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How does elastic scattering give you ?N2

• For small enough momentum transfer, there are N paths all leading to the 
same final state

• Scattering amplitude 

• Scattering rate 

∝ N

∝ N2

Atom 1 ei ⃗q⋅ ⃗r1

Atom 2 ei ⃗q⋅ ⃗r2

Atom N ei ⃗q⋅ ⃗rN

Incoming particle wave Outgoing particle wave

⃗qCM

• Momentum transfer 

• Energy transfer 

qCM ∼ 5 × 10−6 eV

ECM ∼ 10−49 eV

For R = 10 cm



Understanding  scalings in inelastic scatteringN2

• A target made of  two-level “atoms”: nuclear and atomic transitions, spins 
in magnetic field, etc…

• Two extreme possibilities:

• All atoms in the ground state 

• All atoms in an equal superposition of ground and excited:                         

 

N

∏ | g ⟩

∏( 1

2
( | g ⟩ + | e ⟩)) = ∏ | ⟩ ≡ Product state

|g⟩

|e⟩

ω0

↑ ↑

↑



Why does inelastic scattering normally ?∝ N

•  atoms all in the ground state  distinct orthogonal final states

• Scattering amplitude 

• Scattering rate 

N ⇒ N

∝ 1

∝ N

Atom 1

Incoming particle wave Outgoing particle wave

…

…

…

…

Atom 2

Atom N

The rate of exciting a single atom 

• Momentum transfer 

• Energy transfer 

q ∼ 5 × 10−6 eV

E ∼ ω0 ≫ 10−49 eV
For R = 10 cm



When does inelastic scattering ?∝ N2
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When does inelastic scattering ?∝ N2

•  atoms in an equal superposition of ground and excited, therefore there are 
 indistinguishable final states

• Scattering amplitude 

• Scattering rate 

• Energy transfer still large, 

N

∼
N
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When does inelastic scattering ?∝ N2

•  atoms in an equal superposition of ground and excited, therefore there are 
 indistinguishable final states

• Scattering amplitude 

• Scattering rate 

• Energy transfer still large, 

N

∼
N
2

∝ N

∝ N2

E = ω0

Atom α

Incoming particle wave

…

Outgoing particle wave

…… … …

=
1

2
+

Analogous to Dicke Superradiance
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Photon with energy ω0

Dicke Superradiance (1954)

• Atoms in an equal superposition of ground and excited emitting photons, 
produce  indistinguishable states

• Amplitude 

• Photon emission rate 

• Similar effects in stimulated absorption and emission

N
2

∝ N

∝ N2

…… Atom α … …

=
1

2 −



Superradiant scattering from a target of size R

: particle deBroglie wavelength
: Minimum momentum transfer set by energy conservation

λ
qmin

Scattering form factor:
N

∑
α=1

ei ⃗q⋅ ⃗ra
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R ∼ λ R ∼ q−1
min
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regime
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Outline

• Superradiant interactions: Inelastic processes with  rates

• Sample superradiant interaction rate calculations

• Cosmic Neutrino Background super-scattering

• Axion and Dark Photon Dark Matter super-absorption and 
super-emission

• Solar, Reactor, and Bomb Neutrino super-scattering

• Towards measuring the total interaction rate

N2
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The Cosmic Microwave Background (CMB)

• Time when atoms formed and the universe became transparent to 
light 

• The Universe was 400,000 years-old at the time

• Allowed to measure the composition of the Universe to 1%
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The Cosmic Neutrino Background (CνB)

• Relic neutrinos from the pre-BBN era 

• They follow a Fermi-Dirac distribution with:

•

•

•
•  per flavor, per helicity model

τuniverse ∼ 0.1 sec

⟨pν⟩ = 6 × 10−4 eV

⟨Eν⟩ = 1.6 × 10−6 eV ( 0.1 eV
mν )

⟨λν⟩ = 2.1 mm

nν = 56 cm−3



Why is the CνB important?

