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Introduction-I

• We shall address aspects of the following problems:

♠ Holographic interfaces between two QFTs and holographic defects.

♠ The notion of “proximity” in QFT.

♠ The dynamics of QFTs on AdS space.

♠ Euclidean wormholes.

• As we shall see there are important connections between these problems.
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QFT on AdS

• This problem was first seriously adressed by Callan and Wilczek in 1990.

• Their interest was in IR physics.

• Their motivation were the IR divergences that plagued QCD perturbation

theory and which made perturbative calculations hard to control.

• The important property of AdS space for this purpose was that even

massless fields, had propagators that vanished exponentially as large dis-

tances, like massive fields in flat space.

• The reason is that the Laplacian and other relevant operators have a gap

in AdS.

• On the other hand, unlike the sphere, AdS has infinite volume.
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• Generically speaking,AdS is expected to ”quench” strong IR physics.

• An extra ingredient is that the QFT on AdS must realize the AdS sym-
metry that is like conformal invariance in one-less dimension.

Callan+Wilczek

• The structure of instantons is also expected to be different:

♠ In flat space, in QCD we expect to have an instanton liquid rather than
a (dilute) instanton gas.

Witten

♠ Above the deconfinement phase transition, we expect an instanton gas
instead.

• In AdS an instanton gas is generically expected.
Callan+Wilczek

• Chiral invariance for fermions is broken by boundary conditions in AdS.

• An important ingredient for QFT in AdS: boundary conditions.

QFT on AdS, Elias Kiritsis
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A confining gauge theory on AdS4

• There are two types of boundary conditions: electric (Dirichlet) and

magnetic (Neumann)
Aharony+Marolf+Rangamani

♠ With electric: gluons are allowed in AdS, they are gapped, and there

is an SU(N) global symmetry at weak coupling. Only boundary currents

possible.

♠ With magnetic: electric charges are not allowed in bulk, there are O(1)

degrees of freedom, and there is confinement (imposed by the bcs).

• For asymptotically free gauge theories with Dirichlet boundary conditions

a confinement/deconfinement phase transition is expected
Aharony+Berkooz+Tong+Yankielowicz

♠ ΛLAds ≫ 1 Confining phase.

♠ ΛLAdS ≪ 1 Deconfined phase.
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• With magnetic boundary conditions one expects confinement at all scales,

and a free energy of O(1). This is a kind of trivial confinement as no electric

charges are allowed in the bulk.

• Wilson loops do not provide an easy criterion for confinement, as for

large Wilson loops, the area and the perimeter scale the same way, in

global coordinates.

• It is possible that subleading differences may tell the difference.

• But in Poincaré coordinates there are two classes of loops with different

behavior for length and area.

• However QFT on AdS in different coordinates gives rise to a different

quantum theory.

QFT on AdS, Elias Kiritsis
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Interfaces

CFT on half 
Minkowski

CFT on half 
Minkowski

• We may do a conformal transformation on each of the pieces to map it
to AdS in Poincaré coordinates with the boundary at the interface.

dy2 − dt2 + dxidxi →
dy2 − dt2 + dxidxi

y2

• Clearly the two boundaries touch on the interface.

• If the interface is conformal, we expect a O(d,1) symmetry. This will be
realized geometrically in the holographic solution

QFT on AdS, Elias Kiritsis
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The holographic picture

• A natural (d+1)-dimensional metric anzatz for the ground state of a

QFTd on AdSd is

ds2 = du2 + e2A(u)ζµνdx
µdxν (1)

where ζµν the unit radius AdSd metric.

• The asymptotics of eA near the boundary u → −∞ control the source for

the radius of the AdSd slice metric.

• Any QFT on AdSd has the symmetry of AdSd: O(1,d).

• If the theory is also scale invariant the symmetry enhances to O(1,d+1)

and in this case the bulk solution is global AdSd+1, sliced with AdSd slices

and

eA = cosh
u

ℓ
, −∞ < u < +∞

• This is a non-monotonic scale factor.
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• In such a case the metric has two (apparent) AdS boundaries. One, B+,

at u = −∞ and another B− at u = +∞.

• The metric is locally AdS, and can be mapped to global AdS by a (large)

diffeomorphism.

• In the Euclidean case, the two boundaries are isomorphic to Bd
± and they

intersect at the equator forming the single boundary Sd−1 of AdSd.

CFT on a 
hemisphere

CFT on a 
hemisphere

• In the bulk AdS case, corresponding to a CFT on AdSd, the gravitational

solution is interpreted as two copies of the (same) CFT:
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one on B+ ∼ AdSd and the other on B− ∼ AdSd.

• However, we may turn on more fields and in general the two UV CFTs

can be different.

• In Poincaré coordinates for the slices this configuration corresponds to

two theories on Rd
+ with an interface between them.

QFT on AdS, Elias Kiritsis
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Wormholes versus interfaces

• The general case with scalar operators (and RG flows) turned on and

with the asymptotic metric a general negative constant curvature manifold

Mζ with metric ζµν is still described by the ansatz

ds2 = du2 + e2A(u)ζµνdx
µdxν (2)

with

R(ζ)µν = −
d− 1

L2
ζµν

while other fields, (like scalars) can change continuously between −∞ <

u < +∞.

