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● Collider experiments are central for 
understanding the Physics of 
elementary particles.

● At the core of their theoretical 
description in Quantum Field Theory 
(QFT) lie Scattering Amplitudes.

● High-Luminosity Large Hardon 
Collider (HL-LHC) launching by 2030 
requires higher precision in our 
theoretical predictions.
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Arguably the “simplest” QFT: Supersymmetric, (dual) conformal, integrable,...

 Ideal theoretical lab:

In                          the analytic structure of 6 and 7 particle Scattering Amplitudes 
is described by Cluster Algebras. Based on this observation bootstrap methods 
were developed enabling the calculation of:

● 6-point  8-Loop Amplitude![Drummond, Foster, Gurdogan, Papathanasiou][Dixon Liu]

● 7-point  4-Loop Amplitude![Caron-Huot, Dixon, Dulat, McLeod, Hippel, Papathanasiou][Dixon Liu]
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● Alphabets of F.I. relevant in QCD are related to known Cluster Algebras.[Chicherin,Henn, Papathanasiou]

[He, Yang, Li]

●  Integrals for Higgs+Jet production in the heavy top quark limit[Gehrmann, Jaquier, Glover,Koukoutsakis] [Duhr]:

Process contributing to Amplitude:

● One Loop Alphabet: described by        Cluster Algebra.

● Two Loop Alphabet: described by       Cluster Algebra.
[Chicherin, Henn, Papathanasiou] 7
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Cluster Variables reveal new Adjacency restrictions for the Integral!

These were verified at the level of the Hggg Amplitude recently!
[Gehrman, Henn, Jakubcik, Lim, Mella, Syrrakos, Tancerdi, Torres Bobadilla ]

How are these related to Cluster Algebraic structure?

● In                      Cluster Adjacency principle states that 
iff,             do not appear together in any cluster!

● However, the observed Adjacency restrictions (20) are only a subset of the 
ones this constraint predicts (40)!
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➔ Main idea: Embed        inside bigger Cluster Algebras.

Interpreting Adjacency restrictions 
with embeddings 

✓ The embedding reduces the restrictions from 40 to 28!

✓ The 20 observed ones are a subset of these 28!
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Conclusions
✓        Cluster Algebra describes recently calculated 3-loop contributions to Higgs+Jet 

Amplitudes.

✓ Revealed new Adjacency restrictions for the Amplitude observed in.  [Gehrman, Henn, Jakubcik, Lim, Mella, 

Syrrakos, Tancerdi, Torres Bobadilla ]

✓ Cluster Algebraic description of the observed restrictions is provided, through 
embeddings.

Future work
● Identify more alphabets described by Cluster Algebras.

● Could we predict their appearance from first principles?

● Can we apply it to bootstrap amplitudes of QCD?
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