Gifts from infinite-dimensional current algebras

Stathis Vitouladitis

Université Libre de Bruxelles

based on
[2406.02662 w/ D.M. Hofman]
[2310.18391 w/ J.R. Fliss]
| and thought: and thoughts in progress

[†] Xmas Theoretical Physics Workshop @Athens 2024, National and Kapodistrian University of Athens 18/12/2024

Outline

Motivation

Free fields and current algebras

Gift 1: State-operator correspondence [2406.02662 w/ D.M. Hofman]

Gift 2: Topological entanglement entropy [2310.18391 w/ J.R. Fliss]

Gift ideas (outlook)

Outline

Motivation

Gift 1: State-operator correspondence [2406.02662 w/ D.M. Hofman]

Gift 2: Topological entanglement entropy [2310.18391 w/ J.R. Fliss]

Gift ideas (outlook)

Symmetry is a powerful organising principle

Symmetry is a powerful organising principle

IR constraints *Landau paradigm, 't Hooft anomaly matching*

Selection rules *allowed transition, decays, particles in the spectrum...*

Topological protection *topological insulators, topological superconductors, fracton phases...*

Symmetry is a powerful organising principle

IR constraints *Landau paradigm, 't Hooft anomaly matching*

Selection rules *allowed transition, decays, particles in the spectrum...*

Topological protection *topological insulators, topological superconductors, fracton phases...*

Infinite dimensional symmetries are ultra powerful

Symmetry is a powerful organising principle

IR constraints *Landau paradigm, 't Hooft anomaly matching* Selection rules *allowed transition, decays, particles in the spectrum...*

Topological protection *topological insulators, topological superconductors, fracton phases...*

Infinite dimensional symmetries are ultra powerful Suffices to look at 2d CFT: *Virasoro*

fixes spectrum exactly underpins (worldsheet of) string theory further connections to quantum gravity

Symmetry is a powerful organising principle

IR constraints *Landau paradigm, 't Hooft anomaly matching* Selection rules *allowed transition, decays, particles in the spectrum...*

Topological protection *topological insulators, topological superconductors, fracton phases...*

Infinite dimensional symmetries are ultra powerful

Suffices to look at 2d CFT: *Virasoro*

fixes spectrum exactly underpins (worldsheet of) string theory further connections to quantum gravity Internal symmetries also enhance: *Kac–Moody more constraints: rational CFTs even more power: connection to 3d TQFT and topological order physical example: entanglement spectrum of fQHE states [Li, Haldane; 2008]*

Symmetry is a powerful organising principle

IR constraints *Landau paradigm, 't Hooft anomaly matching* Selection rules *allowed transition, decays, particles in the spectrum...*

Topological protection *topological insulators, topological superconductors, fracton phases...*

Infinite dimensional symmetries are ultra powerful

Suffices to look at 2d CFT: *Virasoro*

fixes spectrum exactly underpins (worldsheet of) string theory further connections to quantum gravity

Internal symmetries also enhance: *Kac–Moody more constraints: rational CFTs even more power: connection to 3d TQFT and topological order physical example: entanglement spectrum of fQHE states [Li, Haldane; 2008]*

O(700) papers
[IYKYK 2014–2024]

Recently vast generalisation of the notion of symmetry

One kind of generalisation: *higher-form symmetries* [Gaiotto, Kapustin, Seiberg, Willet 2014]

O(700) papers
IJYKYK 2014–20241

*Σd−*¹

Recently vast generalisation of the notion of symmetry

One kind of generalisation: *higher-form symmetries* [Gaiotto, Kapustin, Seiberg, Willet 2014]

Continuous symmetry: $\partial_{\mu}J^{\mu} = 0 \quad \Longleftrightarrow \quad d \star J_{[1]} = 0$

 \implies codimension-one topological operator $U(\Sigma_{d-1}) := \exp\Biggl(i\Biggr)$ Z *⋆J*[1] λ

Recently vast generalisation of the notion of symmetry

One kind of generalisation: *higher-form symmetries* [Gaiotto, Kapustin, Seiberg, Willet 2014]

 $\mathsf{Zero}\textrm{-}$ form continuous symmetry: $\partial_\mu J^\mu = 0 \quad \Longleftrightarrow \quad \mathrm{d} \star J_{[1]} = 0$ \implies codimension-one topological operator $U(\Sigma_{d-1}) := \exp\Biggl(i\Biggr)$ Z *Σd−*¹ *⋆J*[1] λ

p-form continuous symmetry: $\partial_{\mu}J^{\mu\nu_1\cdots\nu_p} = 0 \iff d \star J_{[p+1]} = 0$ \implies codimension-(*p* + 1) topological operator $U(\Sigma_{d-p-1}) := \exp\left(i\frac{p^2}{2}\right)$ $\sqrt{2}$ *Σd−p−*¹ $\star J_{[p+1]}$ λ

Recently vast generalisation of the notion of symmetry

One kind of generalisation: *higher-form symmetries* [Gaiotto, Kapustin, Seiberg, Willet 2014]

 $\mathsf{Zero}\textrm{-}$ form continuous symmetry: $\partial_\mu J^\mu = 0 \quad \Longleftrightarrow \quad \mathrm{d} \star J_{[1]} = 0$ \implies codimension-one topological operator $U(\Sigma_{d-1}) := \exp\Biggl(i\Biggr)$ Z *Σd−*¹ *⋆J*[1] λ *p*-form continuous symmetry: $\partial_{\mu}J^{\mu\nu_1\cdots\nu_p} = 0 \iff d \star J_{[p+1]} = 0$ \implies codimension-(*p* + 1) topological operator $U(\Sigma_{d-p-1}) := \exp\left(i\frac{p^2}{2}\right)$ $\sqrt{2}$ *Σd−p−*¹ $\star J_{[p+1]}$ λ