• Such a (regular) solution to the gravitational equations has always two

boundaries at B± at u = ±∞, iff the scalars remain finite.

• The interpretation of the solution depends on the nature of the negative

curvature Einstein manifold Mζ with metric ζ.
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• If the negative curvature manifold Mζ is compact (g > 2 Riemann surface

in d = 2 or Schottky manifolds in d > 2) then the solution describes a

wormhole with negative curvature slices.

CFT  
on AdS

CFT  
on AdS
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• When the slices are full AdSd spaces in global coordinates then the dual

describes the interface between two QFTs interacting via their common

boundary

CFT on a 
hemisphere

CFT on a 
hemisphere

QFT on AdS, Elias Kiritsis
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Proximity in QFT

• One possible definition of the notion of proximity among CFTs is : can
QFT1 and QFT2 live in the same Hilbert space?

• If there is flow connecting CFT1 to CFT2 we can claim that the two
theories can live in the same Hilbert space.

• Proximity can be defined in terms of the possibility for two theories to
share an interface.

• They may be generating a bulk brane or
Takayanagi

• They may be like Janus interface geometries.
Bak+Gutperle+Hirano, + many others

QFT on AdS, Elias Kiritsis
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The AdS-sliced RG flows

• There is a third class of interesting problems associated to QFT in a

non-dynamical AdS geometry.
Polchinski, Giddings, Fitzpatrick+Katz+Poland+Simons-Duffin,

Paulos+Penedones+VanRees+Vieira,Mazac+Paulos,

Carmi+DiPietro+Komatsu,Giombi+Kachandani,Cordova+He+Paulos,

Gadde+Sharma,Ciccone+De Cesare+Di Pietro+Serone

• The S-matrix of this theory is mapping to the correlators of a (non-local)

CFTd−1.

• Bulk crossing symmetry maps to boundary bootstrap constraints.

• This has a contact point with the talk of K. Skenderis.

• I will not discuss further these issues here.

QFT on AdS, Elias Kiritsis
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The AdS-sliced RG flows

• We assume an Einstein-dilaton theory in order to simplify our explorative

task.

SBulk = Md−1
P

∫
du ddx

√
−g

(
R−

1

2
gab∂aΦ∂bΦ− V (Φ)

)
.

ds2 = du2 + e2A(u)ζµνdx
µdxν, Φ = Φ(u)

• The slice is a manifold Mζ whose metric ζ is any (constant) negative

curvature Einstein metric.

R
(ζ)
µν = κζµν , R(ζ) = dκ , κ = −

(d− 1)

α2
.

• The solution is characterized by the scalar field profile Φ(u) and by the

scale factor A(u), which are related via the bulk Einstein equations.

• We systematically study the solutions to these equations for R(ζ) < 0.

• The regular solutions have generically two boundaries B± at u = ±∞.
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• Both boundaries are conformal to Mζ.

• The end-points are at (finite) maxima Φ± of the bulk potential V (Φ).

• Every solution (A,Φ) to these equations corresponds to:

♠ A wormhole solution if Mζ is compact. It connects CFT+ at B+ to

CFT− at B−.

♠ An interface solution if Mζ is non-compact. The interface B+ ∪ B− is

between CFT+ and CFT−.

QFT on AdS, Elias Kiritsis
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The first order formalism

• We define the “superpotentials” (no supersymmetry)

Ȧ ≡ −
1

2(d− 1)
W (Φ) ,

Φ̇ ≡ S(Φ) ,

♠ A-bounce is a point where Ȧ = 0 → W = 0. It always exists when the
slice curvature is negative and Φ does not run to infinity.

♠ Φ-bounce is a point where Φ̇ = 0 → S = 0.

QFT on AdS, Elias Kiritsis
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Classifying the solutions, Part I

• We pick d = 4 and a generic quartic potential
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• It has two maxima (Φ = 0,Φ2 = 8.34) and a minimum (Φ1 = 4.31).

• The two parameters (Φ0, S0) ∈ R2 are the complete initial data of the

first order system.

QFT on AdS, Elias Kiritsis
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The space of solutions
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Confining Theories on AdS

• In a single scalar setup, the confining solutions are solutions where the
scalar runs off to infinity.

• These are singular solutions (naked singularities)

• But one out of the one-parameter family of solutions is ”less” singular.

• This corresponds to a resolvable singularity and can be resolved by KK
states.

Gubser: the good, the bad and the naked

• Such solutions correspond to confining ground states in flat space.

• All of their aspects (with flat slices) have been studied extensively in the
past.

• In the case of AdS slices new phenomena appear. Unlike non-confining
theories , there is an infinite number of solutions with a single AdS boundary.

QFT on AdS, Elias Kiritsis
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Confining Theories on AdS-The setup

• We study Einstein Dilaton theory with a potential.

• We parametrize the boundary behavior of the potential (as Φ → +∞), as

V ≃ −V∞e2aΦ + · · · ,

where V∞ and a are two positive constants.

• The non-confining range:

0 ≤ a < aC ≡
√

1

2(d− 1)
.

• The confining range:

aC < a < aG ≡
√

d

2(d− 1)
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• The Gubser-violating range:

a > aG

• We are interested in the confining range.

