Transverse momentum distribution of heavy quarkonium production at the EIC

- Kazuhiro Watanabe (渡邊 和宏) Seikei University, JP
- The 4th EIC Asia meeting, July 1–5, 2024

Plan:

- 1. Background: QED radiative corrections
- 2. Hadronic quarkonium production of high p_T revisited
- 3. Inclusive quarkonium production in ep collisions

thanks to my collaborators: Kyle Lee, Jian-Wei Qiu, George Sterman

Lepton-hadron scatterings with one-photon exchange

- DIS explores PDFs inside the nucleon.
- - $\swarrow Q \gg p_T^h$ in a frame where the virtual photon collides with the nucleon moving along the z-axis.
 - \checkmark Hard scale Q localizes the probe to resolve the x-dependence of PDFs.

SIDIS allows the extraction of transverse momentum-dependent distributions (TMDs);

✓ Soft scale $p_T^h \gtrsim 1/R_N$ allows us to study parton's confined transverse motion.

Quarkonium in SIDIS is a crucial probe into hadron/nuclear structures.

Problem with QED radiative corrections (RCs)

- hadron frame.

Understanding RCs in hadron production in collinear factorization is a prerequisite!

QED RCs change the momentum transfer q, resulting in trouble with the definition of a photon-

Change of q also modifies the angular modulation between the leptonic and hadronic planes.

All perturbative collinear divergences with $m \to 0$ along the direction of observed momenta can be factorized into PDFs, FFs, and lepton distribution functions (LDFs) of the incident lepton.

Factorization beyond "one-photon exchange"

PDFs and FFs are common blocks in *ep* and *pp*.

- The scattered lepton is **not observed**. (cf. SIDIS: $e + p \rightarrow e' + h + X$)
- we do not need to consider such an artificial separation!

NEXT

Fragmentation Functions for Heavy Quarkonium production

Kang, Metz, Qiu and Zhou, PRD84, 034046 (2011) LO: NLO: Hinderer, Schlegel, Vogelsang, PRD92, no.1, 014001 (2015) NNLO: Abelof, Boughezal, Liu, Petriello, PLB763, 52-59 (2016) See also: J.W.Qiu, X.P.Wang and H.Xing, Chin. Phys. Lett. 38, no.4, 041201 (2021)

LDFs: Probability densities for finding leptons, photons, and partons in the beam lepton (Later).

Remark: DESY-HERA introduced an artificial cut on the transverse momentum of the scattered lepton: J/ψ lepto-production ($Q^2 > 1 \text{GeV}^2$) vs. J/ψ photo-production ($Q^2 \leq 1 \text{GeV}^2$). In this study,

Hadronic quarkonium production of high p_T revisited

NRQCD vs. data: lack of universality of LDMEs

Long-Distance Matrix Ele

 $p_T \; (\text{GeV})$

=						
		$\langle \mathcal{O}(^{3}S_{1}^{[1]}) \rangle$	$\langle \mathcal{O}({}^1S_0^{[8]}) \rangle$	$\langle \mathcal{O}(^{3}S_{1}^{[8]}) angle$		
Global data		${ m GeV}^3$	$10^{-2}\mathrm{GeV}^3$	$10^{-2}\mathrm{GeV}^3$	1	
fitting	Set I (Butenschoen <i>et al.</i>)	1.32	3.04	0.16		
	Set II (Chao $et al.$)	1.16	8.9	0.30		
omonto	Set III (Gong $et al.$)	1.16	9.7	-0.46		
ements	Set IV (Bodwin <i>et al.</i>)	-	9.9	1.1		
AS data: √s = 7 TeV y < 0.75						
^z data: √s̄ = 1.96 TeV y < 0.6		uld hau	inivoro	lity boy		
¥	LDIVIES SHOU Numbers a	are not	the san	anty, nov ne.	V	
Not avan tha eign						
Ŧ		ne orgi	•			
NLO: Gong et al. 20 25 30 35 [GeV]	Much more	work is	neede	d!		
$\mathbb{E} CMS data u < 0.9$	Fits in NRQCD					
• CDE data, $ y < 0.6$	Butenschoen, K	niehl, PRD84	4, 051501 (20)11).		
P + NLO HC u < 0.9	Chao, Ma, Shao	, Wang, Zhai	ng, PRL108, 1	242004 (2012	2).	
= LP + NLO, Enc g < 0.5	Gong, Wan, Wan	ng, Zhang, P	RL110, 0420	02 (2013).		
- LI +NEO, revation $ g < 0$	Bodwin, Chung.	, Kim, Lee, F	PRL113, 0220	001 (2014).		
a	····					
	Fits in pNROC	D				
	Brambilla, Chur	ng. Vairo. Wa	ng, PRD105.	no.11. L111:	50	
	(2022).		$\mathcal{S}_{\mathcal{S}} = \mathcal{S}_{\mathcal{S}}$, , ,		
۵						
30 40 50						

