Intrinsic Charm in the Proton

The 4th EIC-Asia Workshop

Emanuele R. Nocera Università degli Studi di Torino and INFN, Torino

3 July 2024

Intrinsic charm in models

Assumption: the static proton wave function does not contain charm quarks No intrinsic charm

It does not need to be so, charm can be defined as an operator matrix element

$$\langle p | \bar{c} \gamma^{\mu_1} D^{\mu_2} \dots D^{\mu_n} c | p \rangle = A_c^n p^{\mu_1} \dots p^{\mu_n} - \text{traces} \qquad A_c^n = \int_0^1 dx x^{n-1} c(x)$$

Recent data give unexpectedly large cross-sections for charmed particle production at high x_F in hadron collisions. This may imply that the proton has a non-negligible uudcc Fock component. The interesting consequences of such a hypothesis are explored.

PLB 93 (1980) 451; PRD 89 (2014) 074008

Intrinsic charm in QCD

What is intrinsic charm?

Do not factor charm mass singularities into operator matrix element

Choose $n_f = 3$ scheme

Charm PDF purely intrinsic, scale-independent

Intrinsic charm is charm in the $n_f = 3$ (decoupling) scheme

$$\begin{split} f_c^{(n_f)} &= 0 & \rightarrow \quad f_c^{(n_f+1)} \propto \alpha_s \ln \frac{Q^2}{m_c^2} \left(P_{qg} \otimes f_g^{(n_f+1)} \right) + \mathcal{O} \left(\alpha_s^2 \right) \quad \text{NLO matching} \\ & \text{3FNS charm} & \text{4FNS gluon} \end{split}$$

How to measure intrinsic charm?

Determine PDFs from data, go to $n_f = 3$ result, look at the result

1) Parametrise PDFs in $n_f = 3$ (3FNS) and match up for fitting

2) Parametrise PDFs in $n_f = 4$ (4FNS) and match down for determining intrinsic charm

Large matching uncertainties [I. Bierenbaum et al.; J. Ablinger et al.]

1. Evidence for intrinsic charm quarks in the proton [Nature 608 (2022) 7923 483]

How intrinsic charm is determined in NNPDF

Emanuele R. Nocera (UNITO)

Intrinsic Charm in the Proton

The NNPDF4.0 data set

Kinematic coverage

$$Q_0 = 1.65 \,\, {\rm GeV} > m_c = 1.51 \,\, {\rm GeV}$$

Perturbative charm vs intrinsic charm in 4FNS

We performed two fits: one assuming vanishing intrinsic charm (perturbative) and one assuming non-vanishing intrinsic charm

Fit quality $(N_{dat} = 4618)$:

 $\chi^2/N_{\rm dat}=1.20$ (vanishing intrinsic charm) $\chi^2/N_{\rm dat}=1.16$ (vanishing intrinsic charm)

The charm PDF in 4FNS turns out to be significantly different in the two cases

Even if one accounts for different perturbative accuracy in matching conditions (NNLO or N^3LO) in perturbative charm, they are not compatible in the large-x region

What happens in the 3FNS?

Intrinsic Charm in the Proton

From 4FNS charm to 3FNS charm

The intrinsic charm (3FNS) PDF looks valence-like at large x, with a peak at $x \sim 0.4$ The Intrinsic charm PDF is small in absolute terms, but it is clearly different from zero The matching between the 4FNS and the 3FNS has little effect on the peak region (no charm is radiatively generated)

The valence-like peak is stable upon inclusion of MHOUs (estimated as the difference between results obtained with NLO or N³LO matching) MHOUs dominate at small x where intrinsic charm becomes compatible with zero Charm momentum fraction: $\langle c \rangle = 0.62 \pm 0.28_{\rm PDF} \pm 0.54_{\rm MHOU}$ % The valence-like peak is qualitatively consistent with predictions from models

Which data drives intrinsic charm?

