An exceptional Cluster Algebra for Higgs+Jet production

Rigers Aliaj

9th Xmas for Theoretical Physics, Athens 18 December 2024

e-print: 2408.14544 [hep-th] with Georgios Papathanasiou, to appear in JHEP

Collider experiments are central for understanding the Physics of elementary particles.

- Collider experiments are central for understanding the Physics of elementary particles.
- At the core of their theoretical description in *Quantum Field Theory* (QFT) lie *Scattering Amplitudes*.

- Collider experiments are central for understanding the Physics of elementary particles.
- At the core of their theoretical description in *Quantum Field Theory* (QFT) lie *Scattering Amplitudes*.
- High-Luminosity Large Hardon Collider (HL-LHC) launching by 2030 requires higher precision in our theoretical predictions.

• Amplitudes = $\sum_{i=1}^{L} g^{i}$ Feynman Integrals

- Amplitudes = $\sum_{i=1}^{L} g^{i}$ Feynman Integrals
- Loop order: number of momentum integrals.

- Amplitudes = $\sum_{i=1}^{L} g^{i}$ Feynman Integrals
- Loop order: number of momentum integrals.
- Quantum Chromodynamics (QCD) describes the strong interaction of particles. Higher order QCD corrections involve multiple momentum integrals: TOO HARD!

- Amplitudes = $\sum_{i=1}^{L} g^{i}$ Feynman Integrals
- Loop order: number of momentum integrals.
- Quantum Chromodynamics (QCD) describes the strong interaction of particles. Higher order QCD corrections involve multiple momentum integrals: TOO HARD!

• State of art:
$$
\mathcal{O}(g^2) \simeq 1\%
$$

Arguably the "simplest" QFT: Supersymmetric, (dual) conformal, integrable,...

Arguably the "simplest" QFT: Supersymmetric, (dual) conformal, integrable,...

 Ideal theoretical lab:

Arguably the "simplest" QFT: Supersymmetric, (dual) conformal, integrable,...

Ideal theoretical lab:

Canonical Differential Equations [Henn '13] \bullet

Arguably the "simplest" QFT: Supersymmetric, (dual) conformal, integrable,...

 Ideal theoretical lab:

• Canonical Differential Equations [Henn '13]

Derive differential equations for the Feynman Integrals

Arguably the "simplest" QFT: Supersymmetric, (dual) conformal, integrable,...

 Ideal theoretical lab:

• Canonical Differential Equations [Henn '13]

Derive differential equations for the Feynman Integrals

$$
d\mathbf{f}(\vec{z};\epsilon) = \epsilon \left[\sum_i \mathbf{A}_i d \log \alpha_i(\vec{z}) \right] \mathbf{f}(\vec{z};\epsilon)
$$

Arguably the "simplest" QFT: Supersymmetric, (dual) conformal, integrable,...

 Ideal theoretical lab:

• Canonical Differential Equations [Henn '13]

Derive differential equations for the Feynman Integrals

$$
d\mathbf{f}(\vec{z};\epsilon) = \epsilon \left[\sum_i \mathbf{A}_i d \log \alpha_i(\vec{z}) \right] \mathbf{f}(\vec{z};\epsilon)
$$

 $D=4-2\epsilon$ \vec{z} : Kinematics, α_i : letter, A_i : constant matrices, $\Phi = {\alpha_i} :$ Alphabet.

Arguably the "simplest" QFT: Supersymmetric, (dual) conformal, integrable,...

 Ideal theoretical lab:

• Canonical Differential Equations [Henn '13]

Derive differential equations for the Feynman Integrals

$$
d\mathbf{f}(\vec{z};\epsilon) = \epsilon \left[\sum_i \mathbf{A}_i d \log \alpha_i(\vec{z}) \right] \mathbf{f}(\vec{z};\epsilon)
$$

 $D=4-2\epsilon$ \vec{z} : Kinematics, α_i : letter, A_i : constant matrices, $\Phi = {\alpha_i} :$ Alphabet.

F.I. is singular when $\alpha_i \rightarrow 0$, ∞ .

Arguably the "simplest" QFT: Supersymmetric, (dual) conformal, integrable,...