Importance of higher order corrections at high p_T (1/2)

• At LO in CSM:
$$d\sigma(Q\bar{Q}[{}^3S_1^{[1]}]) \propto \frac{\alpha_s^3 m^4}{p_T^8}$$

- At high p_T higher order corrections must be essential: $d\sigma(Q\bar{Q}[{}^{3}S_{1}^{[1]}]) \propto \frac{\alpha_{s}^{3}m^{4}}{p_{T}^{8}} \times \frac{\alpha_{s}p_{T}^{2}}{m^{2}} = \frac{\alpha_{s}^{4}m^{2}}{p_{T}^{6}}$
- The gluon jet fragmentation at high p_T :

$$d\sigma \propto \frac{\alpha_s^5}{p_T^4}$$
 & $d\sigma \propto \frac{\alpha_s^2}{p_\perp^4} \times \alpha_s^3 \ln$

only diagrams in the naive α_{s} expansion and v (quark velocity) expansion.

The latter is enhanced even if $\alpha_{s} \ll 1$; we may not obtain reliable predictions by considering

QCD factorization approach

Leading power (LP) up to NLO

$$d\sigma_{A+B\to[f,Q\bar{Q}]\to H+X}^{\text{QCD-Res}}(\mu) = \sum_{f=q,\bar{q},g} C_{A+B\to[f]+X}^{\text{LP}}(\mu) \otimes D_{[f]\to H}(\mu)$$
$$+ \frac{1}{p_T^2} \left[\sum_n C_{A+B\to[Q\bar{Q}(n)]+X}^{\text{NLP}}(\mu) \otimes D_{[f]\to H}(\mu) \right]$$

Subleading power (NLP) at LO

pQCD projection operators

$$n = (v, a, t)^{[1,8]}$$
$$= (\gamma^+, \gamma^+ \gamma^5, \gamma^+ \gamma^i)$$

U)

v: vector important at high p_T *a*: axial vector *t*: tensor suppressed at high p_T

subtract double counting

Nayak, Qiu, Sterman, PRD72 (2005) 114012 Kang, Qiu, Sterman, PRL108 (2012) 102002

Renormalization group improvement

 Twist-2 evolution equation: DGLAP + quark pair power corrections:

$$\frac{\partial D_{[f] \to H}}{\partial \ln \mu^2} = \gamma_{[f] \to [f']} \otimes D_{[f'] \to H} + \frac{1}{\mu^2} \gamma_{[f] \to [Q\bar{Q}(\kappa)]}$$

The inhomogeneous term is added to the **slope**, not to the FF itself.

Twist-4 "DGLAP like" evolution equation:

$$\frac{\partial \mathcal{D}_{[Q\bar{Q}(n)] \to H}}{\partial \ln \mu^2} = \Gamma_{[Q\bar{Q}(n)] \to [Q\bar{Q}(\kappa)]} \otimes \mathcal{D}_{[Q\bar{Q}(\kappa)] \to H}$$

The RG improved factorized cross section covers all events in which the heavy quark pair can be produced:

- 1. at the short-distance (p_T) : early stage (**NLP**)
- 2. at the input scale (2m): later stage (LP)
- 3. in-between (Quark pair power correction)

Kang, Ma, Qiu, Sterman, PRD 90, 3, 034006 (2014)

Quarkonium Fragmentation Functions

Lee, Qiu, Sterman, KW, arXiv:2211.1264

8	[hep-ph]