Act on *p*-dimensional extended operators by linking

*Σd−p−*¹

Recently vast generalisation of the notion of symmetry

One kind of generalisation: *higher-form symmetries* [Gaiotto, Kapustin, Seiberg, Willet 2014]

 $\mathsf{Zero}\textrm{-}$ form continuous symmetry: $\partial_\mu J^\mu = 0 \quad \Longleftrightarrow \quad \mathrm{d} \star J_{[1]} = 0$ \implies codimension-one topological operator $U(\Sigma_{d-1}) := \exp\Biggl(i\Biggr)$ Z *Σd−*¹ *⋆J*[1] λ *p*-form continuous symmetry: $\partial_{\mu}J^{\mu\nu_1\cdots\nu_p} = 0 \iff d \star J_{[p+1]} = 0$ \implies codimension-(*p* + 1) topological operator $U(\Sigma_{d-p-1}) := \exp\left(i\frac{p^2}{2}\right)$ $\sqrt{2}$ $\star J_{[p+1]}$ λ

Act on *p*-dimensional extended operators by linking

Other generalisations: higher-group, non-invertible, subsystem symmetries, and more.

Outline

Motivation

Free fields and current algebras

Gift 1: State-operator correspondence [2406.02662 w/ D.M. Hofman]

Gift 2: Topological entanglement entropy [2310.18391 w/ J.R. Fliss]

Gift ideas (outlook)

The star of the show is a free *p*-form field.

The star of the show is a free *p*-form field.

Very simple dynamics:
$$
\partial^{\mu} J_{\mu\nu\rho\cdots} = 0
$$
 and $\partial^{\mu} \epsilon_{\mu\nu\cdots}{}^{\alpha\beta\cdots} J_{\alpha\beta\cdots} = 0$.

The star of the show is a free *p*-form field.

Very simple dynamics: $d * J_{[p+1]} = 0$ and $d J_{[p+1]} = 0$.

generated by:
$$
\exp\left(i \alpha \int_{M_{d-p-1}} \star J_{[p+1]}\right)
$$

acts on: Wilson = $\exp\left(i \int_{\gamma_p} A_{[p]}\right)$

 $(d-p-2)$ -form U(1) symmetry (magnetic) generated by: exp i*α* $\sqrt{2}$ *Mp*+¹ *⋆J*e[*d−p−*1] λ

acts on:

't Hooft =
$$
\exp\left(i \int_{\gamma_{d-p-2}} \widetilde{A}_{[d-p-2]}\right)
$$

There's much more to it: *infinitely many morezero-form symmetries*

F or any $Λ$ _[*p*], $Λ$ _{[*d−p−*2] satisfying:} $dΛ$ _{[*p*}] + *∗* $dΛ$ _{[*d*−*p*−2] = 0} There's much more to it: *infinitely many morezero-form symmetries*

 $\textsf{Conserve}$ currents: $\mathcal{J}_{\Lambda,\widetilde{\Lambda}} = \star \big(J_{[p+1]} \wedge \widetilde{\Lambda}_{[d-p-2]} + \widetilde{J}_{[p+1]} \wedge \Lambda_{[p]} \big)$

F or any $Λ$ _[*p*], $Λ$ _{[*d−p−*2] satisfying:} $dΛ$ _{[*p*}] + *∗* $dΛ$ _{[*d*−*p*−2] = 0} (*twisted self-duality*) **Conserved charges:** $Q(\Lambda) = \int_{\Gamma}$ $\star \mathcal{J}_{\Lambda, \widetilde{\Lambda}}$ $\star \sim$ act on *local* and *non-local* operators (wait for Gift 1) There's much more to it: *infinitely many morezero-form symmetries* $\textsf{Conserve}$ currents: $\mathcal{J}_{\Lambda,\widetilde{\Lambda}} = \star \big(J_{[p+1]} \wedge \widetilde{\Lambda}_{[d-p-2]} + \widetilde{J}_{[p+1]} \wedge \Lambda_{[p]} \big)$ \star *J*_{Λ,} \tilde{A}

F or any $Λ$ _[*p*], $Λ$ _{[*d−p−*2] satisfying:} $dΛ$ _{[*p*}] + *∗* $dΛ$ _{[*d*−*p*−2] = 0} (*twisted self-duality*) **Conserved charges:** $Q(\Lambda) = \int_{\Gamma}$ $\star \mathcal{J}_{\Lambda, \widetilde{\Lambda}}$ $\star \sim$ act on *local* and *non-local* operators (wait for Gift 1) **Commutators:** $[Q(\Lambda), Q(\Lambda')] = i k \left[\Lambda \Lambda d\Lambda' \right]$ There's much more to it: *infinitely many morezero-form symmetries* $\textsf{Conserve}$ currents: $\mathcal{J}_{\Lambda,\widetilde{\Lambda}} = \star \big(J_{[p+1]} \wedge \widetilde{\Lambda}_{[d-p-2]} + \widetilde{J}_{[p+1]} \wedge \Lambda_{[p]} \big)$ \star *J*_{Λ,} \tilde{A} $\sqrt{2}$ *Σ Λ ∧* d*Λ ′* .

