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PRELUDE

N The main objectives of this talk: discuss moduli stabilisation

and implement the scenario of inflation in string theories

N After some introductory concepts I will talk about fiber inflation

in large volume compactifications

N In string theory, inflation can be driven by specific scalars,

which are called moduli fields. These are associated with the

compactification of the extra dimensions.

N Low energy effective models require such fields to be stabilised,

otherwise gauge couplings and other SM parameters would not

have a definite value.

N To explain what the issues are, I will devote a few slides to

present some introductory concepts.
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A few facts about Cosmology and de Sitter Vacua

N Major Observational Discovery ∼ 25 years ago is that:

Expansion of the Universe is Accelerating

This phenomenon is explained through the concept of

Dark Energy

N In General Relativity Equations, dark energy

is incorporated through a positive cosmological constant:

Λ ≈ 10−122 (in 4-d M4
P Planck units)

Λ is interpreted as the Vacuum Energy which has a negative

pressure, and leads to the accelerated expansion of the universe.
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N From the Effective Field Theory point of view:

N ∃ a simple description in terms of:

Potential Energy V (φ) of a scalar field, φ

L

V(f)

f

N V (φ) exhibits a (possibly metastable ) positive minimum

corresponding to a so called:

N de Sitter vacuum N
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With a few additional requirements the scalar potential:

V (φ) could be appropriate for cosmological inflation

Numerous EFT models have been constructed which successfully

satisfy such constraints!

N The main Challenge is therefore to successfully implement the

Inflationary Scenario in a viable String Theory Model

N We shall see that there are novel ways to do this by virtue of the

appearance of new scalar (moduli) fields.
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However: we are now confronted with:

N New Issues in String derived EFT N

The main challenge is that compactifications are characterised

by large numbers of massless moduli;

N ... In general:

Deformations of the Compactifications,

correspond to

massless scalar fields

at the Effective Field Theory level

N In four dimensions this might create problems with fifth forces

and other cosmological issues, thus there are two main...
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N Tasks N

N Generate a potential and assure positive mass-squared

for all moduli fields, a project usually refer to as:

⇒ Moduli Stabilisation ⇐

NN Look for possible Inflaton candidates among the moduli
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⋆ Viable inflationary scenarios in ⋆

↓

Type-IIB String Theory
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N Some Moduli in Type IIB String Theory N

1. N Dilaton eφ = 1
gs
, (gs : string coupling)

Controls the worldsheet perturbative expansion of the theory

2. N Cp: p-form potentials, KB-field B2 and field strengths:

Fp+1 = dCp, F 3 = dB2

N Scalars C0, φ → combined to axion-dilaton modulus:

S = C0 + i eφ → C0 + igs
−1

3. U i, Complex Structure (CS) moduli· · · related to shape →
... analogous to the complex structure τ of the 2-torus T 2

4. T i : Kähler (size) moduli analogous to the overall size of T 2.

Ti = ck − iτk
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The Potential(s)

N Low energy dynamics can be captured by a holomorphic

superpotential W , and a real Kähler potential K

The Gugov-Vafa-Witten superpotantial:

W0 =

∫

G3 ∧ Ω(Ua), (G3 := F3 − SH3) (1)

The Kähler potantial:

K0 = − log[−i(S − S̄)]− 2 log (V(τk))− log[−i

∫

Ω ∧ Ω̄] (2)

N The F-term contributions to the scalar potential of 4D N = 1

from the type IIB encoded in

V = eK(KAB(DAW )(D
B
W )− 3|W |2)

,
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⋆ ⋆

↓

FIBRE INFLATION (FI)

N Two basic approaches will be analysed:

Non Perturbative

&

Perturbative
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⋆ A ⋆

↓

Non-Perturbative Moduli Stabilisation

& Slow Roll Inflation
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Moduli stabilisation in 4D type IIB effective supergravity

models follows a two-step procedure.

N First, one fixes the CS moduli U i and the axio-dilaton S by the

leading order W0 ≡ Wflux induced by the 3-form fluxes (F3, H3)

⋆ No-scale structure protects the Kähler moduli Tα

→ remain massless at tree-level.

NN At a second step Tα can be stabilised by non-perturbative

corrections in W and α′ and string-loop (gs) corrections in K:

W = W0 +Wnp(S, Tα),

K = Kcs − ln
[
− i (S − S̄)

]
− 2 lnU , (U = U(V , α′, · · · )) (3)
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⋆ Fibre Inflation models

have the following characteristics:

(see refs 0808.0691, . . . , 1709.01518 )

N The generic geometric set up includes

D3/D7 branes and O(3)/O(7) planes

N The internal (CY) volume is of the generic form

V = f 3

2

(τi)−
Ns∑

j=1

λjτj
3/2

with τk = −ImTk

• f 3

2

: degree 3
2 homogeneous function of τi

• τi: “large” Kähler moduli (divisors) i = 1, 2, . . .Nl.