• We choose a simple potential with the required asymptotics and a single

maximum.
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• The theory sitting at the maximum is the UV of the confining QFT.

16-



• With flat metric slices, that solution runs from the maximum to Φ → +∞
via a ”regular” solution and this is the confining ground-state on flat Rd.

• We now consider solutions with AdSd slices.

• There are three classes of ”regular” solutions

♠ Two-boundary Solutions: They start at Φ = 0 (boundary) and end at

Φ = 0 (boundary). These are interface solutions of confining theories.

♠ One-boundary solutions: They start at Φ = 0 (boundary) and end at

Φ = ±∞ (IR-end point). These are dual to confining theories on AdSd.

♠ No-boundary solutions: Start at Φ = −∞ and end at Φ = +∞ or start

at Φ = −∞ and return back to Φ = −∞. Interpretation?

QFT on AdS, Elias Kiritsis
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Confining Theories on AdS-The space of solutions
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Confining Theories on AdS-Critical solutions

QFT on AdS, Elias Kiritsis
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relation to sources
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R, the dimensionless curvature, for UV-Reg solutions. All figures are plotted as a function of the free

parameter S(1)
∞ . In each graph, the green region belongs to the regular solutions without A-bounce and the

blue region to solutions with at least one A-bounce. In the red region, we have solutions without boundary.

The vertical dashed line in figure (a) corresponds to the global AdS solution in the uplifted theory and the

product solution is the solution right before the blue-red boundary.
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(a): The free

energy for UV-Reg solutions living on the black curves. The vertical red lines show the location of

Φ-bounces.
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value for which we have the UV-Reg solution with infinite numbers of loops. The vertical red lines show
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The free energy
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(a): Free energy in terms of dimensionless curvature. The green/blue curves correspond
to the green/blue region in previous plots. Figure (b) is the zoomed region near F = 0.

The vertical red line shows for R ≳ −7.7 only solutions without A-bounce exist.

• The solution with no oscillations has the lowest free energy.

• Is there Efimov scaling here?

QFT on AdS, Elias Kiritsis
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Two-boundary saddle points

• Similarly, the free energy can be calculated for the two-boundary solutions
dual to holographic interfaces.

• In this case, the free energy depends on the data of both theories

• There is always competition from the factorized solutions.

• The factorized solutions have lower-free energy always.

• ⇒ cross-correlators are exponentially suppressed in N at tree level.

• The physics of this result is not clear to us.

QFT on AdS, Elias Kiritsis
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F-functions

• We define

F = Ȧ2 −
R(ζ)

d(d− 1)
e−2A =

1

d(d− 1)

(
−V +

Φ̇2

2

)
≥ 0

• We compute

Ḟ = −
1

d− 1
ȦΦ̇2 ,

dF

dA
= −

Φ̇2

d− 1
≤ 0

• As long as A is monotonic, then F is monotonic.

• In the AdS regime, V < 0, therefore F never vanishes.

• Near a boundary

Ȧ2 =
1

ℓ2
, A → ∞

and therefore F is proportional to the central charge of the respective

CFT.
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• Near a boundary all dnF
dun vanish exponentially.

• When the slice curvature is zero, F interpolates between two finite values
related to the central charges ⇒ C-theorem.

• When the theory is confining FIR → +∞ compatible with a mass gap.

• When the slice curvature is positive (sphere or de Sitter) F starts at a
constant in the UV and diverges on the IR.

• This is again compatible with a C-theorem as now the theory is gapped
(no IR degrees of freedom).

• F is extremal when Ȧ = 0 (A-bounces) or Φ̇ = 0 (Φ-bounces).

• A Φ-bounce is an inflection point of F (u). The monotonicity is preserved.

• An A-bounce is a maximum or minimum of F .

• At a single A-bounce (interface) Fmax ∼ e−2Amin and is related to the
(left) entanglement entropy associated in 2d to ceff .

Karch+Kusuki+Ooguri+Sun+Wang
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Confining Potential Solution 4: A Regular-UV solution with many A-bounce and Φ-bounces.
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Conclusions

• We have studied (RG) flow solutions with slices that have constant

negative curvature manifolds.

• Such solutions have generically two boundaries and can be interpreted

as wormholes or interfaces.

• In confining theories there are also one-boundary solutions.

• We have analysed in detail several types of examples.

• The results suggested that proximity is close to RG Flow connection but

its reach is more general.

• We found also many limiting cases where one obtains all possible exotic

RG flows.
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• Other phenomena found include flow (multi)-fragmentation, walking

behavior, and the generation of new boundaries.

• Only in confining examples there are genuine one-boundary geometries.

• We have found an infinite number of saddle points in confining theories

on AdS.

• We DID NOT find a phase transition as a function of curvature. This

suggests that such solutions correspond to confining theories with magnetic

boundary conditions. No SU(N) global symmetry is visible.

QFT on AdS, Elias Kiritsis
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Open Ends

• The case of constructing a single non-confining holographic theory on

AdS is still open.

• The study of interface correlators is an open problem.

• The Wilson loops of QFTs on AdS are currently under study, especially

considering the fate of confinement.