 Ideal theoretical lab:

• Canonical Differential Equations [Henn '13]

Derive differential equations for the Feynman Integrals

$$
d\mathbf{f}(\vec{z};\epsilon) = \epsilon \left[\sum_i \mathbf{A}_i d \log \alpha_i(\vec{z}) \right] \mathbf{f}(\vec{z};\epsilon)
$$

 $D=4-2\epsilon$ \vec{z} : Kinematics, α_i : letter, A_i : constant matrices, $\Phi = {\alpha_i} :$ Alphabet.

- F.I. is singular when $\alpha_i \rightarrow 0$, ∞ .
- Important analytic information also captured by *Adjacency restrictions:*

Arguably the "simplest" QFT: Supersymmetric, (dual) conformal, integrable,...

 Ideal theoretical lab:

• Canonical Differential Equations [Henn '13]

Derive differential equations for the Feynman Integrals

$$
d\mathbf{f}(\vec{z};\epsilon) = \epsilon \left[\sum_i \mathbf{A}_i d \log \alpha_i(\vec{z}) \right] \mathbf{f}(\vec{z};\epsilon)
$$

 $D=4-2\epsilon$ \vec{z} : Kinematics, α_i : letter, A_i : constant matrices, $\Phi = {\alpha_i} :$ Alphabet.

- F.I. is singular when $\alpha_i \rightarrow 0$, ∞ .
- Important analytic information also captured by *Adjacency restrictions:*

$$
\mathbf{A}_i\cdot\mathbf{A}_j=0\quad\text{for some i,j}.
$$

Arguably the "simplest" QFT: Supersymmetric, (dual) conformal, integrable,...

Ideal theoretical lab:

● Canonical Differential Equations^[Henn '13]

Arguably the "simplest" QFT: Supersymmetric, (dual) conformal, integrable,...

Ideal theoretical lab:

- Canonical Differential Equations^[Henn '13]
- Generalized Unitarity^[Bern, Dixon, Dunbar, Kosower. . .], the Symbol Map^[Goncharov, Spradlin, Vergu, Volovich]

Arguably the "simplest" QFT: Supersymmetric, (dual) conformal, integrable,...

Ideal theoretical lab:

- \bullet Canonical Differential Equations $[Henn^13]$
- Generalized Unitarity^[Bern, Dixon, Dunbar, Kosower...], the Symbol Map^[Goncharov, Spradlin, Vergu, Volovich]
- **● Cluster Algebras**

[Golden, Goncharov, Spradlin, Vergu, Volovich][Drummond, Foster, Gurdogan]

Arguably the "simplest" QFT: Supersymmetric, (dual) conformal, integrable,...

Ideal theoretical lab:

- Canonical Differential Equations $[{\text{Henn} }^{\text{Henn}}]$
- Generalized Unitarity^[Bern, Dixon, Dunbar, Kosower...], the Symbol Map^[Goncharov, Spradlin, Vergu, Volovich]
- **● Cluster Algebras**

[Golden, Goncharov, Spradlin, Vergu, Volovich][Drummond, Foster, Gurdogan]

In $\mathcal{N} = 4$ SYM the analytic structure of 6 and 7 particle Scattering Amplitudes is described by Cluster Algebras. Based on this observation bootstrap methods were developed enabling the calculation of:

Arguably the "simplest" QFT: Supersymmetric, (dual) conformal, integrable,...

Ideal theoretical lab:

- Canonical Differential Equations $[{\text{Henn} }^{\text{Henn}}]$
- Generalized Unitarity^[Bern, Dixon, Dunbar, Kosower...], the Symbol Map^[Goncharov, Spradlin, Vergu, Volovich]
- **● Cluster Algebras** Gurdogan]

[Golden, Goncharov, Spradlin, Vergu, Volovich][Drummond, Foster,

In $\mathcal{N} = 4$ SYM the analytic structure of 6 and 7 particle Scattering Amplitudes is described by Cluster Algebras. Based on this observation bootstrap methods were developed enabling the calculation of:

- ȅ-point ȇ-Loop Amplitude![Drummond, Foster, Gurdogan, Papathanasiou][Dixon Liu]
- 7-point 4-Loop Amplitude!^{[Caron-Huot, Dixon, Dulat, McLeod, Hippel, Papathanasiou][Dixon Liu]}