F or any $Λ$ _[*p*], $Λ$ _{[*d−p−*2] satisfying:} $dΛ$ _{[*p*}] + *∗* $dΛ$ _{[*d*−*p*−2] = 0} (*twisted self-duality*) **Conserved charges:** $Q(\Lambda) = \int_{\Gamma}$ $\star \mathcal{J}_{\Lambda, \widetilde{\Lambda}}$ $\star \sim$ act on *local* and *non-local* operators (wait for Gift 1) **Commutators:** $[Q(\Lambda), Q(\Lambda')] = i k \left[\Lambda \Lambda d\Lambda' \right]$ There's much more to it: *infinitely many morezero-form symmetries* $\textsf{Conserve}$ currents: $\mathcal{J}_{\Lambda,\widetilde{\Lambda}} = \star \big(J_{[p+1]} \wedge \widetilde{\Lambda}_{[d-p-2]} + \widetilde{J}_{[p+1]} \wedge \Lambda_{[p]} \big)$ \star *J*_{Λ,} \tilde{A} $\sqrt{2}$ *Σ Λ ∧* d*Λ ′* . *In* $d = 2$, $p = 0 \rightarrow$ *free compact scalar* $J(z) \alpha(z)$ *and* $\overline{J}(\overline{z}) \overline{\alpha}(\overline{z})$ *conserved* $[\mathcal{Q}(\alpha), \mathcal{Q}(\alpha')] = i k$ $\sqrt{2}$ α d $\alpha' \implies [Q_n, Q_m] = k n \delta_{n+m,m} \implies$ *it's a Kac–Moody!*

F or any $Λ$ _[*p*], $Λ$ _{[*d−p−*2] satisfying:} $dΛ$ _{[*p*}] + *∗* $dΛ$ _{[*d*−*p*−2] = 0} (*twisted self-duality*) **Conserved charges:** $Q(\Lambda) = \int_{\Gamma}$ $\star \mathcal{J}_{\Lambda, \widetilde{\Lambda}}$ $\star \sim$ act on *local* and *non-local* operators (wait for Gift 1) **Commutators:** $[Q(\Lambda), Q(\Lambda')] = i k \left[\Lambda \Lambda d\Lambda' \right]$ There's much more to it: *infinitely many morezero-form symmetries* $\textsf{Conserve}$ currents: $\mathcal{J}_{\Lambda,\widetilde{\Lambda}} = \star \big(J_{[p+1]} \wedge \widetilde{\Lambda}_{[d-p-2]} + \widetilde{J}_{[p+1]} \wedge \Lambda_{[p]} \big)$ \star *J*_{Λ,} \tilde{A} $\sqrt{2}$ *Σ Λ ∧* d*Λ ′* . *In* $d = 2$, $p = 0 \rightarrow$ *free compact scalar* $J(z) \alpha(z)$ *and* $\overline{J}(\overline{z}) \overline{\alpha}(\overline{z})$ *conserved* $[\mathcal{Q}(\alpha), \mathcal{Q}(\alpha')] = i k$ $\sqrt{2}$ α d $\alpha' \implies [Q_n, Q_m] = k n \delta_{n+m,m} \implies$ *it's a Kac–Moody!* In higher d $[$ $,$ $]=$ $\int \cdots$ is again a *spectrum-generating, infinite-dimensional current algebra.*

To get the spectrum, turn [,] =
$$
\int \cdots
$$
 into a mode algebra \Longrightarrow [A_n , A_m^{\dagger}] = $E_n \delta_{nm}$

To get the spectrum, turn
$$
[,] = \int \cdots
$$
 into a mode algebra \Longrightarrow $[\mathcal{A}_n, \mathcal{A}_m^{\dagger}] = E_n \delta_{nm}$
 $\int_{\text{Laplacian on } \Sigma} \oint$

To get the spectrum, turn
$$
[,] = \int \cdots
$$
 into a mode algebra $\Longrightarrow [A_n, A_m^{\dagger}] = E_n \delta_{nm}$
Plus zero modes! $\begin{cases} \mathbf{r} \in \mathbb{Z}^{b_{d-p-1}(\Sigma)} \\ \mathbf{s} \in \mathbb{Z}^{b_{p+1}(\Sigma)} \end{cases} = \begin{cases} \text{electric} \\ \text{magnetic} \end{cases}$ fluxes = higher-form charges
Hamiltonian: $H_{\Sigma} = k\mathbf{r}^2 + k^{-1} \mathbf{s}^2 + \sum_{n} A_n^{\dagger} A_n$

To get the spectrum, turn
$$
[,] = \int \cdots
$$
 into a mode algebra \Longrightarrow $[A_n, A_m^{\dagger}] = E_n \delta_{nm}$
Plus zero modes! $\begin{cases} \mathbf{r} \in \mathbb{Z}^{b_{d-p-1}(\Sigma)} \\ \mathbf{s} \in \mathbb{Z}^{b_{p+1}(\Sigma)} \end{cases} = \begin{cases} \text{electric} \\ \text{magnetic} \end{cases}$ fluxes = higher-form charges
Hamiltonian: $H_{\Sigma} = k\mathbf{r}^2 + k^{-1} \mathbf{s}^2 + \sum_n A_n^{\dagger} A_n$

States:

▷ Primary states: *|r* , *s〉*. Fixed fluxes, annihilated by all *A*ⁿ . Energy = *kr* ² + *k −*1 *s* ² =*· · ∆^r* ,*^s*

To get the spectrum, turn
$$
\left[, \right] = \int \cdots
$$
 into a mode algebra $\Longrightarrow \left[A_n, A_m^{\dagger} \right] = E_n \delta_{nm}$
Plus zero modes! $\left\{ \begin{aligned} & \mathbf{r} \in \mathbb{Z}^{b_{d-p-1}(\Sigma)} \\ & \mathbf{s} \in \mathbb{Z}^{b_{p+1}(\Sigma)} \end{aligned} \right\} = \left\{ \begin{aligned} & \text{electric} \\ & \text{fluxes} = \text{higher-form charges} \end{aligned} \right\}$ \downarrow $\$