• The fate of the instanton gas in AdS can be studied with holographic

methods.

• Entanglement in single theories as well as interfaces is interesting to

compute and decipher.

QFT on AdS, Elias Kiritsis
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THANK YOU!
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(Holographic) Conformal Defects

• Consider a D-dimensional flat-space QFT, and a d < D-dimensional lo-

calized (flat-space, non-dynamical) defect.

• This provides a transverse O(D − d) symmetry in the theory.

• Consider also the possibility that the defect is conformal: The associated

symmetry is O(d+1,1) and commutes with O(D − d).

• If there is a holographic realization of this, then the geometry should

realize the O(d+1,1)×O(D− d) symmetry. It should therefore contain an

AdSd+1 × SD−d−1 manifold.

• The ground state of such holographic conformal defects, will be described

by a conifold metric with AdSd+1 × SD−d−1 slices.
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• The boundary of such solutions has several components:

♠ One is the boundary of the total space, and this is conformal to

AdSd+1×SD−d−1, which is also conformal to flat space, Rd.

♠ There is another piece of the boundary, namely the union of the bound-

aries of the AdSd+1 slices. Insertions on that boundary correspond to defect

operators.

• Conifold solutions over AdSd×Sn corresponding to conformal defects of

flat space holographic CFTs have been thoroughly studied.
Ghodsi+Kiritsis+Nitti
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They have two possible interpretations:

♠ As a holographic CFTd+n on AdSd×Sn.

♠ As a (d-1)-dimensional defect in a D = d+ n-dimensional CFT.

• This dual interpretation is compatible as the transverse radial distance to

the defect can act as a RG scale.

• In the same vain, Rd+n is conformal to AdSd×Sn

• Unlike the case of interfaces, the scale factors are always monotonic.

• The conformal interface corresponds to d = D − 1 and the remaining

symmetry is realized by AdSD. Also S0 has two points and corresponds to

the two sides of the interface.

QFT on AdS, Elias Kiritsis
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Conformal Theories on AdS

• The prime example, N=4 SYM was analyzed in some detail.
Gaiotto+Witten,Aharony+Marolf+Rangamani, Aharony+Berdichevsky+Berkooz+Shamir

• Boundary conditions on R4
+ that preserve supersymmetry have been clas-

sified, and there are many.
Gaiotto+Witten

• Upon a conformal transformation the theory can be put on AdS4 in

Poincaré coordinates.

• Dirichlet bc generically involve non-trivial vevs for three of the six scalars.

• At weak coupling the theory is generically non-confining.

• But at strong coupling some boundary conditions induce confinement.
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• For example, using S-duality, the g >> 1 theory with a Higgs condensate

is mapped to a g << 1 theory with a magnetic condensate that should be

confining.

• In particular, S-duality interchanges (among others) Dirichlet and Neu-

mann bc.

• With Neumann bc no order parameter exists that distinguishes a confining

from a non-confining phase.

• Therefore, no sharp transition is expected in accordance with the large

susy.

QFT on AdS, Elias Kiritsis
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The bulk Einstein Equations

• The solution is characterized by the scalar field profile Φ(u) and by the

scale factor A(u), which are related via the bulk Einstein equations.

2(d− 1)Ä+ Φ̇2 +
2

d
e−2AR(ζ) = 0

d(d− 1)Ȧ2 −
1

2
Φ̇2 + V − e−2AR(ζ) = 0

Φ̈+ dȦΦ̇− V ′ = 0 ,

QFT on AdS, Elias Kiritsis
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The first order formalism

• We define the “superpotentials” (no supersymmetry)

Ȧ ≡ −
1

2(d− 1)
W (Φ) , Φ̇ ≡ S(Φ) , R(ζ)e−2A(u) ≡ T (Φ) .

• The equations of motion become

d

2(d− 1)
W2 + (d− 1)S2 − dSW ′ +2V = 0 ,

SS′ −
d

2(d− 1)
SW − V ′ = 0 .

• Once a solution is found we can evaluate

T (Φ) =
d

4(d− 1)
W2(Φ)−

S(Φ)2

2
+ V (Φ)

QFT on AdS, Elias Kiritsis

29



The bulk integration constants vs QFT parameters

• When Rζ > 0 the flows describe spaces with a single boundary dual to a

single QFT with a relevant coupling.

• The bulk equations have three (dimensionless) integration constants.

• One corresponds to the dimensionless curvature R.

• The second corresponds to the (dimensionless) scalar vev. It must be

tuned for regularity.

• The third is not physical as it can be removed by a radial translation.
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♠ In the first order formalism the (W,S) equations have two integration

constants: one is R, and the second is the scalar vev. The scalar vev is

tuned in terms of R regularity.

• Then T is determined uniquely and from it we determine A(Φ).

• The first order equation for Φ has one more integration constants.

• This integration constant is trivial and is not a parameter of the dual

theory (it is the relevant scale).

• In total, in both cases there is a free arbitrary constant R and the second

(vev) is a function of R.

QFT on AdS, Elias Kiritsis
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The bulk integration constants again

• The number of integration constants in the bulk equation is the same(3).

• Here, there is no regularity condition. The solutions are generically reg-
ular. Therefore, the scalar vev is an independent parameter and does not
depend on R.