A Cluster Algebra of rank *d* is a special subalgebra of rational functions equipped with[Fomin, Zelevinsky]

 \bullet A distinguished set of generators a_i , the *cluster variables.*

- A distinguished set of generators a_i , the *cluster variables.*
- A list of subsets therefore, of the same cardinality $d, \{a_i, \ldots, a_d\}$ called *clusters.*

- \bullet A distinguished set of generators a_i , the *cluster variables.*
- A list of subsets therefore, of the same cardinality $d, \{a_i, \ldots, a_d\}$ called *clusters.*
- The algebra is built from an initial cluster iteratively through specified rules called *mutations.*

- \bullet A distinguished set of generators a_i , the *cluster variables.*
- A list of subsets therefore, of the same cardinality $d, \{a_i, \ldots, a_d\}$ called *clusters.*
- The algebra is built from an initial cluster iteratively through specified rules called *mutations.*
- When the mutation procedure terminates giving a finite number of *cluster variables,* the corresponding Cluster Algebra is called *finite.*

A Cluster Algebra of rank *d* is a special subalgebra of rational functions equipped with[Fomin, Zelevinsky]

- \bullet A distinguished set of generators a_i , the *cluster variables.*
- A list of subsets therefore, of the same cardinality $d, \{a_i, \ldots, a_d\}$ called *clusters.*
- The algebra is built from an initial cluster iteratively through specified rules called *mutations.*
- When the mutation procedure terminates giving a finite number of *cluster variables,* the corresponding Cluster Algebra is called *finite.*

The classification of *finite* Cluster Algebras follows the one of semi-simple Lie algebras:

A Cluster Algebra of rank *d* is a special subalgebra of rational functions equipped with[Fomin, Zelevinsky]

- \bullet A distinguished set of generators a_i , the *cluster variables.*
- A list of subsets therefore, of the same cardinality $d, \{a_i, \ldots, a_d\}$ called *clusters.*
- The algebra is built from an initial cluster iteratively through specified rules called *mutations.*
- When the mutation procedure terminates giving a finite number of *cluster variables,* the corresponding Cluster Algebra is called *finite.*

The classification of *finite* Cluster Algebras follows the one of semi-simple Lie algebras:

$$
\overline{A}_n,\overline{B}_n,\overline{C}_n,\overline{D}_n,\overline{E}_6,\overline{E}_7,\overline{F}_4,\overline{G}_2
$$

A Cluster Algebra of rank *d* is a special subalgebra of rational functions equipped with[Fomin, Zelevinsky]

- \bullet A distinguished set of generators a_i , the *cluster variables.*
- A list of subsets therefore, of the same cardinality $d, \{a_i, \ldots, a_d\}$ called *clusters.*
- The algebra is built from an initial cluster iteratively through specified rules called *mutations.*
- When the mutation procedure terminates giving a finite number of *cluster variables,* the corresponding Cluster Algebra is called *finite.*

The classification of *finite* Cluster Algebras follows the one of semi-simple Lie algebras:

$$
A_n, B_n, C_n, D_n, \underbrace{E_6, E_7, F_4, G_2}_{\text{Exventional}}
$$
Example: G_2 Cluster Algebra

Example: G_2 Cluster Algebra

• Initial cluster $\{a_1, a_2\}$

Example: G_2 Cluster Algebra

• Initial cluster $\{a_1, a_2\}$

● Mutation:

Example: G_2 Cluster Algebra

• Initial cluster $\{a_1, a_2\}$

$$
\bullet \quad \text{Mutation: } a_{m+1} = \begin{cases} \frac{1+a_m}{a_{m-1}} & \text{if m is odd,} \\ \frac{1+a_m^3}{a_{m-1}} & \text{if m is even} \end{cases}
$$