Emanuele R. Nocera (UNITO)

Intrinsic Charm in the Proton

The LHCb Z + c data

The ratio between c-tagged and untagged Z+jet events

$$\mathcal{R}_{j}^{c} \equiv \frac{\sigma(pp \to Z + \text{charm jet})}{\sigma(pp \to Z + \text{jet})} = \frac{N(c - \text{tag})}{N(\text{jets})}$$

Theoretical predictions obtained at NLO QCD with POWHEG-BOX interfaced to Pythia8 with the Monash 2013 tune for showering, hadronisation, and underlying event

At forward rapidities, perturbative charm does not describe the data well

The data uncertainty is rather smaller than the prediction uncertainty

Sensitivity to charm at large x

Emanuele R. Nocera (UNITO)

Intrinsic Charm in the Proton

Significance of intrinsic charm

Additional determinations including LHC Z + c and/or EMC F_2^c measurements

Intrinsic charm PDF is stable

Local significance or pull: size of intrinsic charm PDF in units of its uncertainty

 $\begin{array}{c} \text{2.5}\sigma \text{ for baseline} \\ \text{3.0}\sigma \text{ with LHCb } Z+c \text{ and/or EMC } F_2^c \end{array}$

Emanuele R. Nocera (UNITO)

Robustness of intrinsic charm

Does intrinsic charm depend on the value of m_c ? No: results stable upon varying m_c Is intrinsic charm affected by underestimated MHOUs?

No: results stable at N^3LO

Does intrinsic charm depend on parametrisation? No: results stable if the basis changes

Dependence on the value of m_c

Dependence on the parametrisation basis

Emanuele R. Nocera (UNITO)

3 July 2024

2. The intrinsic charm quark valence distribution of the proton [Phys.Rev. **D109** (2024) L091501]

Is intrinsic charm really valence?

What happens if one attempts to determine c and \bar{c} separately?

Is total charm c^+ stable?

Is there an asymmetry between c and \bar{c} (as there is between s and \bar{s})?

Methodology

Parametrise $V_{15}(x, Q_0) = [u^- + d^- + s^- - 3c^-](x, Q_0), Q_0 = 1.65 \text{ GeV}, q^- = q - \bar{q}$ Impose the sum rule $Q_{15} = \int_0^1 dx V_{15}(x, Q_0) = 3$ (optional)

Ensure cross section positivity by replacing the neutral current F_2^c positivity observable with its charged current-counterparts F_2^{c,W^-} and $F_2^{\bar{c},W^*}$

Otherwise the methodology is as in NNPDF4.0

The accuracy of the determination is NNLO in QCD

Determine c and \bar{c} in the 4FNS ($Q_0 > m_c = 1.51$ GeV) from the NNPDF4.0 data set Invert the matching conditions to determine the intrinsic $c - \bar{c}$ in the 3FNS

The valence charm PDF

and consistent with zero elsewhere within uncertainites

Emanuele R. Nocera (UNITO)

Intrinsic Charm in the Proton

The valence charm PDF

 xc^+ and xc^- in the 4FNS at $Q_0 = 1.65$ GeV (above $m_c = 1.51$ GeV) Repeat the determination by not imposing the charm valence sum rule Total c^+ and valence xc^- charm distributions remain unchanged We determine $Q_c = \int_0^1 dx (c - \bar{c})(x, Q_0) = 0.07 \pm 0.14$ The valence sum rule is enforced by the data

Results are also stable upon variations of PDF parametrisation basis, the value of $m_c,$ and the kinematic cuts in W^2 and Q^2

Intrinsic valence charm

MHOU estimated as the change in the 3FNS PDFs when matching at N³LO

The 3FNS and 4FNS c^- PDFs are quite close, implying that the theory uncertainty is smaller than the PDF uncertainty (unlike for c^+) The intrinsic c^- is nonzero and positive roughly in the same x region as fitted c^- The significance of intrinsic c^- is less than 2σ at its maximum around $x \sim 0.5$, though this is enhanced by EMC F_2^c and LHCb Z * D data

The significance of c^+ (not shown) remain unaltered (3σ around $x \sim 0.5$)

Emanuele R. Nocera (UNITO)

Robustness on variations of kinematic cuts

Emanuele R. Nocera (UNITO)

Charm asymmetries in Z + c at LHCb

The charm asymmetry for Z + c production

$$\mathcal{A}_c(y_Z)\equiv rac{N^c_j(y_Z)-N^{ar{c}}_j(y_Z)}{N^c_j(y_Z)+N^{ar{c}}_j(y_Z)}$$

 N_{i}^{c} $\left(N_{i}^{\bar{c}}\right)$ are *D*-mesons events containing c (\bar{c})

reconstruct c and \bar{c} jet events in bins of y_Z by tagging D-mesons from displaced vertices

the measurement is similar to $\mathcal{R}_{i}^{c}(y_{Z})$ at LHCb

Theoretical computations obtained with mg5 aMC@NLO at LO matched to Pythia8

The forward-backward asymmetry of the Z decay generates a small asymmetry $\mathcal{A}_c \neq 0$ even when $c = \bar{c}$