• One constant is always redundant as usual.

• All parameters at the second boundary are determined from the solution,
evolved from the first boundary.

• Overall our two-boundary solutions depend on two dimensionless inde-
pendent parameters.

• This is one less from the three we would expect in the general case: Ri,f
and ξ.

♠ We shall recover the extra missing parameter by generalizing our solutions
later.

QFT on AdS, Elias Kiritsis

31



Classification of complete flows

♠ R = 0. All flows start and end at extrema of the potential.. They have

a single AdS boundary.

• (Max−,Min−). This is the generic relevant flow driven by a relevant

operator.

• (Max+,Min−). This is a flow driven by the vev of a relevant operator.

• (Min+,Min−). This is a flow driven by the vev of an irrelevant operator.

♠ R > 0.

• In this case, although flows can start at extrema of the potential, (both

maxima as Max± and minima as Min+), they always end at intermediate

points, not at extrema.

• The end is always an IR end-point where the slice volume vanishes.
32



♠ R < 0.

• It is not possible for a flow to be regular and end at intermediate points
(non-extrema of the potential), ( there is no slicing of flat space with AdS
slices).

• Therefore, all regular flows must start and end at extrema of the potential.

• As the asymptotic solution Min− does not exist when R ̸= 0, we have in
total the following 3× 3 = 9 options,

(Max− , Max+ , Min+) ⊗ (Max− , Max+ , Min+)

all of them having two AdS boundaries.

• (Max−,Max−), (Max+Max+).

• (Max−,Max+) and its reverse (Max+,Max−).

• (Max−,Min+) and its reverse, (Min+,Max−).

• (Max+,Min+) and its reverse, (Min+,Max+)

• (Min+,Min+).
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• As mentioned the Max+ and Min+ asymptotics are fine-tuned (they have

half the adjustable integration constants).

• Therefore the generic solutions will be of the (Max−,Max−) type.

• Single fine-tuning of the potential or the integration constants is needed

for the (Max−,Max+) and (Max−,Min+) solutions to exist.

• Double fine-tuning is needed for (Max+,Max+), (Max+,Min+) and

(Min+,Min+) to exist.

• We shall find examples of all types fine-tuned or not except the

(Min+,Min+) solutions.

• The reason is that we have a potential with only one minimum.

QFT on AdS, Elias Kiritsis
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Classifying the solutions, II

• We picked d = 4 and a generic quartic potential that we parametrized as

V (Φ) = −
12

ℓ2L
+

∆L(∆L − 4)

2ℓ2L
Φ2−

(Φ1 +Φ2)∆L(∆L − 4)

3ℓ2LΦ1Φ2
Φ3+

∆L(∆L − 4)

4ℓ2LΦ1Φ2
Φ4,

where Φ1 and Φ2 are defined as

Φ1 =
12ℓ2R

√
ℓ2R − ℓ2L∆L(∆L − 4)√

ℓ2R∆L(∆L − 4)− ℓ2L∆R(∆R − 4)
(
ℓ2R∆L(∆L − 4) + ℓ2L∆R(∆R − 4)

)

Φ2 =
12
√
ℓ2R − ℓ2L√

ℓ2R∆L(∆L − 4)− ℓ2L∆R(∆R − 4)
.
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• The left maximum is at Φ = 0. The AdS length is ℓL = 1 and the scaling

dimension ∆L = 1.6.

• The right maximum is at Φ = 8.34. The AdS length is ℓR = 0.94 and

the scaling dimension ∆R = 1.1.

• The minimum is located at Φ1 = 4.31. It has ∆min
+ = 4.37.
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• “Technical” definitions:

♠ A-bounce is a point where Ȧ = 0 → W = 0. It always exists when the

slice curvature is negative.

• Our solutions will have a single A-bounce. We shall denote its position

by Φ0.

♠ Φ-bounce is a point where Φ̇ = 0 → S = 0. It is a point where the first

order equations break down but the second order equations do not.

♠ An IR-bounce is a point where both Ȧ = Φ̇ = 0.

• All bounces are defined AWAY from extremal points of V.
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• We always start our solution at the (unique) A-bounce at Φ = Φ0 and
we solve the first order equations

d

2(d− 1)
W2 + (d− 1)S2 − dSW ′ +2V = 0 ,

SS′ −
d

2(d− 1)
SW − V ′ = 0 .

• We only need an extra “initial” condition: S0 ≡ Φ̇|Φ=Φ0
≡ S(Φ0).

• The two parameters (Φ0, S0) ∈ R2 are the complete initial data of the
first order system.

• For each pair (Φ0, S0) there is a unique solution.

• We then start solving the equations to the left and right of Φ0 until we
reach an AdS boundary on each side. Then our solution (W,S) is complete.

• We then solve the equations for Φ, A.

R(ζ)e−2A(u) =
d

4(d− 1)
W2(Φ)−

S(Φ)2

2
+ V (Φ) , Φ̇ = S

QFT on AdS, Elias Kiritsis
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The QFT couplings

• At each boundary, initial or final the metric asymptotes to Mζ and the

only parameter (source) is its curvature, Ri,f .