• τj : “small” blow-up rigid divisors j = 1, 2, . . .Ns.

• Nl +Ns = h1,1.
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Quantum Corrections

The GVW superpotential W0

W0 =

∫

G3 ∧ Ω(Ua) , (4)

is corrected by non-perturbative (NP) contributions.

N NP contributions can be generated by divisors which are stable

under perturbations and have fixed complex structures, i.e., rigid

ones, such as del Pezzo (dP) divisors. Thus, generically

W = W0 +

Ns∑

k

Ake
−akTk , (5)

generated by D-brane instantons and gaugino condensation.

The coefficients Ak may depend on complex structure moduli, and

after CS stabilisation they are considered constants.
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The Kähler potential

Leading α′3 corrections in the Kähler potential depend on χ:

ξ = − ζ(3)

4(2π)3
χ

The α′3 corrections are incorporated into the Kähler potential

through the shift:

V̂ → U = V̂ +
ξ

2

1

gs3/2
.

Then, the α′ corrected Kähler potential acquires the form:

Kα′ = − log(−i(S − S̄))− 2 log(U)− log(−i

∫

Ω ∧ Ω̄), (6)
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Procedure and Conditions

Step 1: Overall Volume V , and volumes of Ns small blow-up

divisors τj are stabilised by corrections described above.

↓↓

Then ∃ Nl − 1 ≡ h1,1 −Ns − 1 directions remain flat.

⇒ (Nl − 1)-natural inflaton candidates

Step 2: Subleading O(gs) corrections due to KK exchange and

winding modes fix the remaining d.o.f.

⋆ The potential for these moduli is flatter and thus suitable for

slow roll inflation.
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⋆ A simple model with h1,1 = 3 (see e.g. 1801.05434)

In suitable divisor basis D̂b, D̂f , D̂s with Ds ‘diagonal’ (i.e. only

ksss 6= 0, while kijs = 0, ∀i 6= s 6= j), the internal volume is:

V = λ1τb
√
τf − λjτs

3/2

N As previously α′3 corrections for K and NP in

W = W0 +Ase
−iasTs ,

fix two (out of three ) Káhler moduli.

String Loop Effects

(hep-th/0507131,...,0704.0737)

String-loop effects known as KK and winding types generate new

V KK
gs + V W

gs subleading potential terms for τf .
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Kähler Cone Constraints

⋆ The Kähler moduli space must be such that ensures a positive

definite Kähler form: ⋆ ∫

Ci

J > 0

This Kähler Cone Condition (KCC) concerns all topologically

non-trivial effective curves Ci in the internal manifold (Mori

Cone).

⋆ Thus, whilst at leading order the would be inflaton τf remains

flat, fixing of V and τs puts bounds on field range of τf .

For the canonical field ϕ ∼
√
2/3 log(τf ), these bounds imply:

ϕ . 2.5

Notice however, that for a successful slow roll inflation we need

ϕ ∼ O(10)MPl
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⋆ B ⋆

↓

PERT URBAT IVE FIBRE INFLAT ION
in collaboration with

S. Bera, D. Chakraborty, P. Shukla,

Phys.Rev.D 110 (2024) 10, 106009, 2406.01694
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The perturbative LVS

(Antoniadis, Chen, GLK 1909.10525, JHEP 2020 )

provides a new way to realise

Fibre Inflation

without implementing non-perturbative effects.

N Hence use of rigid divisors can be circumvented,

and,

Kähler Cone Conditions do not put strong bound on the

inflaton’s range.

We will demonstrate this feature by considering a compact

connected manifold with smooth geometry, more concretely a

K3-fibred CY orientifold with toroidal-like volume.
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A Global Model

We consider a CY3 with h1,1 = 3

(polytope Id: 249 in the CY database of KS/hep-th 0002240)

N Hodge numbers (h2,1, h1,1) = (115, 3),

N Euler number χ = −224.

N In the divisor basis {D̂1, D̂2, D̂3}, the Kähler form is

J = t1D̂1 + t2D̂2 + t3D̂3

N The only non-zero intersection is k123 = 2 so the volume

V ∝
∫
J ∧ J ∧ J is

V =
1

3!
kijkt

itjtk = 2 t1 t2 t3 =
1√
2

√
τ1 τ2 τ3

N The Kähler cone conditions are:

KCC: t1 > 0, t2 > 0, t3 > 0. (7)
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Global Model:

Subleading Corrections

Among other things, the divisor intersection analysis shows

• N There are three D7-brane stacks which intersect at T2

• N Because D7-brane stacks intersect on

non-shrinkable two-torii:

⇓
∃ string-loop effects of the winding-type:

V W
gs = −κ|W |2

V3

∑

a

Cw
a

ta
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All contributions give rise to the following scalar potential:

Veff ≈ Vup +
C1
V3

(

ξ̂ − 4 η̂ + 2 η̂ lnV
)

(8)

+
C2
V4

(

Cw1
τ1 + Cw2

τ2 + Cw3
τ3 +

Cw4
τ1τ2

2(τ1 + τ2)
(9)

+
Cw5

τ2τ3
2(τ2 + τ3)

+
Cw6

τ3τ1
2(τ3 + τ1)

)

+
C3
V3

(
1

τ1
+

1

τ2
+

1

τ3

)

(10)

• Part (8) fixes the volume V (Antoniadis,Chen, GKL 2018).