• Probes physics at a time much earlier than the CMB

• An entire sector of the Standard Model: 3 flavors and 7+ 
parameters

• Using non-relativistic particles for 3D tomography of the 
Universe



Superradiant CνB scattering

• CνB scattering from polarized nuclear or electron spins in a  magnetic 
field and prepared in the product state

• Two possible processes:

⃗B 0

, where ψ : any SM fermionℒI =
GF

2
ν̄f γμγ5νf ψ̄(gL − gR)γμγ5ψ

∏ | ⟩

In the non-relativistic limit:  HI =
GF

2
(gL − gR) δ(3)( ⃗xν − ⃗xψ) ⃗σν ⋅ ⃗σψ

… ……

νi νi

… ……

νheavy νlight
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Superradiant CνΒ scattering

• Maximum available energy for excitation: 

• Need momentum transfer to be  in order for coherence to 
be maintained across the entire distribution of size 

• Coherence imposes a maximum of energy transfer 

Eν ∼ 10−6 eV

𝒪(R−1)
R

ω0 ≤
υν

R

… ……

νi νi



CνB superradiant scattering

R=10 cm sphere

106 R=1 mm spheres

R=1 cm sphere
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CνB superradiant scattering - Net rate

νi + |g⟩ ↔ νi + |e⟩

R=10 cm sphere
106 R=1 mm spheres

R=1 cm sphere
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Net superradiant interaction rate is non-zero and suppressed by  𝒪(
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CνΒ superradiant and doubly inelastic scattering

• Out of equilibrium: All three neutrino mass eigenstates equally 
populated

• Mass range of heaviest neutrino: 0.05-0.1 eV

• Best case scenario:  processes in the inverted hierarchy caseν2 ↔ ν1

… ……

νheavy νlight



CνB superradiant scattering - total rate

Inverted mass hierarchy
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Optimal excitation energy 

Live width 

ω0 = mheavy − mlight

δω0 ∼
υν
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CνB superradiant scattering - Net Rate

νheavy + |g⟩ ↔ νlight + |e⟩ Inverted mass hierarchy
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Cosmological out-of-equilibrium population of heavy neutrinos allows for 
positive energy exchange



Why is the Electric Dipole Moment of the Neutron Small?

Neutron 
EDM

EDM ~ e fm θs

Experimental bound: θs  < 10-10

The Strong CP Problem and the QCD axion

Solution:
θs ~a(x,t) is a dynamical field, an axion

Axion mass from QCD:

fa : axion decay constant

µa ⇠ 6⇥ 10�11 eV
1017 GeV

fa
⇠ (3 km)�1 1017 GeV

fa

g2s
32⇡2

✓s ~Es · ~Bs



A Plenitude of Particles from String Theory

•Extra dimensions

•Gauge fields 

•Topology

AA, Craig, Dimopoulos, Dubovsky, March-Russell (2009)

AA, Dimopoulos, Dubovsky, Kaloper, March-Russell (2009)
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A Plenitude of Particles from String Theory

•Extra dimensions

•Gauge fields 

•Topology

Give rise to a plenitude of massless particles in our Universe

AA, Craig, Dimopoulos, Dubovsky, March-Russell (2009)

AA, Dimopoulos, Dubovsky, Kaloper, March-Russell (2009)



A Plenitude of (Almost*) Massless Particles

• Spin-0 non-trivial gauge field configurations: String Axiverse

• Spin-1 non-trivial gauge field configurations: String Photiverse

• Fields that determine the shape and size of extra dimensions as 
well as values of fundamental constants: Dilatons, Moduli, 
Radion



Axion DM superradiance and superabsorption

QCD axion

N = 1010 ∼ 10−13 gr

N = 1016 ∼ 10−7 gr
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Dark Photon DM superradiance and 
superabsorption
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Neutrino sources

arXiv: 1207.4952



Solar, Reactor, and Bomb Neutrinos

• Sample rates on a target with 

• Neutrinos with flux of               

• 1 GW reactor produces roughly 

•

ns = 3 × 1022 spins
cm3

1011 cm−2s−1

Γsolar =
1

2.5 hours ( R
10 cm )