Example: G_2 Cluster Algebra

• Initial cluster $\{a_1, a_2\}$

• Mutation:
$$
a_{m+1} = \begin{cases} \frac{1+a_m}{a_{m-1}} & \text{if } m \text{ is odd,} \\ \frac{1+a_m^3}{a_{m-1}} & \text{if } m \text{ is even} \end{cases}
$$

$$
\begin{aligned} \Phi_{G_2} &= \{a_1,a_2,\frac{1+a_2^3}{a_1},\frac{1+a_1+a_2^3}{a_1a_2}, \frac{1+a_1^3+3a_1^2+3a_1a_2^3+3a_1+a_2^6+2a_2^3}{a_1^2a_2^3}, \frac{1+a_1^2+2a_1+a_2^3}{a_1a_2^2}, \frac{1+a_1^3+3a_1^2+3a_1+a_2^3}{a_1a_2^3}, \frac{1+a_1^3+3a_1^2+3a_1+a_2^3}{a_1a_2^3}, \frac{1+a_1^3+3a_1^2+3a_1^2+a_2^3}{a_2^3}\}. \end{aligned}
$$

Example: G_2 Cluster Algebra

• Initial cluster $\{a_1, a_2\}$

$$
\bullet\quad \text{Mutation: } a_{m+1} = \begin{cases} \frac{1+a_m}{a_{m-1}} & \text{if m is odd,} \\ \frac{1+a_m^3}{a_{m-1}} & \text{if m is even} \end{cases}
$$

 $\Phi_{G_2}=\{a_1,a_2\}$

$$
= \{a_1, \; a_2
$$

Example: G_2 Cluster Algebra

• Initial cluster $\{a_1, a_2\}$

$$
\bullet\quad \text{Mutation: } a_{m+1} = \begin{cases} \frac{1+a_m}{a_{m-1}} & \text{if m is odd,} \\ \frac{1+a_m^3}{a_{m-1}} & \text{if m is even} \end{cases}
$$

$$
\Phi_{G_2}=\{a_1,a_2,\frac{1+a_2^3}{a_1}
$$

$$
= \{a_1, \; a_2, \; a_3
$$

$$
\begin{aligned} \Phi_{G_2} &= \{a_1, a_2, \frac{1+a_2^3}{a_1}, \frac{1+a_1+a_2^3}{a_1 a_2} \\ &= \{a_1, \; a_2, \; a_3, \; a_4 \end{aligned}
$$

 $\boxed{a_1,a_2}$

Example: G_2 Cluster Algebra

• Initial cluster $\{a_1, a_2\}$

$$
\bullet\quad \text{Mutation: } a_{m+1} = \begin{cases} \frac{1+a_m}{a_{m-1}} & \text{if m is odd,} \\ \frac{1+a_m^3}{a_{m-1}} & \text{if m is even} \end{cases}
$$

$$
\Phi_{G_2}=\{ a_1,a_2,\frac{1+a_2^3}{a_1},\frac{1+a_1+a_2^3}{a_1a_2}, \frac{1+a_1^3+3a_1^2+3a_1a_2^3+3a_1+a_2^6+2a_2^3}{a_1^2a_2^3}
$$

 $=\{a_{1},\ a_{2},\ a_{3},\ a_{4},\ a_{5}$

Example: G_2 Cluster Algebra

• Initial cluster $\{a_1, a_2\}$

$$
\bullet\quad \text{Mutation: } a_{m+1} = \begin{cases} \frac{1+a_m}{a_{m-1}} & \text{if m is odd,} \\ \frac{1+a_m^3}{a_{m-1}} & \text{if m is even} \end{cases}
$$

$$
\Phi_{\scriptsize G_2}=\{a_1,a_2,\frac{1+a_2^3}{a_1},\frac{1+a_1+a_2^3}{a_1a_2},\frac{1+a_1^3+3a_1^2+3a_1a_2^3+3a_1+a_2^6+2a_2^3}{a_1^2a_2^3},\frac{1+a_1^2+2a_1+a_2^3}{a_1a_2^2}
$$

 $\mathbf{a} = \{a_1,\; a_2,\; a_3,\; a_4,\; a_5,\; a_6\}$

 $\overline{a_1, a_2}$

There is evidence that Cluster algebras play a role in Feynman Integrals:

There is evidence that Cluster algebras play a role in Feynman Integrals:

● Alphabets of F.I. relevant in QCD are related to known Cluster Algebras.[Chicherin, Henn, Papathanasiou] [He, Yang, Li]

There is evidence that Cluster algebras play a role in Feynman Integrals:

- Alphabets of F.I. relevant in QCD are related to known Cluster Algebras.[Chicherin, Henn, Papathanasiou] [He, Yang, Li]
- Integrals for Higgs+Jet production in the heavy top quark limit^{[Gehrmann, Jaquier, Glover,Koukoutsakis] [Duhr]:}