• The scalar will also have sources at the two boundaries:

Φ(u) → Φ(i)
− , u → −∞,

Φ(u) → Φ(f)
− , u → +∞,

• Therefore, we have four dimensionful couplings: Ri,f , Φ(i,f)
− .

• As the overall scale is irrelevant, the pair of theories is characterized by

three dimensionless numbers which we take to be:

Ri =
RUV
i(

Φ(i)
−

)2/∆i
−
, Rf =

RUV
f(

Φ(f)
−

)2/∆f
−
, ξ =

(
Φ(i)

−

)1/∆i
−

(
Φ(f)

−

)1/∆f
−

QFT on AdS, Elias Kiritsis
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Three parameter solutions

• So far our ansatz missed one dimensionless parameter

• To recover it we modify it to:

A =


Ā(u) u < u∗

Ā(ũ− δ) u∗ + δ < ũ < +∞
,

Φ =


Φ̄(u) u < u∗

Φ̄(ũ− δ) u∗ + δ < ũ < +∞
,

• This satisfies the Israel conditions at u = u∗ and A,Φ and their derivatives
are continuous.

RUV
i = R̄UV

i , Φi
− = Φ̄i

−, RUV
f = e2δ/ℓR̄UV

f , Φf
− = eδ∆

f
−/ℓΦ̄f

−

QFT on AdS, Elias Kiritsis
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(a): The holographic coordinate at top UVL tends to −∞ and at bottom UVL to +∞.

(b): The scale factor has an A-bounce at Φ0 = 3.5 (blue dashed line) and a Φ-bounce at

Φ = 4.0 (red dashed line).
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WLL
1,2
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(a): The space of the WLL
1,2 solutions is the upper blue region. The black dot represents the

specific solutions of the diagram (b). The lower blue region corresponds to the solutions

with an extra Φ-bounce near the bottom UVL. (b): The blue and red curves for W,S,

describe an RG flow that connects the UVL fixed point to itself but after two Φ-bounces.

The location of the Φ-bounces are indicated by red dashed lines.
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(a): The holographic coordinate at top UVL boundary tends to −∞ and for bottom UVL

to +∞. (b): The scale factor has an A-bounce at Φ = 2.0, the blue dashed line. The

first Φ-bounce on the left occurs at Φ = −0.62 and the second one at Φ = 2.48, the red

dashed lines.
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WLR
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(a): A zoomed picture of the space of the WLR
1,1 solutions. The black dot represents the RG

flow in the diagram (b). (b): The RG flows of type WLR
1,1 are between the UVL boundary

and UVR. There is a Φ-bounce at Φ < 0, the red dashed line. Notice that the red region

at S0 < 0 in figure (a) is the space of solutions with an extra Φ-bounce near UVL but at

W < 0.
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(a): The holographic coordinate at UVL boundary tends to −∞ and at UVR to +∞. (b):

The scale factor has an A-bounce at Φ0 = 3.5, the blue dashed line. A Φ-bounce occurs

at Φ = −0.64, the red dashed line.
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A (3,3) (A-bounce,Φ-bounce) solution
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(a): An example of a multi-Φ-bounce solution, WLL
3,3 . The solid line is W (Φ) and dotted

line is S(Φ). In this case an RG flow connects two UV boundaries on the left UV fixed point
after three Φ-bounces. Unlike the previous cases the geometry here has three A-bounces.
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(b)and (c) show the behavior of holographic coordinate and scale factor in terms of Φ.
Figure (d) is the magnification of the bottom of figure (c). It shows that there are three
A-bounces for this RG flow.
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(e): The roots of Q̇

Q(u) =
1

2
Φ̇2 − V ≥ 0 , Q̇ =

d

2(d− 1)
WS2 .

shows the location of Φ-bounces where the color of the graph is changed and location of
A-bounces where the blue part of the curve crosses the u axis.

QFT on AdS, Elias Kiritsis

39-



The behavior of relevant couplings
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(a) Space of solution with its boundaries. (b) and (c): The behavior of Ri and Rf at

boundaries. (d): The ratio of two relevant couplings, ξ, at boundaries.

QFT on AdS, Elias Kiritsis

40



The a3 ∪ a4 solution: triple fragmentation
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Along the fixed line Φ0 = Φ1 i.e. the minimum of the potential, if we decrease the value

of S0 down to zero, gradually the dashed curves in all figures above move toward the solid

curves. In above curves the dashed curves have S0 = 0.5 and the solid ones S0 = 0.01.
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Interface correlators

• The picture of overlapping boundaries in AdS-sliced flows is ”singular”.

u

Ξ

u = +¥

u = -¥

z

x

Relation between Poincaré coordinates (x, z) and AdS-slicing coordinates (ξ, u). Constant u curves are half

straight lines all ending at the origin (ξ → 0−); Constant ξ curves are semicircle joining the two halves of the

boundary at u = ±∞.
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• The regular picture contains three boundaries:

♠ Two of them (B1,2) are at u = ±∞.

♠ There is a third boundary, B3, for all values of u that contains the

boundaries of AdS slices.