4

1021 ν̄
s

Γreactor =
1

3 hours ( R
10 cm )

4

( 100 m
d )

2

𝒩Mton bomb = 𝒪(1)( R
10 cm )

4

( 10 km
d )

2



Outline

• Superradiant interactions: Inelastic processes with  rates

• Sample superradiant interaction rate calculations

• Cosmic Neutrino Background super-scattering

• Axion and Dark Photon Dark Matter super-absorption and 
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Evolution of the quantum state 
due to cosmic noise

constant energy shift

di↵erence scales only as N . Since |P i has no quantum mechanical correlations—indeed |P i
is a product state—adding into or removing from it a quantum of energy doesn’t change

the state too much, i.e. J+ and J� are uncorrelated to leading order. Again, this points

towards the need to squeeze |P i to a metrologically more useful quantum state.

Squeezing thus ties di↵usion and decoherence together as possible observables and

underlines the enormous gain in sensitivity we may achieve by using detectors with even

small amounts of spin-spin correlations, while simultaneously going beyond observables

that measure energy exchange. These considerations point to a new class of ultra-low

threshold detectors. Of course, as we have repeatedly stressed, the discussion above is not

meant as an experimental proposal and explicit protocols need to be designed to extract the

maximum possible sensitivity of coherent inelastic processes on extended quantum systems.

A first step towards this will be presented in upcoming work [16].

6.3 Decoherence due to elastic e↵ects

Inelastic e↵ects involve the projection of background operators (spin, polarization, momen-

tum) in directions perpendicular to the spin of the detector: for spins polarized along the

z-direction these are described by the operators J±. Nevertheless, there are terms in all

Hamiltonians / Jz which we have largely neglected thus far. Similarly to inelastic e↵ects,

the Lindblad equation in general also contains LJz :

⇢̇S ' �i�!S [Jz, ⇢S ] +
��
2
LJ� [⇢S(t)] +

�+

2
LJ+ [⇢S(t)] +

�z

2
LJz [⇢S(t)]. (6.14)

The last term describes elastic e↵ects where no energy exchange with the system

occurs; indeed Jz trivially commutes with the free Hamiltonian of the spin system. Such

terms are well-known in studies of decoherence [33] as they describe a purely quantum-

mechanical e↵ect: the loss of quantum correlations without any energy dissipation. Since

this work is focused on inelastic e↵ects, we only discuss elastic e↵ects for completeness and

leave an exhaustive study to future work.

Because of the elastic nature of these e↵ects, they do not appear at the same order

as �± for the absorption/emission-type interactions of axion, dark photons or ordinary

photons; instead particle number conserving processes are the only relevant ones. Thus,

for neutrinos and DM that scatters, the rate �z is of the same order as �±. For instance,

for elastic C⌫B neutrino scattering we find

�z = n⌫
2G2

F
|ut,i!i|2m2

⌫

⇡
hv⌫i , (6.15)

where the coe�cients ut,i!i are given by the appropriate entries of Table 2. As with all

rates in the Lindblad equations, Eq. (6.15) is strictly correct in the limit |q|�1 ⌧ R, but the

Rayleigh-Gans regime can still be qualitatively captured by an analogous approximation

as that described in App. A.