States:

▷ Primary states: *|r* , *s〉*. Fixed fluxes, annihilated by all *A*ⁿ . Energy = *kr* ² + *k −*1 *s* ² =*· · ∆^r* ,*^s*

$$
\triangleright \quad Descendants: \mathcal{A}_n^{\dagger} | \mathbf{r}, \mathbf{s} \rangle. \text{ Energy} = \Delta_{\mathbf{r}, \mathbf{s}} + E_n
$$

To get the spectrum, turn
$$
[,] = \int \cdots
$$
 into a mode algebra \Longrightarrow $[\mathcal{A}_n, \mathcal{A}_m^{\dagger}] = E_n \delta_{nm}$
Plus zero modes! $\begin{cases} \mathbf{r} \in \mathbb{Z}^{b_{d-p-1}(\Sigma)} \\ \mathbf{s} \in \mathbb{Z}^{b_{p+1}(\Sigma)} \end{cases} = \begin{cases} \text{electric} \\ \text{magnetic} \end{cases}$ fluxes = higher-form charges
Hamiltonian: $H_{\Sigma} = k\mathbf{r}^2 + k^{-1} \mathbf{s}^2 + \sum_n \mathcal{A}_n^{\dagger} \mathcal{A}_n$

States:

- *▷ Primary states*: *|r* , *s〉*. Fixed fluxes, annihilated by all *A*ⁿ . Energy = *kr* ² + *k −*1 *s* ² =*· · ∆^r* ,*^s*
- *▷ Descendants*: $\mathcal{A}_m^{\dagger} \mathcal{A}_n^{\dagger} | r, s$ *}*. Energy = $\Delta_{r,s} + E_n + E_m$
Free fields and current algebras

To get the spectrum, turn
$$
[,] = \int \cdots
$$
 into a mode algebra \Longrightarrow $[\mathcal{A}_n, \mathcal{A}_m^{\dagger}] = E_n \delta_{nm}$
Plus zero modes! $\begin{cases} \mathbf{r} \in \mathbb{Z}^{b_{d-p-1}(\Sigma)} \\ \mathbf{s} \in \mathbb{Z}^{b_{p+1}(\Sigma)} \end{cases} = \begin{cases} \text{electric} \\ \text{magnetic} \end{cases}$ fluxes = higher-form charges
Hamiltonian: $H_{\Sigma} = kr^2 + k^{-1} s^2 + \sum_n \mathcal{A}_n^{\dagger} \mathcal{A}_n$

States:

- *▷ Primary states*: *|r* , *s〉*. Fixed fluxes, annihilated by all *A*ⁿ . Energy = *kr* ² + *k −*1 *s* ² =*· · ∆^r* ,*^s*
- *⊳ Descendants:* $\prod_n (\mathcal{A}_n^{\dagger})^{N_n} |r, s\rangle$. Energy = $\Delta_{r,s} + \sum_n N_n E_n$

Free fields and current algebras

To get the spectrum, turn
$$
[,] = \int \cdots
$$
 into a mode algebra \Longrightarrow $[A_n, A_m^{\dagger}] = E_n \delta_{nm}$
Plus zero modes! $\begin{cases} \mathbf{r} \in \mathbb{Z}^{b_{d-p-1}(\Sigma)} \\ \mathbf{s} \in \mathbb{Z}^{b_{p+1}(\Sigma)} \end{cases} = \begin{cases} \text{electric} \\ \text{magnetic} \end{cases}$ fluxes = higher-form charges
Hamiltonian: $H_{\Sigma} = k\mathbf{r}^2 + k^{-1} \mathbf{s}^2 + \sum_n A_n^{\dagger} A_n$

States:

- *▷ Primary states*: *|r* , *s〉*. Fixed fluxes, annihilated by all *A*ⁿ . Energy = *kr* ² + *k −*1 *s* ² =*· · ∆^r* ,*^s*
- Siegel-like Theta function $^{\prime\prime}$ spectral eta function" $\eta_{\,\Sigma}(q)=\prod_n \bigl(1-q^{E_n}\bigr)^{-1/2} \searrow$ very reminiscent of 2d CFTs! *⊳ Descendants:* $\prod_n (\mathcal{A}_n^{\dagger})^{N_n} |r, s\rangle$. Energy = $\Delta_{r,s} + \sum_n N_n E_n$ Non-trivial check: $\mathbf{ch}(q) = \sum_{\alpha}$ *r* ,*s* $ch_{r,s}(q) = \sum$ *r* ,*s* $\text{tr}\,q^{H_{\Sigma}} = \frac{\Theta_{\Sigma}(q;k)}{R_{\Sigma}(q)^2}$ $\frac{\partial \Sigma(q;k)}{\partial \Sigma(q)^2} = \mathcal{Z}\left(\mathbb{S}^1_{\beta} \times \Sigma\right)$

Outline

Motivation

Gift 1: State-operator correspondence [2406.02662 w/ D.M. Hofman]

Gift 2: Topological entanglement entropy [2310.18391 w/ J.R. Fliss]

Gift ideas (outlook)

 \int ^{*d***J*=0} Claim:^{[Hofman, Iqbal 2018] A unitary CFT in $d = 2p + 2$ with a p-form U(1) symmetry is realised by} *free p-form fields.*

 $J = d \star J = 0$ Claim:^{[Hofman, Iqbal 2018] A unitary CFT in $d = 2p + 2$ with a p-form U(1) symmetry is realised by} *free p-form fields.*

very specific function [Costa, Hansen 2015] $\mathsf{Sketch\ of\ proof}\colon \langle J(x)J(y)\rangle=\mathop{\{\!\mathrm{f}}\nolimits}_x(x-y)\implies \langle \mathrm{d} J(x)\;\mathrm{d} J(y)\rangle=0\implies \mathrm{d} J=0.$

