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Collider study of nuclear matter

• How can the perturbative understanding at short distances help the study of strongly-coupled
& many body systems at large distances.

• For example, one utilizes hadron produced at small pT in SIDIS
(TMD region) to learn the partonic motion inside proton.
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Primary hard process

• From proton to a nucleus, what changes in f̃q/p and D̃h/q. Are there any novel corrections?
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Two limiting pictures of DIS with nucleus

Hard vertex localized to 1–2 nucleons
ν
Q2 � L ∼ r0A

1/3

L

zh, p
h
T

, or xB � 0.1
A1/3

eHIJING 1.0
& this talk

Tomography region

• How are parton structures of nucleons modified
in nuclear environment.

• Partonic and hadronic transport phenomena in
the cold nuclear matter.

Modifications = Nucleon properties⊗ in-medium dynamics

Coherent interactions with whole brick
ν
Q2 � r0A

1/3 , or xB � 0.1
A1/3

Small-x region

• Dipole approximation γ∗ + A ≈ q + q̄ + A.

• Dynamical generated scale (Qs) becomes
dominant. Interactions reveal gluonic dynamics
of the nucleus.
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The jet transport phenomena and Monte Carlo studies

• From a coarse-graining point of view, jet transport parameter q̂ is a most direct
quantification of the in-medium dynamics of parton:

q̂R =
d〈∆p2

T 〉
dL

weakly-coupled−−−−−−−−−→
dilute medium

∑
T

ρT

∫
q2 dσRT

d2q
d2q

• Determining the cold nuclear matter q̂R facilitates many studies with a nuclear target.
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• Direct calculations of observables with medium effects is hard but under rapid developments.
In many cases, Monte Carlo approach is still the only option for phenomenology.
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The Outline

eHIJING generator for eA in the jet tomography region

Comparison to SIDIS data

Known problems & future plan
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eHIJING generator for eA in the
jet tomography region



The eHIJING event generator 1.0

Electron-Heavy-Ion-Jet-INteraction-Generator a completely different (c++ & Pythia8)
program from HIJING (fortran & Pythia6) in the heavy-ion community.

Beams: e/µ, p/A
Large xB (n)PDF

Hard process
(Pythia8)

Nuclear
remnants

Parton
shower

(Pythia8)

Sample multiple
collisions dΓR
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Lund string
hadronization

(Pythia8)
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Medium modified
fragmentation
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Break

nucleon

Momentum

recoil

Modifies

splitting

Sample Sudakov

Sample Sudakov

• Almost the same ep physics as Pythia8235.

• Multiple forward scatterings between jet
partons and the cold nuclear medium.

• Nucleon remnants from multiple collisions.

• Modified parton shower algorithm with inputs
from (generalized) higher-twist calculations.

• Lund string hadronization.
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Forward scattering between jet parton and the target

• The differential scattering probability is proportional to the area density of nucleon (ρNL)
times the differential cross-section
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• It is then related to the unintegrated gluon distribution
function φg (xg , k) J. Casalderrey-Solana, X.-N. Wang

PRC77(2008)024902.

• EHIJING1.0 omits target dynamics and parametrize φg (x , k)

with a saturation-motivated model KLN, NPB 594(2001)371.

αsφg (xg , k) = K
xλg (1− xg )n

k2 + Q2
s (xg ,Q2)

, xg =
k2

Q2 xB

with self-consistent condition Q2
s =

∫
k2 dP

d2kd
2k ≡ q̂AL
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Jet transport parameter and the “screening scale” Qs

• Values of n = 4 and λ = −0.25 taken the same as the original KLN model.

• Consider the tomography region of a nucleus A ∼ 100, xB � 0.1/A1/3 ≈ 0.02. Qs remains
small compared to Q � 1 GeV.

• The range of K result in a q̂F comparable to other phenomenological extractions.
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Poisson sampling of multiple collisions

〈N〉 as function of A & IR cut off.
• The average number of multiple collisions 〈N〉 =

∫
dP
d2kd

2k.

• The number of collisions follows a Poisson distribution

PN =
〈N〉N
N!

e−〈N〉

• The x+ coordinate of the collision center is uniformly
sampled on [0, L+], the transverse position aligns with the
impact parameter b.

• k of each collision is sampled according to dP
d2k , which

determines k− = xgP
−
N . k+ is determined by the on-shell

condition of the recoiled target parton.
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Higher-twist splitting function
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Multiple scattering induce additional radiative corrections.

• For a thin medium, it can be analyzed in a twist
expansion. A recent calculation at (generalized) twist-4,
Y.-Y. Zhang, X.-N. Wang, PRD105(2022)034015

• eHIJING 1.0 only implements leading-nuclear-size (L+)
terms at (generalized) twist-4 in the soft-gluon limit O

d
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τf =
2x(1− x)p+

(`− k)2
the radiation formation time

• In earlier literature, the HT formula is further simplified assuming k� ` under the
integral. This is also implemented in eHIJING for comparison.
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Medium-modified parton shower

dN (0)

Q2

Λ2

dN (1)

E/L

Q2
s

The medium-induced functions contains multiple scales: p+/L+ and Q2
s .