For |Di we can immediately see that this new term does not change the solution

Eq. (6.8). It is similarly easy to check that the contribution of this new term to hJn
z i is

– 29 –

<latexit sha1_base64="9xkBWejyAqN0WFqU0MGfhT+yrtk=">AAACwHicfVFNb9QwFHRCgbIUWOiRi9UVUitglSBKObSoopf2ViS2rbSOIsdxNtY6dmq/VFrS/EkuiH+DN8mhH1tGsjSaeW9sv5eUUlgIgr+e/2jt8ZOn688GzzdevHw1fP3mzOrKMD5hWmpzkVDLpVB8AgIkvygNp0Ui+XkyP1r651fcWKHVT1iUPCroTIlMMApOiod/sAMxuY6Jqg5IaXQa16QmiZZpPW8+WNI0RPIMptvhx5bsK2LELIdv8Y2qZqf1roNVXtfWW9e3rPf/iewSw4cTw1WJnRbFw1EwDlrg+yTsyQj1OI2Hv0mqWVVwBUxSa6dhUEJUUwOCSd4MSGV5SdmczvjUUUULbqO6XUCD3zklxZk27ijArXqzo6aFtYsicZUFhdze9ZbiKm9aQfY1qoUqK+CKdRdllcSg8XKbOBWGM5ALRygzwr0Vs5waysDtfOCGEN798n1y9mkcfhnv/vg8Ojzpx7GO3qIttI1CtIcO0TE6RRPEvAOPedIr/O9+7mv/siv1vb5nE92C/+sfOsnf1Q==</latexit>

⇢⌫ =
Y

{k,s}

h
(1� hnik,s) |0ik,s h0|k,s + hnik,s |1ik,s h1|k,s

i
Ex. the cosmic neutrino background density matrix 

Integrating out the cosmic noise parameters: 
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i
Ex. the cosmic neutrino background density matrix 

This is analogous to the Lindblad formalism for spins/atoms in a photon bath

Integrating out the cosmic noise parameters: 



How does one measure  effects?N2

• Starting from 

•

•

•

• Starting from 

•

•

•

∏ | ⟩

⟨Jz⟩ = −
N
2

+ Nγ+t

δJz ≈ Nγ+t

SNR ≈ Nγ+t

∏ | ⟩

⟨Jz⟩ =
N2

4
(γ+ − γ−)t

δJz ≈ N /2

SNR ≈ N3/2 /2 |γ+ − γ− | t

vs

Net energy transfer, i.e ⟨Jz⟩

Product state easily prepared and 
may offer metrological advantage when the net rate is non-zero



Measuring net energy transfer for the CνB

• The KATRIN experiment measures the end point of tritium decay to 
determine the electron neutrino mass

• Can look for the CνΒ being absorbed by the tritium

• Sensitivity of KATRIN comparable to a much smaller spin sample prepared 
in the product state*

vs

to leading order inN
2. The expression labeled as “scattering” assumes Markovian evolution

under scattering-type interactions, which is the case for the neutrinos and the fermionic

DM considered in this work. The expression labeled as “absorption/emission” applies for

arbitrary coherence times for interactions exhibited by the SM photon, the axion and the

dark photon, neglecting spontaneous emission. For the axion, for instance, one finds

p+(t) = p�(t) =
2⇢DMN

2

3
p
⇡v

3

0
m5f2

a

Z
dk k4e

� k2

m2v20

2

4
sin

⇣
m+ k2

2m � !0

⌘
t/2

⇣
m+ k2

2m � !0

⌘
/2

3

5
2

, axion, (6.10)

where we have applied the RWA.

We note, incidentally, that perturbation theory breaks down for a Dicke state already

at times t & (N2
�±)�1.

This solution illustrates that the cancellation of the N2 e↵ects as suggested by Table 3,

partial or total, depends on the question we ask. If we inquire, for instance, “What is the

probability that a measurement of Jz will yield +1 after time t?”, we get the immediate

answer: “p+(t)”, which scales as N
2. This also means that starting from the Dicke state

|Di allows for measuring the excitation and de-excitation rates independently. Then for

|Di, a signal-to-noise ratio (SNR) of O(1) can be achieved in the time it takes to get one

event, i.e. t ⇠ (N2
�±)�1, a fact that is not captured by the naive observable hJzi.