ξ ϵ

z ϵ
z

x B2

B1

B3

ξ

θ

u Λf

u -Λi

u = cte
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• For a well-defined variational problem apart from the GH term on B1,2,3

one needs to add the Hayward term at the two corners, B1∪B3 and B2∪B3.

SH =
1

8πGN

∫
dd−1x

√
−harccos(n.ñ)

• Correlators of insertions at the B1,2 boundaries are done the same way

as in standard AdS.

• Calculating correlators on the interface is problematic.

• We could not find a universal form of counterterms on a shifted boundary

that removes all divergences from interface correlators.

• This is an open problem.

QFT on AdS, Elias Kiritsis
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Details of the confining potential

We consider the following scalar potential

V (Φ) = −
d(d− 1)

ℓ2

(
bΦ2 + cosh2(aΦ)

)
, b =

∆(d−∆)

2d(d− 1)
− a2 . (3)

As Φ → ±∞, the above potential diverges as

V (Φ) → −
d(d− 1)

4ℓ2
e±2aΦ , (4)

where we assumed that a < aG, the Gubser’s bound.

This potential has a maximum at Φ = 0 (UV fixed point) and near this

point, it can be expanded as

V (Φ) = −
d(d− 1)

ℓ2
−

1

2
m2Φ2 +O(Φ4) , m2 =

∆(d−∆)

ℓ2
. (5)

ℓ determines the length scale of asymptotically AdS solutions, ∆ determines

m2 and is the scaling dimension of the operator dual to the scalar Φ near

43



the UV fixed point. a determines the asymptotic behavior of the potential

(confinement or deconfinement).

For the numerics we fix the constants of the theory as follows

d = 4 , ∆ =
3

2
, ℓ = 1 , a =

√
7

24
, b = −

13

96
. (6)

For the specific choice d = 4 we have

aC =
1√
6

, aG =
2√
6
, (7)

-3 -2 -1 1 2 3
�

-70

-60

-50

-40

-30

-20

-10

V(�)

QFT on AdS, Elias Kiritsis

43-



Vevs

-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
0

10

20

30

40

50

S
�

1

|φ-|

44



-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0

-200

-100

0

100

200

S∞
1

C

44-



-1.4 -1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0
0

20

40

60

80

100

120

140

S∞
1

ℬ

44-



Φ− the coupling of operator O at the UV boundary and C parameter of the

UV boundary for UV-Reg solutions. All figures are plotted as a function of

the free parameter S
(1)
∞ . In each graph, the green region belongs to the

regular solutions without A-bounce and the blue region to solutions with at

least one A-bounce. In the red region, we have not solutions with boundary.

The vertical dashed line in figure (a) corresponds to the global AdS solution

in the uplifted theory and the product solution is the solution right before

the blue-red boundary. Figure (d) gives B which we need to compute the

free energy of the solutions.
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is the critical value for which we have the UV-Reg solution with infinite

numbers of the loops.
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Single boundary solutions

• To obtain a single boundary, one can orbifold a symmetric solution.
Aharony+Marolf+Rangamani

• This can be done in the class of solutions we called S. They have S0 = 0

and they are completely symmetric.

• We obtain the half space with u ∈ (−∞, u0).

• We can interpret such solutions by inserting an end-of-the-world brane at

u0.

• But because Ȧ = Φ̇ = 0 at u0, this brane is both tensionless and chargless.

• However, a look at correlators indicates that conformal invariance is

broken (For AdS-sliced AdS).

• In the two boundary case, we have four possible two-point functions ⟨OO⟩:
G++, G+−, G−+, G−−
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• The symmetric orbifold gives

G = G++ +G+− =
1

2∆

[
1

(coshL− 1)∆
+

1

(coshL+1)∆

]

coshL = 1+
(z − z′)2 + |x− x′|2

zz′

• The conformal correlator obtained from a Weyl transformation of flat

space is the first piece only.

• This may be due to the fact that most boundary conditions break con-

formal invariance.

• If instead we insert a brane at u = u0 and impose Dirichlet bc we obtain

a similar result with a relative minus sign. (The orbibold corresponds to

Neumann)

• Are there bc on the brane so that we obtain a conformal correlator?

• Yes, but they are generically non-local on the brane.

QFT on AdS, Elias Kiritsis
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Proximity in QFT

• The notion of “proximity” in Quantum Field Theory is an intuitive notion.

• One possible definition of the notion of proximity among CFTs is : can

QFT1 and QFT2 live in the same Hilbert space?

• If there is flow connecting CFT1 to CFT2 we can claim that the two

theories can live in the same Hilbert space.

• Another was formulated by van Raamsdonk: the CFT masquerade,

mostly relevant for CFT duals.

”When the states of CFT1 can be approximated by CFT2?”

or

”Can a suitably chosen state of CFT1, faithfully encode the space-time

dual to a state of CFT2?”

46



or

”Can two theories with different operator spectra describe the same bulk
geometry?”

• Van Raamsdonk gave simple solvable examples where the two CFTs are
interfaced by a bulk brane.

• This notion is very close to the RG connection, as a continuous version
of this setup is a holographic RG flow.
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• Another example is theories that can share an inteface.

• They may be generating a bulk brane or
Takayanagi

• They may be like Janus interface geometries.
Bak+Gutperle+Hirano, + many others

QFT on AdS, Elias Kiritsis
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Asymptotics near potential extrema

• Regular solutions START AND END (generically) at extrema of the

potential.