• Virtuality (kT ) ordered parton shower. Vacuum emissions between
Λ2 < `2 < Q2 + induced emissions between Q2

s < `2 < p+/L+.

• Multiple branchings sampled using the inverse of Sudakov form factor

r = e−〈Nji (`2,`1)〉, r ∼ U(0, 1)

〈Nji (`2, `1)〉 =
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]

• Medium-induced radiations between Λ2 < `2 < Q2
s no longer gives large logs of energy

scales. Multiple emissions are ordered in formation time.
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Lund string hadronization with jet-medium interactions
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• Assume vacuum-like hadronization mechanism at a large
hadron formation time

τh =
zhν

mh

1
Λ
� L

• Color exchanges of multiple scatterings implemented at the
end of shower.

• Medium recoiled system is modeled by a quark + diquark.

• Apply Lund string fragmentation to the whole system of
parton shower + remnant.

• Ongoing test to include hadronic transport for τh < L

(from LBL & UIUC Collaborators)
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Lund string hadronization with jet-medium interactions
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Comparison to SIDIS data



SIDIS in ep

dNh

dzh
=

dσep→h+X/dzh
σep

One of the default hadronization parameter in Pythia8
is changed to better described the zh dependence.
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SIDIS in ep

dNh

dzhdpT
=

dσep→h+X/dzh/dpT
σep

Good agreement in the TMD region of the pT spectra.
But there are known problems for pT & 1.5 GeV.
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From ep to eA, the nuclear modification factor
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HERMES, NPB 780(2007)1-27

• RA is defined as the ratio of the inclusive-normalized SIDIS cross-section.

• The inclusive normalization largely cancels collinear nuclear PDF effects.
The normalization cannot cancel TMD nuclear PDF effects.
eHIJING 1.0 uses empirical collinear nPDF without TMD nPDF modifications.
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Modifications of the collinear distribution of hadrons in eA

HERMES, NPB 780(2007)1-27 〈Q2〉 ≈ 2-2.5 GeV2.

• RA is suppressed at large zh as expected from the parton energy loss in matter.

• The systemic dependence on nuclear size is reproduced.

• With the same input on φg (xg , k), the HT formula in past literature X.-f. Guo, E. Wang,

X.-N. Wang, et al results in a larger suppression than the generalized HT (GHT) result Y.-Y.

Zhang, G.-Y. Qin, X.-N. Wang. Cause of difference is also well understood now 2304.10779.
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Modifications of the collinear distribution of hadrons in eA

CLAS PRC105(2022)015201
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Modifications of the collinear distribution of hadrons in eA

EMC ZPC52(1991)1 〈Q2〉 ≈ 10-12 GeV2.

• RA is suppressed at large zh as expected from the parton energy loss in matter.

• The systemic dependence on nuclear size is reproduced.

• With the same input on φg (xg , k), the HT formula in past literature X.-f. Guo, E. Wang,

X.-N. Wang, et al results in a larger suppression than the generalized HT (GHT) result Y.-Y.

Zhang, G.-Y. Qin, X.-N. Wang. Cause of difference is also well understood now 2304.10779.
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The TMD RA(zh, pT )

HERMES, NPB 780(2007)1-27

• Modifications of the double differential
spectra dN/dz/dpT are reproduced with
the final-state medium effects.

• Note that TMD nPDF effects can also
contribute to RA(pT ) 6= 1 but this effect is
not included in eHIJING 1.0.
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The TMD RA(zh, pT )

CLAS PRC105(2022)015201

• Modifications of the double differential
spectra dN/dz/dpT are reproduced with
the final-state medium effects.

• Note that TMD nPDF effects can also
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not included in eHIJING 1.0.
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Flavor dependence

• Flavor dependence of RA qualitatively captured.

• Clearly difference of RA between K+ and K−, and
between p and p̄. Not capture by eHIJING 1.0.

• Possible reason 1: missing medium-induced flavor
excitation and flavor conversion.

• Possible reason 2: missing hadronic interactions.
Especially important for proton and low zh hadrons.
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Projection for EIC/EicC

• Regions at various xB and Q2 with Q � Qs .

• A highly differential test of the Q2 and ν = Q2/2xBmN

dependence of the cold nuclear matter effects.
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Known problems & future plan



Global recoil versus dipole recoil schemes

A subtle but important issue as pointed out by one of the referees.

• In the parton branching program, the four-momentum conservation cannot be fulfilled by
the generic pa → pb + pc splitting with on-shell conditions for a, b, c .

• A recoiler system pr is added such that pa +pr = p∗a +p′r = pb +pc +p′r is always satisfied.

B.Cabouat, TSjöstrand EPJC78(2018)226

19



Global recoil versus dipole recoil schemes

• Global recoil : recoil system is the rest of the event. Not used by default Pythia8 DIS
mode =⇒ because it affects triggering of hard events Q2 = −(pe − p′e)2.