The LO effect due to an asymmetry between c and \bar{c} is much larger

The effect is stable upon showering and hadronisation corrections

LHCb projection show that a vaence charm component as large as currently determined could be detected at $2\sigma\text{-}4\sigma$ level

Charm-tagged DIS at the EIC

Need to reconstruct final-state *D*-mesons by identifying their decay products

A nonvanishing charm valence component can be measured at the EIC to very high significance even for a moderate amount of integrated luminosity $xF_3^{c\bar{c}}$ is proportional to c^- at LO hence it is a direct handle on valence charm

Even without projected EIC measurements, measuring a non-vanishing $xF_3^{c\bar{c}}$ would significantly constrain the charm valence PDF

3. What about longitudinally polarised charm? [Eur.Phys.J. C84 (2024) 189]

Charm in polarised DIS

The current treatment of charm in polarised DIS: ZM-VFN scheme (charm is massless) Extend the FONLL GM-VFN scheme [NPB 834 (2010) 116] to polarised DIS

 $g_1^{\rm FONLL} = g_1^{\rm FFNS,3} + g_1^{\rm FFNS,4} - g_1^{\rm double-counting}$

 $g_1^{\rm FFNS,3}$ retains all mass effects at a finite order $g_1^{\rm FFNS,4}$ resums all collinear logs, but has no power-like terms $g_1^{\rm double-counting}$ is the overlap between FFNS,3 and FFNS,4

NNLO splitting functions [NPB 889 (2014) 351; PLB 748 (2015) 432; JHEP 01 (2022) 193]

NNLO matching conditions [NPB 988 (2023) 116114]

NNLO massless coefficient functions [NPB 417 (1994) 61]

NNLO massive coefficient functions [PRD 98 (2018) 014018; NPB 897 (2015) 612; ibid. 953 (2020) 114945;

ibid. 964 (2021) 115331; PRD 104 (2021) 034030; NPB 988 (2023) 116114; ibid. 999 (2024) 116427

implemented in EKO [EPJ C82 (2022) 976] and YADISM [arXiv:2401.15187]

FONLL structure functions: g_1

Emanuele R. Nocera (UNITO)

3 July 2024

FONLL structure functions: g_1^c

Emanuele R. Nocera (UNITO)

3 July 2024

The difference between predictions obtained with either the ZM-VFN or the FONLL schemes is larger than the projected experimental uncertainties (irrespective of the input PDF set)

Emanuele R. Nocera (UNITO)

Impact of FONLL on asymmetries at the EIC: A_1^c

The difference between predictions obtained with either the ZM-VFN or the FONLL schemes is larger than projected experimental uncertainties (irrespective of the input PDF set)

Emanuele R. Nocera (UNITO)

Intrinsic Charm in the Proton

4. Summary

To conclude

The valence structure of charm in the proton

Valence peak for total charm at 3σ Valence charm PDF in valence region at $1-2\sigma$ Intrinsic charm compatible with zero (large uncertainties) for $x \lesssim 0.1$ Sea compatible with zero (large uncertainties for $x \lesssim 0.1$ and $x \gtrsim 0.5$

Reliable PDFs

Fitted charm for independence of m_c and matching MHOUs and N³LO for accurate central values and reliable uncertainties Results stable upon variations of cuts The FONLL GM-VFN scheme has been extended to polarised DIS

Charm mass effects are sizeable on the scale of the precision of EIC experimental data

<u>ToDo</u>

Better charmed jet definition — More data — Polarised intrinsic charm? The EIC will play a crucial role in all these goals

To conclude

The valence structure of charm in the proton

Valence peak for total charm at 3σ Valence charm PDF in valence region at $1-2\sigma$ Intrinsic charm compatible with zero (large uncertainties) for $x \lesssim 0.1$ Sea compatible with zero (large uncertainties for $x \lesssim 0.1$ and $x \gtrsim 0.5$

Reliable PDFs

Fitted charm for independence of m_c and matching MHOUs and N³LO for accurate central values and reliable uncertainties Results stable upon variations of cuts The FONLL GM-VFN scheme has been extended to polarised DIS

Charm mass effects are sizeable on the scale of the precision of EIC experimental data

<u>ToDo</u>

Better charmed jet definition — More data — Polarised intrinsic charm? The EIC will play a crucial role in all these goals

Thank you