There is evidence that Cluster algebras play a role in Feynman Integrals:

- Alphabets of F.I. relevant in QCD are related to known Cluster Algebras.^[Chicherin, Henn, Papathanasiou] [He, Yang, Li]
- Integrals for Higgs+Jet production in the heavy top quark limit^{[Gehrmann, Jaquier, Glover,Koukoutsakis] [Duhr]:}

Process contributing to Amplitude:

$$
H\to g\ g\ g
$$

There is evidence that Cluster algebras play a role in Feynman Integrals:

- Alphabets of F.I. relevant in QCD are related to known Cluster Algebras.^[Chicherin, Henn, Papathanasiou] [He, Yang, Li]
- Integrals for Higgs+Jet production in the heavy top quark limit^{[Gehrmann, Jaquier, Glover,Koukoutsakis] [Duhr]:}

Process contributing to Amplitude:

$$
H\to g\ g\ g
$$

• One Loop Alphabet: described by A_2 Cluster Algebra.

There is evidence that Cluster algebras play a role in Feynman Integrals:

- Alphabets of F.I. relevant in QCD are related to known Cluster Algebras.^[Chicherin,Henn, Papathanasiou] [He, Yang, Li]
- Integrals for Higgs+Jet production in the heavy top quark limit^{[Gehrmann, Jaquier, Glover,Koukoutsakis] [Duhr]:}

Process contributing to Amplitude:

$$
H\to g\ g\ g
$$

- One Loop Alphabet: described by A_2 Cluster Algebra.
- Two Loop Alphabet: described by C_2 Cluster Algebra. [Chicherin, Henn, Papathanasiou] 2012 12:30 12:3

Integrals for Higgs+Jet production in the heavy top quark limit: [Gehrmann, Jaquier, Glover,Koukoutsakis] [Duhr]

Integrals for Higgs+Jet production in the heavy top quark limit: [Gehrmann, Jaquier, Glover,Koukoutsakis] [Duhr]

 $H(p_4) \to g(p_1) g(p_2) g(p_3)$

Integrals for Higgs+Jet production in the heavy top quark limit: [Gehrmann, Jaquier, Glover,Koukoutsakis] [Duhr]

$$
H(p_4) \to g(p_1) \; g(p_2) \; g(p_3)
$$

Recent three loop computations reveal 2 new letters not described by the C_2 Cluster Algebra!^{[Henn, Lim, Torres}] Bobadilla]

Integrals for Higgs+Jet production in the heavy top quark limit: [Gehrmann, Jaquier, Glover,Koukoutsakis] [Duhr]

$$
H(p_4) \to g(p_1) \; g(p_2) \; g(p_3)
$$

Recent three loop computations reveal 2 new letters not described by the C_2 Cluster Algebra!^{[Henn, Lim, Torres}] Bobadilla]

$$
z_1=\frac{(p_1+p_2)^2}{m_4^2},\ z_2=\frac{(p_1+p_3)^2}{m_4^2}
$$

$$
\Phi_{HLT}=\{z_1,z_2,1-z_1-z_2,1-z_1,1-z_2,z_1+z_2,1-2z_1+z_1^2-z_2,z_1-z_1^2-z_2\}
$$

Integrals for Higgs+Jet production in the heavy top quark limit: [Gehrmann, Jaquier, Glover, Koukoutsakis] [Duhr]

$$
H(p_4) \to g(p_1) \; g(p_2) \; g(p_3)
$$

Recent three loop computations reveal 2 new letters not described by the C_2 Cluster Algebra!^{[Henn, Lim, Torres} Bobadilla]

$$
z_1=\frac{(p_1+p_2)^2}{m_4^2},\ z_2=\frac{(p_1+p_3)^2}{m_4^2}
$$

$$
\Phi_{HLT}=\{z_1,z_2,1-z_1-z_2,1-z_1,1-z_2,z_1+z_2,1-2z_1+z_1^2-z_2,z_1-z_1^2-z_2\}
$$

Is this the end of it?