 $J = d \star J = 0$ Claim:^{[Hofman, Iqbal 2018] A unitary CFT in $d = 2p + 2$ with a p-form U(1) symmetry is realised by} *free p-form fields.*

very specific function [Costa, Hansen 2015] $\mathsf{Sketch\ of\ proof}\colon \langle J(x)J(y)\rangle=\mathop{\{\!\mathrm{f}}\nolimits}_x(x-y)\implies \langle \mathrm{d} J(x)\;\mathrm{d} J(y)\rangle=0\implies \mathrm{d} J=0.$

▷ d = 2 *standard result: free field realisation*

 $J = d \star J = 0$ Claim:^{[Hofman, Iqbal 2018] A unitary CFT in $d = 2p + 2$ with a p-form U(1) symmetry is realised by} *free p-form fields.*

Sketch of proof:
$$
\langle J(x)J(y)\rangle = f(x-y) \implies \langle dJ(x) dJ(y)\rangle = 0 \implies dJ = 0.
$$

very specific function [Costa, Hansen 2015]

- *▷ d* = 2 *standard result: free field realisation*
- *▷ d* = 4 *free photon realisation (photonisation)*

^{2→} precise one-to-one correspondence between *states on* \mathcal{H}_{Σ} and *nonlocal operators*

 $J = d \star J = 0$ Claim:^{[Hofman, Iqbal 2018] A unitary CFT in $d = 2p + 2$ with a p-form U(1) symmetry is realised by} *free p-form fields.*

Sketch of proof:
$$
\langle J(x)J(y) \rangle = f(x - y) \implies \langle dJ(x) dJ(y) \rangle = 0 \implies dJ = 0.
$$

Very specific function [Costa, Hansen 2015]

- *▷ d* = 2 *standard result: free field realisation*
- *▷ d* = 4 *free photon realisation (photonisation)*

precise one-to-one correspondence between *states on H^Σ* and *nonlocal operators*

sets the stage for understanding higher-dimensional CFTs on compact manifolds

such a correspondence is not possible for generic CFTs [Belin, de Boer, Kruthoff 2018].

[|]L〉 · ·= Z D*A*e *[−]S*[*A*] *^L {***0***} ×* S 1 = *L*

State-operator correspondence For illustration, take $d = 4$ ($p = 1$) and quantise on $\Sigma = \mathbb{S}^2 \times \mathbb{S}^1$ and ω unique flux Recover the spectrum of states by path integrals on $\mathbb B^3 \times \mathbb S^1$ with insertions of line operators

[|]L〉 · ·= Z D*A*e *[−]S*[*A*] *^L {***0***} ×* S 1 = *L*

 A *surprise*: $|1\rangle \neq |vacuum\rangle = |0, 0\rangle$

State-operator correspondence For illustration, take $d = 4$ ($p = 1$) and quantise on $\Sigma = \mathbb{S}^2 \times \mathbb{S}^1$ and ω unique flux Recover the spectrum of states by path integrals on $\mathbb B^3 \times \mathbb S^1$ with insertions of line operators

[|]L〉 · ·= Z D*A*e *[−]S*[*A*] *^L {***0***} ×* S 1 = *L*

A surprise: *|*1*〉 ̸*= *|*vacuum*〉* = *|*0, 0*〉* Why? radial evolution mixes ladder operators

State-operator correspondence For illustration, take $d = 4$ ($p = 1$) and quantise on $\Sigma = \mathbb{S}^2 \times \mathbb{S}^1$ and ω unique flux Recover the spectrum of states by path integrals on $\mathbb B^3 \times \mathbb S^1$ with insertions of line operators

[|]L〉 · ·= Z D*A*e *[−]S*[*A*] *^L {***0***} ×* S 1 = *L*

A surprise: *|*1*〉 ̸*= *|*vacuum*〉* = *|*0, 0*〉* Why? radial evolution mixes ladder operators \rightarrow $\mathcal{A}_n |\mathbb{1}\rangle \neq 0$ but $(\#_n\mathcal{A}_n + \#_n\mathcal{A}_n^{\dagger}) |\mathbb{1}\rangle = 0$

State-operator correspondence unique holonomy unique flux takes care of Bogoliubov transformation $\sim \prod_{n} \exp\left(A_n^2 + \left(A_n^{\dagger}\right)^2\right)$ For illustration, take $d=4$ ($p=1$) and quantise on $\Sigma=\mathbb{S}^2\times\mathbb{S}^1$ Recover the spectrum of states by path integrals on $\mathbb B^3 \times \mathbb S^1$ with insertions of line operators *[|]L〉 · ·*= $\sqrt{2}$ $DAe^{-S[A]} \mathcal{L}(\{0\} \times \mathbb{S}^1) =$ *L A surprise*: *|*1*〉 ̸*= *|*vacuum*〉* = *|*0, 0*〉* Why? radial evolution mixes ladder operators \rightarrow *A*_n $|1\rangle \neq 0$ but $(\#_{n}A_{n} + \#_{n}A_{n}^{\dagger})|1\rangle = 0 \implies$ squeezing transformation: $|1\rangle = \mathfrak{S}|0,0\rangle$