Phenomenology

$$D_{f \to H}(z; m, \mu_0) = \sum_{[Q\bar{Q}(n)]} \pi \alpha_s \left\{ \hat{d}_{f \to [Q\bar{Q}(n)]}^{(1)}(z; m, \mu_0, \mu_\Lambda) \right\} LDMEs$$

$$+ \frac{\alpha_s}{\pi} \hat{d}_{f \to [Q\bar{Q}(n)]}^{(2)}(z; m, \mu_0, \mu_\Lambda) + \mathcal{O}(\alpha_s^2) \right\} \frac{\mathcal{O}_{[Q\bar{Q}(n)]}^{(H}(\mu_\Lambda))}{m^{2L+3}}$$

$$D_{[Q\bar{Q}(\kappa)] \to H}(z; m, \mu_0) = \sum_{[Q\bar{Q}(n)]} \left\{ \hat{d}_{[Q\bar{Q}(\kappa)] \to [Q\bar{Q}(n)]}^{(0)}(z; m, \mu_0, \mu_\Lambda) + \hat{\mathcal{O}}(\alpha_s^2) \right\} \frac{\mathcal{O}_{[Q\bar{Q}(n)]}^{(H}(\mu_\Lambda))}{m^{2L+1}}$$

$$\mu_0 = \mathcal{O}(2m) : \text{ input scale, } \mu_\Lambda = \mathcal{O}(m) : \text{ NRQCD factorization scale}$$

$$\kappa = v^{[c]}, a^{[c]}, t^{[c]}, \quad n = \frac{2S+1}{L_L^{[c]}}$$

- We parametrized functional forms of the FFs if needed, and fitted the LDMEs to the high p_T data at CMS at 7, 13TeV.
- Only the ${}^{1}S_{0}^{[8]}$ channel is considered above, yielding unpolarized J/ψ .

11

Green light to apply the FFs to ep collisions

10 10 1	1010
pulu	

Quarkonium production in ep collisions

$$\underbrace{\frac{\partial}{\partial \ln \mu^{2}} \left(\begin{array}{c} f_{e/e}(\xi, \mu^{2}) \\ f_{e/e}(\xi, \mu^{2}) \\ f_{q/e}(\xi, \mu^{2}) \\ f_{\bar{q}/e}(\xi, \mu^{2}) \\ f_$$

Splitting functions in QED+QCD:

$$P_{ij}(\xi,\mu^2) = \sum_{n,m=0}^{\infty} \left(\frac{\alpha_{em}(\mu^2)}{2\pi}\right)$$

14

LDFs after evolution

QED (QCD) evolution is slow (fast) due to the weak (strong) μ -dependence of α_{em} (α_s).

Photon LDF vs. Weizsäcker-Williams distribution

Weizäcker-Williams (WW) distribution model at LO:

$$f_{\gamma/e}^{WW1}(\xi,\mu^2) = \frac{\alpha_{\rm em}(\mu^2)}{2\pi} P_{\gamma e}(\xi) \left[\ln\left(\frac{\mu^2}{\xi^2 m_e^2}\right) - 1 \right]$$

B.A.Kniehl, G.Kramer and M.S.
$$f_{\gamma/e}^{WW2}(\xi,\mu^2) = \frac{\alpha_{em}(\mu^2)}{2\pi} P_{\gamma e}(\xi) \left[\ln\left(\frac{\mu^2}{\mu_{\rm min}^2}\right) - 2m_e^2 \xi \left(\frac{1}{\mu^2} - \frac{1}{\mu_{\rm min}^2}\right) \right]$$
 with $\mu_{\rm min}^2 = (m_e^2 \xi^2)/(1 - \xi)$

there are higher-order corrections ($\gamma \rightarrow e^+ e^-, q\bar{q}$).

Hinderer, Schlegel, Vogelsang, PRD92, no.1, 014001 (2015) Spira, Z. Phys. C 76, 689 (1997)

• Photon LDF is smaller than the WW distribution because the large log is resummed, and

Lepto- and photo-production of light-hadron at LP

17

Lepto- and photo-production of J/ψ at LP

PDFs: CT18ANLO central set

Power corrections: Parton produciton

Lepto- and photo-production of J/ψ

- $c\bar{c}$ easily forms a J/ψ bound state than single partons.
- At low p_T , Fixed order NRQCD should take over the QCD factorization approach with the FFs
- A matching is needed. (future work)

	۲	E
	10 ⁵	- 1
	10^{4}	
\sim	10^{3}	
qd	10^{2}	
	10^{1}	
$p_T d$	10^{0}	
dp	10^{-1}	
$ \psi $	10^{-2}	
$\sigma_{ep}^{J_{I}}$	10^{-3}	
d_{i}	10^{-4}	

Summary

Single-inclusive J/ψ production of high p_T in lepton-hadron collisions was studied using the hybrid factorization formalism in QED and QCD.

- The lepto-production and photo-production of J/ψ are equally treated in the factorization formalism without introducing an artificial cut in Q^2 ; p_T is a unique scale in theory.
- Outlook1: A global fitting could systematically improve LDFs.
- ♦ **<u>Outlook2</u>**: Hadron production in SIDIS (e.g. $e + p \rightarrow e' + J/\psi + X$), sensitive to TMDs.