Furthermore, we see that starting from |Gi and |P i, the SNR does not grow as fast,

as summarized in Table 3. For |Gi the scalings are well-known, but for |P i we see the

complete cancellation of N2 e↵ects when the net rate is zero. Here it is harder to find an

analogue of the probability to excite or de-excite the system, as we did in the previous

paragraph for |Di, because |P i is intrinsically noisy. Interactions still occur, however, so,

again, we see that a di↵erent observable is needed.

Nevertheless, energy exchange observables illustrate two important points. First, from

discussion regarding |Di, a significant metrological advantage can be gained even when

there is no net energy exchange. Second, the SNR for the |P i state grows with N
3/2.

Comparing when the SNR is O(1) for the |P i and |Gi states, we find that the |P i state

o↵ers a metrological advantage compared to the |Gi state, when
p
N�net/�+ > 1. For the

macroscopic samples used in axion DM detection experiments such as CASPEr [23, 24] or

QUAX [25, 26], if they are prepared and observed in the |P i state, they have a sensitivity

to a local C⌫B density which is a factor of:

Cboost ⇠ 2⇥ 1011
✓
10 cm

R

◆
3/2✓3⇥ 1022 cm3

ns

◆3/2✓
1000 sec

t

◆✓
103

Nshots

◆1/2

, (6.11)

larger than the SM prediction. In the equation above, we use the C⌫B rates as calculated

in sec. 3.1. While such values of Cboost are completely unphysical, they are comparable

to the ones achieved with current state-of-the-art neutrino experiments [27]. Observables

beyond energy exchange o↵er obvious improvements and this is what we discuss next.
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How does one measure  effects?N2

• Starting from 

•

•

•

• Starting from 

•

•

•

∏ | ⟩

⟨J2
z ⟩ =

N2

4
− (N2 − N )γ+t

δJ2
z = N3γ+t

SNR ≈ Nγ+t

∏ | ⟩

⟨J2
z ⟩ =

N
4

+
N2

4
(γ+ + γ−)t

δJ2
z ≈

N

2 2

SNR ≈ 2N |γ+ + γ− | t

vs

Diffusion on the bloch sphere, i.e ⟨J2
z ⟩

Product state sensitive to the sum of the rates when measuring ⟨J2
z ⟩



How does one measure  effects?N2

• Starting from 

•

•

•

• Starting from a Dicke state

•

•

•

∏ | ⟩

⟨J2
z ⟩ =

N
4

+
N2

4
(γ+ + γ−)t

δJ2
z ≈

N

2 2

SNR ≈ 2N(γ+ + γ−)t

⟨J2
z ⟩ =

N2

4
(γ+ + γ−)t

δJ2
z ≈

1
2

N2(γ+ + γ−)t

SNR ≈ 2 N2(γ+ + γ−)t

vs

Diffusion on the bloch sphere, i.e ⟨J2
z ⟩

Dicke state is hard to produce
Need a special quantum protocol to maximize the potential of these states



Final Thoughts

• Best bet: a squeezed state 

• Somewhere in between a product state and a Dicke state

• Preserves much of the good signal-to-noise ratio properties of the 
Dicke state

• Presently working on concrete protocol and experimental setup with S. 
Dimopoulos, M. Galanis, O. Hosten



Towards measuring superradiant interactions

Nuclear spin polarized sphere coupled to an LC circuit

Equivalent to the Tavis-Cummings Hamiltonian:

H = ωLCa†a + ω0Jz + gaJ+ + g*a†J−

 is the coupling between the spins and the circuitg = μf
ωLC

Vsolenoid

Can we apply  protocols that have worked at higher frequencies and different atomic systems 
to nuclear spins?

Some things are the same with cavities, some are not…



Towards measuring superradiant interactions
Phase magnification protocols

O. Hosten, M. Kasevich (2016)

2

The twisting echo protocol is shown in Fig. 1, where we
assume unitary dynamics. An ensemble is initialized in
the coherent spin state (CSS) |x̂i satisfying Sx|x̂i = S|x̂i
(Fig. 1a). Applying Htwist(�) = �S2

z for a time t yields

the entangled state | ei = U |x̂i, where U = e�i�S2
zt (Fig.