 $\Phi_{HLT}=\{z_1,z_2,1-z_1-z_2,1-z_1,1-z_2,z_1+z_2,1-2z_1+z_1^2-z_2,z_1-z_1^2-z_2\}$

 $\Phi_{HLT}=\{z_1,z_2,1-z_1-z_2,1-z_1,1-z_2,z_1+z_2,1-2z_1+z_1^2-z_2,z_1-z_1^2-z_2\}$

We managed to identify this alphabet to the G_2 Cluster Algebra! [RA, Papathanasiou]

$$
z_1\to {(1+a_1)(1+a_1+a_2^3)\over a_1a_2^3}\ , z_2\to -{1+a_1\over a_2^3}\ ,
$$

$$
\Phi_{G_2}=\{a_1,a_2,\frac{1+a_2^3}{a_1}, \frac{1+a_1+a_2^3}{a_1a_2}, \frac{1+a_1^3+3a_1^2+3a_1a_2^3+3a_1+a_2^6+2a_2^3}{a_1^2a_2^3},\frac{1+a_1^2+2a_1+a_2^3}{a_1a_2^2}, \frac{1+a_1^3+3a_1^2+3a_1+a_2^3}{a_1a_2^3}, \frac{1+a_1}{a_2}\}.
$$

 $\Phi_{HLT}=\{z_1,z_2,1-z_1-z_2,1-z_1,1-z_2,z_1+z_2,1-2z_1+z_1^2-z_2,z_1-z_1^2-z_2\}$

We managed to identify this alphabet to the G_2 Cluster Algebra! [RA, Papathanasiou]

$$
z_1\to {(1+a_1)(1+a_1+a_2^3)\over a_1a_2^3}\ , z_2\to -{1+a_1\over a_2^3}\ .
$$

$$
\Phi_{G_2}=\{a_1,a_2,\frac{1+a_2^3}{a_1}, \frac{1+a_1+a_2^3}{a_1a_2}, \frac{1+a_1^3+3a_1^2+3a_1a_2^3+3a_1+a_2^6+2a_2^3}{a_1^2a_2^3},\frac{1+a_1^2+2a_1+a_2^3}{a_1a_2^2}, \frac{1+a_1^3+3a_1^2+3a_1+a_2^3}{a_1a_2^3}, \frac{1+a_1^3+3a_1^2+3a_1+a_2^3}{a_2^3}\}.
$$

$$
\Phi_{HLT}\equiv \Phi_{G_2}
$$

Cluster Variables reveal new Adjacency restrictions for the Integral!

Cluster Variables reveal new Adjacency restrictions for the Integral!

$$
\mathbf{A}_i'\cdot\mathbf{A}_j'=\mathbf{A}_j'\cdot\mathbf{A}_i'=0\ \text{ for }\begin{cases} i,j\in\{1,3,5,7\} \text{ with } i>j\,,\\ j=i+3\,, i=3,\ldots,6 \text{ with } j\sim j-8\,,\end{cases}
$$

Cluster Variables reveal new Adjacency restrictions for the Integral!

$$
\mathbf{A}_i^{\prime}\cdot \mathbf{A}_j^{\prime}=\mathbf{A}_j^{\prime}\cdot \mathbf{A}_i^{\prime}=0 \ \ \text{for} \begin{cases} i,j \in \{1,3,5,7\} \text{ with } i>j\,,\\[0.2cm] j=i+3\,, i=3,\ldots,6 \ \text{ with } j \sim j-8\,, \end{cases}
$$

These were verified at the level of the Hggg Amplitude recently! [Gehrman, Henn, Jakubcik, Lim, Mella, Syrrakos, Tancerdi, Torres Bobadilla]

Cluster Variables reveal new Adjacency restrictions for the Integral!

$$
\mathbf{A}_i^{\prime}\cdot \mathbf{A}_j^{\prime}=\mathbf{A}_j^{\prime}\cdot \mathbf{A}_i^{\prime}=0\ \text{ for }\begin{cases} i,j\in\{1,3,5,7\} \text{ with } i>j\,,\\[0.2cm] j=i+3\,,i=3,\ldots,6\ \text{ with } j\sim j-8\end{cases}
$$

These were verified at the level of the Hggg Amplitude recently! [Gehrman, Henn, Jakubcik, Lim, Mella, Syrrakos, Tancerdi, Torres Bobadilla]