Thank you!

• For J/ψ production, the NLP contributions are important in ep collisions at EIC;

Appendix

Quark pair corrections to SP FFs

$$\frac{\partial D_{f \to H}}{\partial \ln \mu^2} = \gamma_{f \to f'} \otimes D_{f' \to H} + \frac{1}{\mu^2}$$
$$\frac{\partial D_{f \to H}}{\partial D_{f \to H}} \approx \frac{\partial D_{f \to H}^{\text{Homogeneous}}}{\partial \ln \mu^2} \approx \frac{\partial D_{f \to H}^{\text{Homogeneous}}}{\partial \ln \mu^2}$$

The power corrections effect at low μ^2 does not go away fast: **analogous to** nonlinear gluon recombination effects to gluon PDF at small-x and large μ^2 .

Lee, Qiu, Sterman, KW, SciPost Phys. Proc.8, 143 (2022)

The quark pair corrections to DGLAP evolution remain significant even at high $\mu^2 \sim p_T^2$.

 $\mu^2 \to \infty$: the slope of $D_{f \to H}$ is the same as LP DGLAP.

eous

Mueller and Qiu, NPB268, 427 (1986) Qiu, NPB291, 746 (1987) Eskola, Honkanen, Kolhinen, Qiu and Salgado, NPB660, 211 (2003)

- Off-diagonal channels: similar to O-to-O.

- 9.0 - 7.2 - 5.4 - 3.6 - 1.8 -0.0

Toward the matching to NRQCD

- contributions start to dominate when $p_T \gtrsim 5 \times (2m_c) \sim 15 \,\text{GeV}$, where the LP is significant, power corrections are small.
- $p_T \lesssim 10 \,\text{GeV} = \mathcal{O}(2m_c)$, where matching between QCD factorization and NRQCD factorization can be made.
- large-z would help us understand the quarkonium production mechanism.

Lee, Qiu, Sterman, **KW**, arXiv:2211.12648 [hep-ph]

Input LDFs

QED evolution starts at $\mu = m_e \sim 0.5 \text{MeV}$: $f_{e/e}(\xi) = \delta(1-\xi) \longrightarrow \frac{\xi^{\alpha}(1-\xi)^{\beta}}{B[1+\alpha,1+\beta]}$ $f_{\bar{e}/e}(\xi) = f_{\gamma/e}(\xi) = 0$

Full evolution starts at $\mu = m_c \sim 1.3 \text{GeV}$:

$$\begin{split} f_{q/e}(\xi,\mu^2 &= m_c^2) = f_{\bar{q}/e}(\xi,\mu^2 = m_c^2) \approx f_{e^+/e}(\xi,\mu) \\ f_{c/e}(\xi,\mu^2 &= m_c^2) = f_{\bar{c}/e}(\xi,\mu^2 = m_c^2) = 0 \text{ estimation} \\ f_{g/e}(\xi,\mu^2 = m_c^2) = 0 \end{split}$$

Bottom contribution joins the evolution at $\mu = m_h \sim 4.2 \text{GeV}$:

$$f_{b/e}(\xi,\mu^2=m_b^2)=f_{\bar{b}/e}(\xi,\mu^2=m_b^2)=0$$

Our choice: $\alpha = 30, \beta = 0.5$

${}^{1}S_{0}^{[8]}$ dominant scenario

- Fitting the LP formalism with the linear DGLAP evolution eq. to CMS data on high p_T prompt J/ψ at $\sqrt{s} = 7,13 \text{ TeV}$ in the bin, |y| < 1.2.
- Only the ${}^{1}S_{0}^{[8]}$ channel is considered, yielding unpolarized J/ψ . Combining LP and NLP could overshoot data for the other two color octet channels.
- $\langle O({}^{1}S_{0}^{[8]}) \rangle / \text{GeV}^{3} = 0.1286 \pm 5.179 \cdot 10^{-3}$ fitted by high

 p_T data is similar to the one extracted using fixed order NRQCD at NLO. Chao, Ma, Shao, Wang, Zhang, PRL108, 242004 (2012)

At $p_T = 30 \text{ GeV}$ and below, the NLP corrections become significant.

Lee, Qiu, Sterman, **KW**, SciPost Phys. Proc.8, 143 (2022)

The power corrections do not vanish even at the highest p_T , giving 10-30% corrections.