1b). To detect a rotation | ei ! Ry(�)| ei by a small
angle �, we attempt to undo the twisting by applying
Htwist(��). For � = 0, the final state U†Ry(�)U |x̂i is
identical to the original CSS. However, a non-zero angle
� (Fig. 1c) biases the Sz-dependent spin precession to
produce a large final value of hSyi (Fig. 1d). Measuring
Sy, by rotating the state and then detecting the popula-
tion di↵erence n" � n#, provides a sensitive estimate of
�.

twist untwistperturb

(a) (b) (c) (d)

FIG. 1. Twisting echo for entanglement-enhanced mea-
surement. Top row: The initial CSS |x̂i (a) evolves under
Htwist(�) into an oversqueezed state | ei (b). To detect a ro-
tation of | ei about ŷ by a small angle � (b!c), we amplify
the perturbation into a large displacement hS�

y i = GS� by ap-
plying Htwist(��) (c!d). Illustrated are Wigner quasiproba-
bility distributions for 2S = 30 atoms, with � = 1/S. Bottom
row: Cartoon depiction of the same steps, with blue flow lines
indicating twisting and untwisting.

The angular sensitivity is given by

�� =
⇥
�S�

y /@�hS�
y i
⇤
�=0

, (1)

where hS�
y i and �S�

y represent the mean and standard
deviation of Sy after the echo, and @� ⌘ d/d�. The
standard deviation for no rotation is ideally that of the
initial CSS, �S�=0

y = �SCSS =
p
S/2. To evaluate the

denominator of Eq. 1, we expand

hS�
y i = hx̂|U†e�i�SyUSyU

†ei�SyU |x̂i
= i�hx̂|[Sy, U

†SyU ]|x̂i+O(�2). (2)

to lowest order in �. We express Sy = (S+ � S�)/(2i) in
terms of raising and lowering operators S± and simplify

U †S±U = e�i�tS2
zS±e

i�tS2
z = S±e

i�t(±2Sz+1) (3)

to evaluate Eq. 2 using the generating functions in Ref.
[29]. We thus arrive at a dependence

⇥
@�hS�

y i
⇤
�=0

= S(2S � 1) sin

✓
Q

2S

◆
cos2S�2

✓
Q

2S

◆
(4)

of the final spin orientation on the perturbation �, where
we have introduced the ‘twisting strength’ Q ⌘ 2S�t.

The resulting metrological gain 1/[N (��)2] is plotted in
Fig. 2a as a function of Q for N = 103 atoms. At the
optimal twisting strength Qopt = 2S arccot(

p
2S � 2) ⇡p

N for N � 1, the echo protocol yields an angular sen-
sitivity

��min =
p
e/N. (5)

This sensitivity is very near the Heisenberg limit, despite
a ⇠

p
N -times shorter twisting evolution Qopt than re-

quired to reach a GHZ state (QGHZ in Fig. 2a). The
entangled state | ei at Qopt is oversqueezed (Fig. 1b),
allowing the echo to surpass the sensitivity �� / 1/N5/6

attainable by spin squeezing [17] under Htwist.
The twisting echo is highly robust against detection

noise (Fig. 2b), as the “untwisting” amplifies the spin
rotation signal by a factor of G ⌘ dhS�

y i/d(S�) 
p
N

(Fig. 1c-d). Concomitantly, the quantum noise returns
to the CSS level, so that adding Gaussian detection
noise �Smeas = ⇢�SCSS results in an angular sensitiv-
ity �� =

p
1 + ⇢2��min. Thus, even a measurement

that barely resolves a CSS, with atom number resolu-
tion �n = 2�Smeas ⇡

p
N , permits a sensitivity near

the Heisenberg limit. By contrast, measurement noise
significantly degrades the sensitivity attainable by direct
detection of non-Gaussian states: already at single-atom
resolution, the twisting echo outperforms direct detection
of a GHZ state (Fig. 2b).
In practice, the sensitivity �� may be degraded by

