�= i k

∫
𝜕Σ
α ∧ dβ looks familiar?

Edgemodes is free p-forms + chirality condition

Edge spectrum controlled again by infinite-dimensional current algebra
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Entanglement
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time
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(ρR logρR)≡ lim
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1− n
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Important issues:

HΣ ̸=HR ⊗Hrest ρR needs care  solution: extended Hilbert space
[Buidovich, Polikarpov 2008; Donnelly 2011; Donnelly,Wall 2014]

UV issues by the introduction of 𝜕R  solution: regulate trace with quadratic Hamiltonian

Altogether: Trρn
R = ch

�
e−nϵH

�
=
ΘΣ(q; k)
ηΣ(q)2

SEE =
⌊ d−1

2 ⌋∑
n=1

C (p)n

�
ℓ

ϵ

�d−2n

+
1
2

K (p)δd,even log
�
ℓ

ϵ

�
− 1

2

�
bp(𝜕R) + bd−p−1(𝜕R)

�
log k



17/20

Entanglement
Σ

R

𝜕R

time

(replica trick)

Interested inSEE = −TrHR
(ρR logρR)≡ lim

n→1

1
1− n

logTrHR
ρn

R

Important issues:

HΣ ̸=HR ⊗Hrest ρR needs care  solution: extended Hilbert space
[Buidovich, Polikarpov 2008; Donnelly 2011; Donnelly,Wall 2014]

UV issues by the introduction of 𝜕R  solution: regulate trace with quadratic Hamiltonian

Altogether: Trρn
R = ch

�
e−nϵH

�
=
ΘΣ(q; k)
ηΣ(q)2

SEE =
⌊ d−1

2 ⌋∑
n=1

C (p)n

�
ℓ

ϵ

�d−2n

+
1
2

K (p)δd,even log
�
ℓ

ϵ

�
− 1

2

�
bp(𝜕R) + bd−p−1(𝜕R)

�
log k



17/20

Entanglement
Σ

R

𝜕R

time

(replica trick)

Interested inSEE = −TrHR
(ρR logρR)≡ lim

n→1

1
1− n

logTrHR
ρn

R

Important issues:

HΣ ̸=HR ⊗Hrest ρR needs care  solution: extended Hilbert space
[Buidovich, Polikarpov 2008; Donnelly 2011; Donnelly,Wall 2014]

UV issues by the introduction of 𝜕R  solution: regulate trace with quadratic Hamiltonian

Altogether: Trρn
R = ch

�
e−nϵH

�
=
ΘΣ(q; k)
ηΣ(q)2

SEE =
⌊ d−1

2 ⌋∑
n=1

C (p)n

�
ℓ

ϵ

�d−2n

+
1
2

K (p)δd,even log
�
ℓ

ϵ

�
− 1

2

�
bp(𝜕R) + bd−p−1(𝜕R)

�
log k



17/20

Entanglement
Σ

R

𝜕R

time

(replica trick)

Interested inSEE = −TrHR
(ρR logρR)≡ lim

n→1

1
1− n

logTrHR
ρn

R

Important issues:

HΣ ̸=HR ⊗Hrest ρR needs care  solution: extended Hilbert space
[Buidovich, Polikarpov 2008; Donnelly 2011; Donnelly,Wall 2014]

UV issues by the introduction of 𝜕R  solution: regulate trace with quadratic Hamiltonian

Altogether: Trρn
R = ch

�
e−nϵH

�
=
ΘΣ(q; k)
ηΣ(q)2

extract entanglement bymodular
properties ofΘ and hard work (forη)

SEE =
⌊ d−1

2 ⌋∑
n=1

C (p)n

�
ℓ

ϵ

�d−2n

+
1
2

K (p)δd,even log
�
ℓ

ϵ

�
− 1

2

�
bp(𝜕R) + bd−p−1(𝜕R)

�
log k



17/20

Entanglement
Σ

R

𝜕R

time

(replica trick)

proportional to heat
kernel coefficients

Interested inSEE = −TrHR
(ρR logρR)≡ lim

n→1

1
1− n

logTrHR
ρn

R

Important issues:

HΣ ̸=HR ⊗Hrest ρR needs care  solution: extended Hilbert space
[Buidovich, Polikarpov 2008; Donnelly 2011; Donnelly,Wall 2014]

UV issues by the introduction of 𝜕R  solution: regulate trace with quadratic Hamiltonian

Altogether: Trρn
R = ch

�
e−nϵH

�
=
ΘΣ(q; k)
ηΣ(q)2

extract entanglement bymodular
properties ofΘ and hard work (forη)

SEE =
⌊ d−1

2 ⌋∑
n=1

C (p)n

�
ℓ

ϵ

�d−2n

+
1
2

K (p)δd,even log
�
ℓ

ϵ

�
− 1

2

�
bp(𝜕R) + bd−p−1(𝜕R)

�
log k



17/20

Entanglement
Σ

R

𝜕R

time

(replica trick)

proportional to heat
kernel coefficients

subleading universal topological term

Interested inSEE = −TrHR
(ρR logρR)≡ lim

n→1

1
1− n

logTrHR
ρn

R

Important issues:

HΣ ̸=HR ⊗Hrest ρR needs care  solution: extended Hilbert space
[Buidovich, Polikarpov 2008; Donnelly 2011; Donnelly,Wall 2014]

UV issues by the introduction of 𝜕R  solution: regulate trace with quadratic Hamiltonian

Altogether: Trρn
R = ch

�
e−nϵH

�
=
ΘΣ(q; k)
ηΣ(q)2

extract entanglement bymodular
properties ofΘ and hard work (forη)

SEE =
⌊ d−1

2 ⌋∑
n=1

C (p)n

�
ℓ

ϵ

�d−2n

+
1
2

K (p)δd,even log
�
ℓ

ϵ

�
− 1

2

�
bp(𝜕R) + bd−p−1(𝜕R)

�
log k



18/20

Outline

1 Motivation

2 Free fields and current algebras

3 Gift 1: State-operator correspondence [2406.02662 w/ D.M. Hofman]

4 Gift 2: Topological entanglement entropy [2310.18391 w/ J.R. Fliss]

5 Gift ideas (outlook)
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Gift ideas

Non-invertible current algebras

Gauge charge conjugation J ∼ −J =⇒ symmetry broken but resurrected as non-invertible
[{others}, Antinucci, Galati, Rizi 2022; Aguilera-Damia,Argurio,Chaudhuri 2023]

Current algebra also: D(Λ)⊗ D(Λ′) = ei k
∫
Λ∧dΛ′ D(Λ+Λ′)⊕ e− i k

∫
Λ∧dΛ′ D(Λ−Λ′)

  Should still fix the spectrum TIP w/ Aguilera-Damia, Argurio, Chaudhuri

Current algebras in gravity

Linearised gravity enjoys “biform” symmetries with charges R− (traces) and ⋆R⋆−(traces)
[[Hinterbichler et al 2022, (Hull et al 2024)2]]

Also leads to a current algebra (depends onmore parameters 2 KY tensors, 2 one-forms)

  Implications: linearised spectrum, asymptotic symmetries...? TIP w/ Mathys

Non-linear p-form electrodynamics
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Thank you!
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