• Parts (9) and (10) fix one more modulus τk at large value.

Hence:

• two τi are integrated out, and Veff only depends on one light

modulus, Veff = V (τf ) ⇒ τf drives inflation
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Inflationary dynamics:

Define the canonically normalised fields,

ϕα =
1√
2
ln τα, α ∈ {1, 2, 3}, so that

V ∝ e
1√
2
(ϕ1+ϕ2+ϕ3)

The scalar potential takes the form

V = C0
(

Cup +R0e
−γφ − e−

γ
2
φ +R1e

γ
2
φ +R2e

γφ
)

, (11)

• The size of up-lift required for dS vacuum is

Cup = 1−R0 −R1 −R2

• D3 up-lift not possible due to absence of O(3)-planes

• D7-brane or T -uplift (1512.04558) can be implemented.
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A benchmark model:

C0 ∼ 4× 10−10, R1 ∼ 10−6, R2 ∼ 10−7

which correspond to string parameters:

|W0| = 6, gs = 0.28, 〈V〉 = 6× 103
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Efolds, scalar perturbation amplitude, spectral index:

Ne
∗ = 58, Ps = 2.1× 10−9, ns

∗ = 0.966
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Figure 1: Plot of spectral index ns vs tensor-to scalar ratio r.
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CONCLUSIONS
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In this talk, I have presented :

Fibre Inflation

N In Large Volume Compactifications

with Perturbative Corrections ( PLVS)

• It was shown that Kähler Cone Conditions are milder and easy to

satisfy in PLVS.

• This was instrumental for constructing a robust string scenario

with Fibre Inflation

N The model has Global Embedding within simple CYs having:

• minimal number of Kähler moduli to accommodate inflation

• simple toroidal volume:

V =
√
τ1τ2τ3.
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THANK Y OU FOR Y OUR ATTENTION



–31–

APPENDIX
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In String Theory:

multigraviton scattering generates higher derivative

couplings in curvature

( Green et al, hep-th/9704145; Antoniadis, et al hep-th/9707013,

Kiritsis, et al hep-th/9707018)

Leading correction term in type II-B action:

proportional to the fourth power of curvature:

∝ R4
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Reduction on M4 ×X 6, (with M4 4-d Minkowski) induces:

⇒ α

l8s

∫

M4×X6

e−2φR(10)

︸ ︷︷ ︸

standard EH term

+
β

l2s
χ

∫

M4

(ζ(2)− ζ(3)e−2φ)R(4)

︸ ︷︷ ︸

induced EH term

,

Induced Einstein Hilbert (EH) term ∝ Euler characteristic:

χ ∝
∫

R ∧R ∧R

NN this EH term possible in 4-dimensions only!
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NN Introducing 7-branes NN

Localised vertices can emit gravitons and KK-excitations in 6d

⇒ KK-exchange between graviton vertices and D7-branes

k
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3 X

X

X

X
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>

y=0 y=ya

A

worldsheet

Figure: 3-graviton scattering (2 massless 1 KK) KK-propagating

in 2-d towards D7
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Corrections

(assuming 3 intersecting D7 branes )

————————————————————————————-

1

(2π)3

∫

M4×X6

e−2φR(10) +
4ζ(2)χ

(2π)3

∫

M4

(1 +
∑

i=1,2,3

e2φTilog(R
i
⊥)R(4) ,

————————————————————————————-

N Ti : D7-brane tension

N Ri
⊥
: D7-transverse 2-dimension

Extracting the coefficients of the Kähler potential

η = −1

2
gsT0ξ ; ξ = −χ

4
×







π2

3 g2s for orbifolds

ζ(3) for smooth CY
(12)
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Loop corrections KKK
gs and KW

gs to the Kähler potential arise

respectively from exchanges of closed KK strings between parallel

stacks of D-branes/O-planes or exchanges of winding strings

between intersecting stacks of branes/O-planes

KKK
gs = gs

∑ CKK
i t⊥i
V , (13)

KW
gs = gs

∑ CW
i

Vt∩i
, (14)

In our geometric configuration there are only intersecting

D7-branes, hence only the second type of corrections are present.