imperfect coherence of the one-axis twisting evolution.
To show that the twisting echo can provide a significant
benefit in realistic metrological scenarios, we analyze the
limitations due to dissipation in two implementations de-
signed to enhance atomic clocks: the method of cavity
feedback dynamics [19] demonstrated in Refs. [2, 20];
and the Rydberg dressing scheme proposed in Ref. [27].
Cavity-Mediated Interactions — The scheme for one-

axis twisting by light-mediated interactions [19–21] is
shown in Fig. 3a. Atoms in hyperfine states |"i, |#i are
coupled to an optical resonator mode with vacuum Rabi
frequency 2g, at large detunings ±� from transitions to
an excited state |ei. The dispersive atom-light interac-
tion shifts the cavity resonance frequency in proportion
to Sz, with @!c/@Sz = �/2, where � ⌘ 4g2/�. Thus,
driving the cavity at a detuning �C from the bare-cavity
resonance results in an Sz-dependent intracavity power.
The latter acts back on the atomic levels via the a.c.
Stark shift, yielding an Sz-dependent spin precession.
For small cavity shifts

p
N� ⌧ �C , the spin preces-

sion rate depends linearly on Sz, yielding one-axis twist-
ing dynamics. The sign of the twisting is controlled by
�C , while the strength depends on the average number
of photons p in the coherent field incident on the cavity:
Q = 2Sp�2d/(1 + d2)2, where d ⌘ 2�C/.
The light-induced twisting is accompanied by fluctu-

ations in the phase of the collective spin due to pho-
ton shot noise. These fluctuations are described by a

E. Davis, G. Bentsen, M. Schleier-Smith (2015)

Let the state squeeze, unsqueeze, magnify 
and measure when uncertainty is large



Conclusions

• Superradiant interactions can significantly boost interaction rates 
of cosmic relics like the CνB 

• Axion searches could be a stepping stone

• There are observables that are depend on excitation and de-
excitation rates, not just energy transfer

• This is just the beginning

(0.1 Hz vs 10−22 Hz)



Back-up slides



Summary of neutrino interaction rates for doubly 
inelastic processes

Normal mass hierarchy: Γnet and Γtotal

Inverted mass hierarchy: Γnet

Inverted mass hierarchy: Γtotal
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ns=3×1022 cm-3, and R=10 cm

Figure 7. Total and net rate of neutrino down- or up-conversion by scattering o↵ of a spin polarized
sphere of R = 10 cm. The spin-density is fixed to 3⇥1022 cm�3. The blue curve and dashed orange
curves depict the total and net rates for inverted neutrino mass hierarchy, respectively. Since the
optimal resonance frequency varies a lot depending on having up- or down-conversion, the green
curve depicts the total and net rate for normal neutrino mass hierarchy. For all curves, the heaviest
neutrino mass varies from left to right, from 0.1 eV to 0.05 eV.

come out with momentum higher than what they came in with, coherence is lost, and the

net rate is dominated by the de-excitation of the system.

Fig. 6 also shows the interesting feature that interaction with the C⌫B bath always

causes a positive energy transfer from the neutrino bath to the spin system, which is

unexpected. This is a direct consequence of this unusual out-of-equilibrium situation of

the Universe being populated by all three neutrino mass eigenstates, instead of just the

lightest one, which makes the ⌫heavy ! ⌫light possible.

How close !0 has to be chosen to !optimal is set by the maximum change in the average

kinetic energy of the neutrino during the scattering process that still allows for coherent

coupling to a structure of size R, i.e. �! ⇠ k⌫
m⌫R

. Just as before, the maximum net rate is

suppressed by roughly (k⌫R)�1 relative to the maximum total rate.