• Near a maximum of the potential, there are two branches of solutions

known as the − and the + branch.

ℓ W± = 2(d− 1)−
∆±
2

(ϕ− ϕ0)
2 + · · ·

♠ The − branch contains the generic solutions that contain both source

and vev.

♠ The + branch contains only the special solution for which the source

vanishes (relevant vev-driven flow).

• For both types of solutions above, the metric has an AdS boundary at

the maximum.

• We denote these asymptotics as Max±.
47



• Near a minimum of the potential we also have the + and − branches of

solutions.

♠ The − branch contains the generic solution.

• It does not exist for non-zero slice curvature. It exists only for flat slices

and in that case it describes the IR-end of an RG flow.

♠ The + branch contains the special solution. The bulk metric has an AdS

BOUNDARY in this case

• The solution describes a UV fixed-point perturbed by the vev of an

irrelevant operator.

• In principle, it can exist for both flat and curved slices.

• We denote these asymptotics as Min±.
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• Max± and Min+ are associated to AdS boundaries and therefore to QFT

UV fixed points.

• Min−, to a shrinking slice geometry and therefore to an IR Fixed point.

• The + branch solutions, as they contain less integration constants, exist

only in fine-tuned cases.

• The Min− solution does not exist, when the (dimensionless) curvature of

the slice R ̸= 0.

QFT on AdS, Elias Kiritsis
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The region boundaries and tuned flows
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Flow fragmentation, walking and emergent

boundaries
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(a): An example of an RG flow between a maximum and a minimum. For the solid curves,

(Max−,Min+) is a flow between a UV fixed point at maximum Φ = 0 and another UV fixed

point at the minimum Φ = Φ1. For the (Max−,Min−) part of the solution, the minimum

is an IR fixed point. The dashed curves show the flipped image of the solid curves. The

black dotted curves are other possible RG flows with the same UV fixed points. (b): At

a fixed Φ0 when the value of S0 is exactly on the border of type WLR
1,0 and type WLL

1,1 , we

have the WLMin+

1,0 branch solution (the middle flow). If we increase or decrease the value

of S0 we have the WLR
1,0 or WLL

1,1 solutions respectively.
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The behavior of the holographic coordinate and scale factor in terms of Φ for the WLMin+

1,0

and WLMin−
0,0 RG flows. The red curve belongs to WLMin+

1,0 and the blue to WLMin−
0,0 .
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• In this limiting region we have an explicit example of solution fragmentation.

• There are two phenomena visible in this example.

♠ Walking. This the phenomenon when an intermediate AdS region appears between the
UV and IR, or between UV and UV as is the case here

♠ The emergence of a new boundary.

(Max−,Max−) → (Max−,Min−) ⊕ (Min+,Max−)

• Such flows can be rotated into cosmological solutions with a cosmological bounce, no
singularity and ”inflation” at the place of big bag.

QFT on AdS, Elias Kiritsis
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Solutions with many A-loops

The numerical solutions with many oscillations in the scale factor, have two

general properties:

• At the oscillation region, the scale factor A(u) has small amplitude oscil-

lations around a fixed value.

• The oscillations of Φ are in a region in which the potential (3) can be

approximated by (0 ≤ Φ ≲ 2)
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(a) W,S and T as a function of u. (b) Shows the function S2 − 2V that is nearly
constant. T = W ′ − S + S2−2V

dS
as a function of u. It is approximately zero,
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Various terms plotted as a function of the coordinate u. The amplitude of the oscillations
of Ȧ2 is very smaller than the other terms.The horizontal axis is the u coordinate.

QFT on AdS, Elias Kiritsis
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Classifying the solutions, Part I

• We pick d = 4 and a generic quartic potential
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• The left maximum is at Φ = 0.

• The right maximum is at Φ2 = 8.34.

• The minimum is located at Φ1 = 4.31.
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• “Technical” definitions:

♠ A-bounce is a point where Ȧ = 0 → W = 0. It always exists when the

slice curvature is negative.

• We denote the position of an A-bounce by Φ0.

♠ Φ-bounce is a point where Φ̇ = 0 → S = 0.
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• We always start our solution at an A-bounce at Φ = Φ0 (W (Φ0) = 0)and

we solve the first order equations

d

2(d− 1)
W2 + (d− 1)S2 − dSW ′ +2V = 0 ,

SS′ −
d

2(d− 1)
SW − V ′ = 0 .

• We only need an extra “initial” condition: S0 ≡ Φ̇|Φ=Φ0
≡ S(Φ0).

• The two parameters (Φ0, S0) ∈ R2 are the complete initial data of the

first order system.

• For each pair (Φ0, S0) there is a unique solution.

QFT on AdS, Elias Kiritsis
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Introduction-I

• QFTs have parameters.

• Some are associated to scalar operators.

♠ Others to the energy-momentum tensor (geometry) or currents (charge

densities).

• The latter are always ”relevant” (they affect non-trivially the IR physics)

• They are important in cosmology and/or astrophysics and cond-mat

physics.

QFT on AdS, Elias Kiritsis
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