How are these related to Cluster Algebraic structure?
New adjacency restrictions

Cluster Variables reveal new Adjacency restrictions for the Integral!

$$
\mathbf{A}_i^{\prime}\cdot \mathbf{A}_j^{\prime}=\mathbf{A}_j^{\prime}\cdot \mathbf{A}_i^{\prime}=0\ \text{ for }\begin{cases} i,j\in\{1,3,5,7\} \text{ with } i>j\,,\\ j=i+3\,, i=3,\ldots,6 \text{ with } j\sim j-8\end{cases}
$$

These were verified at the level of the Hggg Amplitude recently! [Gehrman, Henn, Jakubcik, Lim, Mella, Syrrakos, Tancerdi, Torres Bobadilla]

How are these related to Cluster Algebraic structure?

• In $\mathcal{N}=4$ SYM Cluster Adjacency principle states that $\mathbf{A}_i \cdot \mathbf{A}_j = 0$ iff, a_i , a_j do not appear together in any cluster!

New adjacency restrictions

Cluster Variables reveal new Adjacency restrictions for the Integral!

$$
\mathbf{A}_i^{\prime}\cdot \mathbf{A}_j^{\prime}=\mathbf{A}_j^{\prime}\cdot \mathbf{A}_i^{\prime}=0\ \text{ for }\begin{cases} i,j\in\{1,3,5,7\} \text{ with } i>j\,,\\ j=i+3\,, i=3,\ldots,6 \text{ with } j\sim j-8\end{cases}
$$

These were verified at the level of the Hggg Amplitude recently! [Gehrman, Henn, Jakubcik, Lim, Mella, Syrrakos, Tancerdi, Torres Bobadilla]

How are these related to Cluster Algebraic structure?

- In $\mathcal{N}=4$ SYM Cluster Adjacency principle states that $\mathbf{A}_i \cdot \mathbf{A}_j = 0$ iff, a_i , a_j do not appear together in any cluster!
- However, the observed Adjacency restrictions (20) are only a subset of the ones this constraint predicts (40)!

 \rightarrow Main idea: Embed G_2 inside bigger Cluster Algebras.

- \rightarrow Main idea: Embed G_2 inside bigger Cluster Algebras.
	- Then variables appear in more clusters!

- \rightarrow Main idea: Embed G_2 inside bigger Cluster Algebras.
	- Then variables appear in more clusters!

 $B_3:$

- \rightarrow Main idea: Embed G_2 inside bigger Cluster Algebras.
	- Then variables appear in more clusters!

 $B_3:$

 \rightarrow Main idea: Embed G_2 inside bigger Cluster Algebras.

Then variables appear in more clusters!

 $G_2 \subset B_3$

 \rightarrow Main idea: Embed G_2 inside bigger Cluster Algebras.

 \rightarrow Main idea: Embed G_2 inside bigger Cluster Algebras.

The 20 observed ones are a subset of these 28!

 G_2 Cluster Algebra describes recently calculated 3-loop contributions to Higgs+Jet Amplitudes.

- G_2 Cluster Algebra describes recently calculated 3-loop contributions to Higgs+Jet Amplitudes.
- ✓ Revealed new Adjacency restrictions for the Amplitude observed in. [Gehrman, Henn, Jakubcik, Lim, Mella, Syrrakos, Tancerdi, Torres Bobadilla]

- G_2 Cluster Algebra describes recently calculated 3-loop contributions to Higgs+Jet Amplitudes.
- ✓ Revealed new Adjacency restrictions for the Amplitude observed in. [Gehrman, Henn, Jakubcik, Lim, Mella, Syrrakos, Tancerdi, Torres Bobadilla]
- ✓ Cluster Algebraic description of the observed restrictions is provided, through embeddings.

- G_2 Cluster Algebra describes recently calculated 3-loop contributions to Higgs+Jet Amplitudes.
- ✓ Revealed new Adjacency restrictions for the Amplitude observed in. [Gehrman, Henn, Jakubcik, Lim, Mella, Syrrakos, Tancerdi, Torres Bobadilla]
- ✓ Cluster Algebraic description of the observed restrictions is provided, through embeddings.

Future work

- Identify more alphabets described by Cluster Algebras.
- Could we predict their appearance from first principles?
- Can we apply it to bootstrap amplitudes of QCD?

Questions?