State-operator correspondence unique holonomy unique flux takes care of Bogoliubov transformation $\sim \prod_{n} \exp\left(A_n^2 + \left(A_n^{\dagger}\right)^2\right)$ For illustration, take $d=4$ ($p=1$) and quantise on $\Sigma=\mathbb{S}^2\times\mathbb{S}^1$ Recover the spectrum of states by path integrals on $\mathbb B^3 \times \mathbb S^1$ with insertions of line operators *[|]L〉 · ·*= $\sqrt{2}$ $DAe^{-S[A]} \mathcal{L}(\{0\} \times \mathbb{S}^1) =$ *L A surprise*: *|*1*〉 ̸*= *|*vacuum*〉* = *|*0, 0*〉* Why? radial evolution mixes ladder operators \rightarrow *A*_n $|1\rangle \neq 0$ but $(\#_{n}A_{n} + \#_{n}A_{n}^{\dagger})|1\rangle = 0 \implies$ squeezing transformation: $|1\rangle = \mathfrak{S}|0,0\rangle$ \rightsquigarrow **Vacuum is prepared by** *photons of all frequencies* **smeared on** \mathbb{S}^1 (consistent with [Belin, de Boer, Kruthoff 2018])

The rest is straightforward

The rest is straightforward

Primary states

$$
|r,s\rangle \leftrightarrow \text{Wilson-'t Hooft lines} = \mathfrak{S}^\dagger \times \exp\left(\text{if }\int_{\mathbb{S}^1} A + \text{is }\int_{\mathbb{S}^1} \widetilde{A}\right)
$$

The rest is straightforward

Primary states

$$
|r,s\rangle \leftrightarrow \text{Wilson--'t Hooft lines}
$$

$$
|r,s\rangle \leftrightarrow \text{dressed with squeezing operator} = \mathfrak{S}^{\dagger} \times \exp\left(i \, r \int_{\mathbb{S}^1} A + i \, s \int_{\mathbb{S}^1} \widetilde{A}\right)
$$

Descendants

Representation theory at work \rightsquigarrow sprinkle oscillators

$$
\mathcal{A}_{n}^{\dagger} |r,s\rangle \leftrightarrow \mathfrak{S}^{\dagger} \times (\#_{n}^{*} \mathcal{A}_{n}^{\dagger} + \#_{n}^{*} \mathcal{A}_{n}) \times \exp\left(i r \int_{\mathbb{S}^{1}} A + i s \int_{\mathbb{S}^{1}} \widetilde{A} \right)
$$

The rest is straightforward

Primary states

$$
|r,s\rangle \leftrightarrow \text{Wilson-'t Hooft lines} = \mathfrak{S}^\dagger \times \exp\left(\text{if }\int_{\mathbb{S}^1} A + \text{is }\int_{\mathbb{S}^1} \widetilde{A}\right)
$$

Descendants

Representation theory at work \rightsquigarrow sprinkle oscillators

$$
\prod_{n} \left(\mathcal{A}_{n}^{\dagger}\right)^{N_{n}} |r,s\rangle \leftrightarrow \mathfrak{S}^{\dagger} \times \prod_{n} \left(\#_{n}^{*}\mathcal{A}_{n}^{\dagger} + \#_{n}^{*}\mathcal{A}_{n}\right)^{N_{n}} \times \exp\left(i r \int_{\mathbb{S}^{1}} A + i s \int_{\mathbb{S}^{1}} \widetilde{A}\right)
$$

That's it. That's the entire spectrum.

Outline

Motivation

Gift 1: State-operator correspondence [2406.02662 w/ D.M. Hofman]

Gift 2: Topological entanglement entropy [2310.18391 w/ J.R. Fliss]

Gift ideas (outlook)

Topological order = patterns of long range entanglement

\nIn (2+1)d:
$$
\mathcal{S}_{EE} = \frac{|\partial R|}{\varepsilon} - \gamma
$$
 [Kitaev, Preskill; Levin, Wen 2006]

\n $\text{log (total quantum dimension)}$

Topological order = patterns of long range entanglement

\nIn (2+1)d:
$$
\mathcal{S}_{EE} = \frac{|\partial R|}{\varepsilon} - \gamma
$$
 [Kitaev, Preskill; Levin, Wen 2006]

\n $\text{log (total quantum dimension)}$

IR effective field theories \rightsquigarrow 3d TQFTs

 $\frac{1}{\sqrt{1-\frac{1}{n}}}\log\left(\frac{1}{\sqrt{1-\frac{1}{n}}}\right)$ Topological order $=$ patterns of long range entanglement $\ln (2+1)$ d: $S_{EE} =$ *|R|* $\frac{24}{\varepsilon} - \gamma$ [Kitaev, Preskill; Levin, Wen 2006]

IR effective field theories \rightsquigarrow 3d TQFTs

bulk/edge correspondence

anomaly/symmetry inflow (*cf. SPTs, SymTFTs*)

entanglement spectrum = edge spectrum [Li, Haldane 2008; Chandran et. al 2011]

edge spectrum organised by Kac–Moody algebra [Elitzur, Moore, Seiberg 1989]

 $\frac{1}{\sqrt{1-\frac{1}{n}}}\log\left(\frac{1}{n}\tan\left(\frac{1}{n}\right)\right)$ Topological order $=$ patterns of long range entanglement $\ln (2+1)$ d: $S_{EE} =$ *|R|* $\frac{24}{\varepsilon} - \gamma$ [Kitaev, Preskill; Levin, Wen 2006]

IR effective field theories \rightsquigarrow 3d TQFTs

bulk/edge correspondence

anomaly/symmetry inflow (*cf. SPTs, SymTFTs*)

entanglement spectrum = edge spectrum [Li, Haldane 2008; Chandran et. al 2011]

edge spectrum organised by Kac–Moody algebra [Elitzur, Moore, Seiberg 1989]