Varying the heaviest neutrino mass between 0.05 � 0.1 eV and considering both the

case of inverted and normal mass hierarchies for neutrinos, we plot in figure 7 the total and

net rates of the C⌫B scattering from a 10 cm electron spin polarized sphere as a function

of !optimal. For the inverted mass hierarchy case, the mass di↵erence between m1 and m2

is small enough that picking !optimal from eq. 3.8 insures coherence for many momentum

modes.

In the case of normal hierarchy, the mass splitting between m3 and m2 is so large

that !optimal can deviate significantly from eq. 3.8. This makes the overall total rates

significantly smaller than the previous case, and it makes the value of !optimal significantly

– 13 –



DM scattering
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Inelastic DM scattering from R=10 cm sphere with ns=3×1022 cm-3
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Effects of spin-spin relaxation

setup or target material in this work, the simple analytical argument that follows and the

corresponding scalings should be applicable in any system.

Local dephasing interactions arise in collections of spins because of local dipole-dipole

interactions between the spins. Very schematically, if two nearest neighbours are r apart,

there is an interaction energy �!int ⇡ gN
gN
r3 , where gN is the gyromagnetic ratio of the

each of the neighbours. For solid state systems, for instance, a few Å of separation yield

�!
�1
int ⇠ O(ms). This timescale is known as T2 in the literature [? ]. We focus on this

e↵ect in this Appendix and leave other e↵ects, such as spin-lattice relaxation, to upcoming

work of a concrete experimental setup [? ]. Since all spin-spin e↵ects are local, the scalings

that follow should also apply to any other form of spin-spin interactions.

Local dephasing interactions can be included in the master equation of the spin system:

⇢̇ � 1

2T2

X

↵

⇣
�
(↵)
z ⇢(t)�(↵)

z � ⇢(t)
⌘
, (6.1)

where the sum runs over all spins and �
(↵)
z is the usual Pauli operator of the spin ↵. We

have defined T2 such that
D
J̇x

E
= � 1

T2
hJxi, in accordance with the literature.

Neglecting all other terms in the master equation and at short times (to be defined

shortly) we can solve Eq. 6.1 perturbatively,

⇢(t) = ⇢(0) +
t

2T2

X

↵

⇣
�
(↵)
z ⇢(0)�(↵)

z � ⇢(0)
⌘
. (6.2)

The simplest way to see that dephasing e↵ects do not destroy cooperative e↵ects at

short times is to use |P i, since it can be analytically tractable. In this case, the solution

Eq. (6.2) becomes

⇢(t) =
1

2N

Y

↵


|gi hg|+ |ei he|+

✓
1� t

T2

◆
|ei hg|+

✓
1� t

T2

◆
|gi he|

�

↵

. (6.3)

Clearly, the state does not change appreciably as long as t . T2. This is the condition

that defines “short times” and where perturbativity is applicable. Dicke superradiance and

all superradiant interactions presented in this work rely on the coe�cients of |ei hg| and
|gi he| for the N2 enhancement. If we call these coe�cients c(↵)eg and c

(↵)
ge respectively, for the

atom ↵, superradiant excitation or de-excitation rates are proportional to
P

↵

P
� c

(↵)
eg c

(�)
ge '

N
2(1� 2t/T2) to leading order in N

2 and t/T2. Thus, dephasing only a↵ects superradiant

interactions after time ⇠ T2, without any / N enhancements. While carrying out the

computation in |Di is harder analytically, it is simple to show that same scaling with N

will persist.

As a matter of fact, it is well-known that dephasing is not accelerated when the system

is in |P i, since T2 is measured by spin-echo experiments done on the equator [? ]. Here

we also proved that the state is not altered appreciably to negate the N
2 e↵ects as long as

the experiment is run for times t . T2.

– 20 –

Local dephasing effects due to spin-spin dipole interactions

Dephasing timescale, , can vary from  in solids and liquids, respectively T2 ms to 1000 s

Can be shown that there is no cooperative enhancement for  

Dephasing affects the evolution of the system after 

T2

T2