• Dipole recoil: the recoiler is the parton that form the color dipole with parton a before
the branching. In DIS, the color dipole stretch from initial to final-state.

• FI: radiator in the final state, recoiler in the initial state.

• IF: radiator in the initial state, recoiler in the final state.

• Pythia8 default DIS mode only uses IF type radiation.
Because it already reproduces the matrix-element calculations!
B.Cabouat, TSjöstrand EPJC78(2018)226
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Global recoil versus dipole recoil schemes

• Global recoil : recoil system is the rest of the event. Not used by default Pythia8 DIS
mode =⇒ because it affects triggering of hard events Q2 = −(pe − p′e)2.

• Dipole recoil: the recoiler is the parton that form the color dipole with parton a before
the branching. In DIS, the color dipole stretch from initial to final-state.

• FI: radiator in the final state, recoiler in the initial state.

• IF: radiator in the initial state, recoiler in the final state.

• Pythia8 default DIS mode only uses IF type radiation.
Because it already reproduces the matrix-element calculations!
B.Cabouat, TSjöstrand EPJC78(2018)226

eHIJING 1.0 uses the non-standard global recoil. We cannot directly use dipole recoil,
because in P(z) = Pvac(z) + Pmed(z), medium-induced radiation is a final-state effect.
A lot more technical problems to be solved!
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What is the impact of using Global recoil

Drawback of using global recoil in DIS event generations:

• Q2 can be changed by recoil. Should be negligible at large Q2.

• The direction of virtual photon is affected by recoil ⇒ may affect TMD observable!

• In the lab frame, the difference between
global/dipole recoil is small. Because pT is
dominated by the hard scattering.

• In the Breit frame, evident discrepancy between
different recoiling scheme beyond pT = 1-2 GeV.

Be careful when interpreting nuclaer modifi-
cations at large pT ,Breit in EHIJING 1.0.
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From a parametrized φg (xg , k) to a dynamical target

Generate virtuality-ordered medium-induced collinear emission
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• EHIJING 1.0 only consider the
dynamics of the jet parton (multiple
collisions + induced radiations).

• Recent works suggest that
jet-medium scattering are
renormalized by soft gluon emissions
as described by BFKL. Varun Vaidya

2020, 2021. WK, I Vitev, in preparation.

• It is possible to include such dynamics
into the event generation.
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Summary and prospects

Beams: e/µ, p/A
Large xB (n)PDF

Hard process
(Pythia8)

Nuclear
remnants

Parton
shower
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Sample multiple
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Medium modified
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Break

nucleon

Momentum

recoil

Modifies

splitting

Sample Sudakov

Sample Sudakov

• The first publication of eHIJING 1.0. Aims at DIS in the
tomography region.

• The physics: multiple collisions, modified splitting
functions and parton shower, Lund string hadronization.

• Systematic comparison to SIDIS data at EMC,
HERMES, and CLAS, with projects at EIC and EicC.

• Known problems with gloabl recoil in DIS. Lack target
dynamics and hadronic interactions. A lot works &
opportunities ahead.

• Collaboration with SDU to interpolate event generation
from tomography region to small -x region.
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Questions
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Projection for EIC/EicC: ∆〈p2
T 〉

A crude estimate of radiative broadening effect to ∆〈p2
T 〉.
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Introduce parton-medium interactions

• Interaction of collinear jet partons and anti-collinear medium
constituents mediated by Glauber gluon q ∼ (λ2, λ2, λ)E

Aa−
G (q−,q) = igs

∫
dx+d2x

ie iq
−x+

e−iq·x

q2 + ξ2
Ja−(x− = 0, x+, x).

pc pc + q
µ, a

i
eiq·xi

X

• At the level of cross-section, take ensemble average of a color-neutral medium∫
x,y

〈〈
gsA

a
G (q)e iq·xgsA

b
G (k)e ik·y

〉〉
∝ δabδ(2)(k + q)

(q2 + ξ2)2

∫
dx+ρG (x+)e i(q

−+k−)x+

• In a weakly-coupled medium, ρG =
∑

T=F ,A g
2
s
CT

dA
ρT . ρT is medium color density.
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Things to look at in eHIJING

• Use target neutron emission to select on
different path length of jet propagation in the
cold nuclear matter Li, Liu Vitev, 2303.14201

• Lepton-jet correlation (high precision ep

baseline to study nuclear effects), Fang, Ke, Shao,

Terry 2311.02150.
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The ideal region for studying parton transport in matter

• Hard vertex is localized τH ∼ ν/Q2 � L (large xB).

• Hadronization outside the nucleus: τh ∼ zhν/ξ
2 � L.

• Naturally set the scale sepration for an EFT

Q2ξ2 . ξ2 Lλg
ν/L

Semi-inclusive DIS in eA

L

λgQ

ξ

zν

(1− z)ν

ν
zhν, pT

N1

? To suppress hadronic final-state interactions, we want zhν � ξ2L ∼ 3...4 GeV for Pb.
Collider experiment has a larger ν, and is cleaner for studying partonic transport.
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