Here: Consider higher-dimensional topological order and study its entanglement

$$
\text{IR TQFT:} S = \frac{k}{2\pi} \int B_{[d-p-1]} \wedge \text{d}A_{[p]}
$$

$$
\text{IR TQFT:} S = \frac{k}{2\pi} \int B_{[d-p-1]} \wedge \text{d}A_{[p]} \quad \text{gauge invariance} \rightsquigarrow \frac{A \sim A + \text{d}\alpha_{[p-1]}}{B \sim B + \text{d}\beta_{[p-1]}}
$$

$$
\text{IR TQFT:} S = \frac{k}{2\pi} \int B_{[d-p-1]} \wedge \text{d}A_{[p]} \quad \text{gauge invariance} \rightsquigarrow \frac{A \sim A + \text{d}\alpha_{[p-1]}}{B \sim B + \text{d}\beta_{[p-1]}}
$$

Presence of boundary: gauge transformations that survive \rightsquigarrow global charges

Here:
$$
Q(\alpha) = \frac{k}{2\pi} \int_{\partial \Sigma} \alpha \wedge B, \qquad \widetilde{Q}(\beta) = \frac{k}{2\pi} \int_{\partial \Sigma} \beta \wedge A
$$

$$
\text{IR TQFT:} S = \frac{k}{2\pi} \int B_{[d-p-1]} \wedge \text{d}A_{[p]} \quad \text{gauge invariance} \rightsquigarrow \frac{A \sim A + \text{d}\alpha_{[p-1]}}{B \sim B + \text{d}\beta_{[p-1]}}
$$

Presence of boundary: gauge transformations that survive \rightsquigarrow global charges

Here:
$$
Q(\alpha) = \frac{k}{2\pi} \int_{\partial \Sigma} \alpha \wedge B, \qquad \widetilde{Q}(\beta) = \frac{k}{2\pi} \int_{\partial \Sigma} \beta \wedge A
$$

Satisfy $[Q(\alpha), \widetilde{Q}(\beta)] = i k \int_{\partial \Sigma} \alpha \wedge d\beta$ looks familiar?

$$
\text{IR TQFT:} S = \frac{k}{2\pi} \int B_{[d-p-1]} \wedge \text{d}A_{[p]} \quad \text{gauge invariance} \rightsquigarrow \frac{A \sim A + \text{d}\alpha_{[p-1]}}{B \sim B + \text{d}\beta_{[p-1]}}
$$

Presence of boundary: gauge transformations that survive \rightsquigarrow global charges

Here:
$$
Q(\alpha) = \frac{k}{2\pi} \int_{\partial \Sigma} \alpha \wedge B, \qquad \widetilde{Q}(\beta) = \frac{k}{2\pi} \int_{\partial \Sigma} \beta \wedge A
$$

Satisfy $[Q(\alpha), \widetilde{Q}(\beta)] = i k \int_{\partial \Sigma} \alpha \wedge d\beta$ looks familiar?

Edge modes is free *p*-forms + chirality condition

Edge spectrum controlled again by infinite-dimensional current algebra

$$
\text{IR TQFT:} S = \frac{k}{2\pi} \int B_{[d-p-1]} \wedge \text{d}A_{[p]} \quad \text{gauge invariance} \rightsquigarrow \frac{A \sim A + \text{d}\alpha_{[p-1]}}{B \sim B + \text{d}\beta_{[p-1]}}
$$

Presence of boundary: gauge transformations that survive \rightsquigarrow global charges

Here:
$$
Q(\alpha) = \frac{k}{2\pi} \int_{\partial \Sigma} \alpha \wedge B
$$
, $\widetilde{Q}(\beta) = \frac{k}{2\pi} \int_{\partial \Sigma} \beta \wedge A$
Satisfy $[Q(\alpha), \widetilde{Q}(\beta)] = i k \int_{\partial \Sigma} \alpha \wedge d\beta$ looks familiar?

higher-d analogue of chiral boson Edge modes is free p-forms + chirality condition \leftarrow

Edge spectrum controlled again by infinite-dimensional current algebra

Entanglement *ΣR* ∂R time (replica trick) Interested in $S_{\text{EE}} = -\text{Tr}_{\mathcal{H}_R}(\rho_R \log \rho_R) \equiv \lim_{n \to 1}$ 1 $\frac{1}{1-n} \log \text{Tr}_{\mathcal{H}_R} \rho_R^n$ *R Important issues*:

 $H_{\Sigma} \neq H_R \otimes H_{\text{rest}} \rightarrow \rho_R$ needs care \rightarrow *solution*: extended Hilbert space [Buidovich, Polikarpov 2008; Donnelly 2011; Donnelly, Wall 2014]

UV issues by the introduction of $\partial R \sim$ solution: regulate trace with quadratic Hamiltonian

time (replica trick) Interested in $S_{\text{EE}} = -\text{Tr}_{\mathcal{H}_R}(\rho_R \log \rho_R) \equiv \lim_{n \to 1}$ 1 $\frac{1}{1-n} \log \text{Tr}_{\mathcal{H}_R} \rho_R^n$ *R*

Important issues:

 $H_{\Sigma} \neq H_R \otimes H_{\text{rest}} \rightarrow \rho_R$ needs care \rightarrow *solution*: extended Hilbert space [Buidovich, Polikarpov 2008; Donnelly 2011; Donnelly, Wall 2014]

UV issues by the introduction of $\partial R \sim$ solution: regulate trace with quadratic Hamiltonian

Altogether: Tr
$$
\rho_R^n = \text{ch}(e^{-n\varepsilon H}) = \frac{\Theta_\Sigma(q;k)}{\eta_\Sigma(q)^2}
$$

Entanglement

R

 ∂R

Σ

 $\frac{1}{1-n} \log \text{Tr}_{\mathcal{H}_R} \rho_R^n$ *R*

(replica trick)

1

Important issues:

 $H_{\Sigma} \neq H_R \otimes H_{\text{rest}} \rightarrow \rho_R$ needs care \rightarrow *solution*: extended Hilbert space [Buidovich, Polikarpov 2008; Donnelly 2011; Donnelly, Wall 2014]

UV issues by the introduction of $\partial R \rightarrow$ solution: regulate trace with quadratic Hamiltonian

Altogether: Tr
$$
\rho_R^n
$$
 = $\text{ch}(e^{-n\varepsilon H}) = \frac{\Theta_\Sigma(q;k)}{\eta_\Sigma(q)^2}$

Interested in $S_{\text{EE}} = -\text{Tr}_{\mathcal{H}_R}(\rho_R \log \rho_R) \equiv \lim_{n \to 1}$

extract entanglement by modular properties of *Θ* and hard work (for *η*)

time

Σ

Entanglement

R

 ∂R

time *R*

(replica trick)

Σ

Interested in $S_{\text{EE}} = -\text{Tr}_{\mathcal{H}_R}(\rho_R \log \rho_R) \equiv \lim_{n \to 1}$ 1 $\frac{1}{1-n} \log \text{Tr}_{\mathcal{H}_R} \rho_R^n$ *Important issues*:

 $\mathcal{H}_{\Sigma} \neq \mathcal{H}_{R} \otimes \mathcal{H}_{\text{rest}} \rightsquigarrow \rho_R$ needs care \rightsquigarrow solution: extended Hilbert space [Buidovich, Polikarpov 2008; Donnelly 2011; Donnelly, Wall 2014]

UV issues by the introduction of $\partial R \leadsto$ solution: regulate trace with quadratic Hamiltonian

 $\mathsf{Altogether: Tr}\,\rho_R^n = \mathbf{ch}\big(\mathrm{e}^{-n\varepsilon H}\big) = \frac{\Theta_\Sigma(q;k)}{n_\square(a)^2}$ *ηΣ*(*q*) 2

extract entanglement by modular properties of *Θ* and hard work (for *η*)

$$
\mathcal{S}_{\text{EE}} = \sum_{n=1}^{\lfloor \frac{d-1}{2} \rfloor} C_{\underbrace{n}_{\text{max}}}^{(p)} \left(\frac{\ell}{\varepsilon}\right)^{d-2n} + \frac{1}{2} K^{(p)} \delta_{d,\text{even}} \log \left(\frac{\ell}{\varepsilon}\right) - \frac{1}{2} \left(b_p(\partial R) + b_{d-p-1}(\partial R)\right) \log k
$$

proportional to heat kernel coefficients

Entanglement

R

 ∂R
time *R*

(replica trick)

Interested in $S_{\text{EE}} = -\text{Tr}_{\mathcal{H}_R}(\rho_R \log \rho_R) \equiv \lim_{n \to 1}$ 1 $\frac{1}{1-n} \log \text{Tr}_{\mathcal{H}_R} \rho_R^n$ *Important issues*:

 $\mathcal{H}_{\Sigma} \neq \mathcal{H}_{R} \otimes \mathcal{H}_{\text{rest}} \rightsquigarrow \rho_R$ needs care \rightsquigarrow solution: extended Hilbert space [Buidovich, Polikarpov 2008; Donnelly 2011; Donnelly, Wall 2014]

UV issues by the introduction of $\partial R \leadsto$ *solution*: regulate trace with quadratic Hamiltonian

 $\mathsf{Altogether: Tr}\,\rho_R^n = \mathbf{ch}\big(\mathrm{e}^{-n\varepsilon H}\big) = \frac{\Theta_\Sigma(q;k)}{n_\square(a)^2}$ *ηΣ*(*q*) 2

extract entanglement by modular properties of *Θ* and hard work (for *η*)

$$
\mathcal{S}_{\text{EE}} = \sum_{n=1}^{\lfloor \frac{d-1}{2} \rfloor} C_{\frac{n}{2}}^{(p)} \left(\frac{\ell}{\varepsilon} \right)^{d-2n} + \frac{1}{2} K^{(p)} \delta_{d,\text{even}} \log \left(\frac{\ell}{\varepsilon} \right) - \frac{1}{2} \left(b_p (\partial R) + b_{d-p-1} (\partial R) \right) \log k
$$

proportional to heat

roportional to heat **subleading universal topological term**
kernel coefficients

Σ

Entanglement

R

 ∂R

Outline

Motivation

Gift 1: State-operator correspondence [2406.02662 w/ D.M. Hofman]

Gift 2: Topological entanglement entropy [2310.18391 w/ J.R. Fliss]

Gift ideas (outlook)

Gift ideas

Non-invertible current algebras

Gauge charge conjugation *J ∼ −J* =*⇒* symmetry broken but resurrected as non-invertible [*{*others*}*, Antinucci, Galati, Rizi 2022; Aguilera-Damia,Argurio,Chaudhuri 2023]

Current algebra also: $D(\Lambda) \otimes D(\Lambda') = e^{i k \int \Lambda \wedge d\Lambda'}\, D(\Lambda+\Lambda') \oplus e^{-i k \int \Lambda \wedge d\Lambda'}\, D(\Lambda-\Lambda')$

Should still fix the spectrum *TIP w/ Aguilera-Damia, Argurio, Chaudhuri*

Current algebras in gravity

Linearised gravity enjoys "biform" symmetries with charges *R −* (traces) and *⋆R⋆ −*(traces) [[Hinterbichler et al 2022, (Hull et al 2024) 2]]

Also leads to a current algebra (depends on more parameters 2 KY tensors, 2 one-forms)

Implications: linearised spectrum, asymptotic symmetries...? *TIP w/ Mathys*

Non-linear *p*-form electrodynamics

