Quark helicity PDFs of proton from lattice QCD

Hai-Tao Shu

for the ANL/BNL collaboration

BNL --> CCNU

The 4th EIC-Asia Workshop

Jul 1-5, 2024, Shanghai, China

The probability of finding a parton (constituent quark) with momentum fraction *x* in a longitudinally polarized fast-moving proton

Why is it important?

Quark model assumes spin of proton (1/2) equals spin of u+u+d, but European Muon Collaboration (EMC) found quarks only contribute < 30%

How to access it?

Measure structure functions (via longitudinal spin asymmetries) in processes like polarized lepton/hadron scattering off a polarized target proton

Existing experimental efforts in last 3 decades: p-p collision at RHIC; Open-charm muon production at COMPASS; Neg./pos. pion/kaon production at HERMES...

Global analysis of the experimental data

Hai-Tao Shu

Quark helicity

3

Why EIC?

- High luminosity provides more precise statistical measurements
- High polarization capacities of electron and nucleon give more access to the spin-dependent observables
- Unprecedented low-x reach for polarized DIS experiment

Status of lattice determinations

LQCD provides *ab initio* determination from first-principle!

	$m_{\pi} \; [{ m MeV}]$	$a \; [\mathrm{fm}]$	P_z [GeV]
LP^3 Coll. $18'$	physical	0.09	3.0
Gao, $et al.$, PRD20'	310	0.042	2.77
HadStruc Coll. 22'	358	0.094	2.5
Holligan and Lin, $24'$	315	0	1.75
This work	physical	0.076	1.53

Having both continuum limit and physical mass limit is still challenging!

- Theoretical aspects
- Lattice techniques and setup
- Results via pseudo-PDF approach
 - Mellin moments
 - Light cone PDF
- Results via quasi-PDF approach
 - Light cone PDF
- Comparison with global fit results and discussions

All results are preliminary!

Matrix element corresponding to quark helicity

f = u - d, u + d

 $P_{\mu} = (P_0, 0, 0, P_z)$ Hadron momentum in z direction

Both isovector and isoscalar sector Ignore disconnected diagrams

Joint fit for the bare matrix element

$$R(t_{\rm ins}, t_{\rm sep}, P_z) = h_B(z, P_z) \frac{1 + c_1(z, P_z)(e^{-\Delta E t_{\rm ins}} + e^{-\Delta E(t_{\rm sep} - t_{\rm ins})})}{1 + c_2 e^{-\Delta E t_{\rm sep}}}$$

Good control of excited-state contamination

Joint fit v.s. summation method

Filled points: joint fit using $t_{sep}/a=[6,8,10]$ Open points: summation method using $t_{sep}/a=[6,8,10]$ Open points with dot inside: summation method using $t_{sep}/a=[8,10,12]$

> Consistent among different extraction strategies Clear momentum dependence

Quark helicity

Fit Mellin moments from reduced ITD

Operator product expansion (OPE) approximation inspired model:

$$\frac{h_B(z, P_z)}{h_B(z, P_z^0)} \frac{h_B(0, P_z^0)}{h_B(0, P_z)} = \mathcal{M}(\lambda, z^2, P_z^0) = \frac{\sum_{n=0}^{\infty} C_n(\mu^2 z^2) \frac{(-i\lambda)^n}{n!} \langle x^n \rangle(\mu)}{\sum_{n=0}^{\infty} C_0(\mu^2 z^2) \frac{(-i\lambda_0)^n}{n!} \langle x^n \rangle(\mu)} + \mathcal{O}(\Lambda_{\text{QCD}}^2 z^2)$$

Lattice data as input (points)

Mellin moments as fit parameters (bands)

Including first 6 Mellin moments describes the data well Controlled precision for the first 2 moments

Compare to global fit results

Hai-Tao Shu

Light cone PDF from reduced ITD using DNN

Light cone PDF from reduced ITD using DNN

Stable results when fit with different data sets or regularization parameters Good agreement with global analysis JAM 22 and NNPDF1.1 at moderate x

DNN fitted reduced ITD

DNN fits dominated by data at small momentum Slight tension between small momentum and large momentum

Quasi-PDF method: Hybrid scheme renorm.

$$h_R(z, P_z) = \begin{cases} \frac{h_B(z, P_z, a)}{h_B(z, P_z = 0, a)} & |z| \le z_s \\ \frac{h_B(z, P_z, a)}{h_B(z_s, P_z = 0, a)} e^{(\delta m + \bar{m}_0)(z - z_s)} & |z| \ge z_s \\ \end{cases}$$
 Ratio scheme renorm.

Other renormalizations distort IR behavior of the bi-local operator at large z!

Quasi-PDF method: determination of renormalon

Plateau $\sim z = 3a$: controlled discretization effects and high twist effects

$$h_R(z, P_z) = \begin{cases} \frac{h_B(z, P_z, a)}{h_B(z, P_z = 0, a)} & |z| \le z_s \\ \frac{h_B(z, P_z, a)}{h_B(z_s, P_z = 0, a)} e^{(\delta m + \bar{m}_0)(z - z_s)} & |z| \ge z_s \end{cases}$$

Hai-Tao Shu

Quark helicity

Renormalized matrix elements in Hybrid scheme

RGR introduces a small correction within 1 σ statistical error Larger error size when with RGR, from scale variation Visible momentum dependence

Large lambda extrapolation

$$h_R^{\text{extra}}(\lambda, \lambda_s, P_z, \mu) = \frac{Ae^{-m_{\text{eff}}\lambda/P_z}}{|\lambda|^d}$$

$$\Delta \tilde{q}(y,\mu) = \int \frac{\mathrm{d}\lambda}{2\pi} e^{iy\lambda} h_R(\lambda,\lambda_s,P_z,\mu) \quad \text{Quasi-PDF}$$

quasi-PDF in x-space

Imaginary parts are zero within errors Visible momentum dependence RGR induces a small enhancement and the error grows

Perturbative matching

Complete comparison

Visible difference between pseudo-PDF approach and quasi-PDF approach Better agreement with global fit results for pseudo-PDF approach than quasi-PDF approach (need to investigate further)

Soffer bound (I)

[J. Soffer, PRL 74, 1292 (1995)]

 $q(x) \ge |\Delta q(x)|$

Soffer bound I respected within error

Soffer bound (II)

[J. Soffer, PRL 74, 1292 (1995)]

 $q(x) + \Delta q(x) \ge 2|\delta q(x)|$

Soffer bound II not violated by 1-2 σ

- Computed quark helicity matrix elements for both the isoscalar & isovector sectors
- Computed the Mellin moments (controlled precision for the first two)
- ✓ Computed the light cone PDF using both pseudo-PDF and quasi-PDF approach
- Adopted advanced reconstruction technique in the pseudo-PDF approach and state-of-the-art renormalization in the quasi-PDF approach
- Studied various systematics
- Examined the Soffer bound
- Push to larger momentum to suppress the high-twist effects
- Add more statistics to control the statistical uncertainties
- Add more lattice spacings for the continuum limit

Backup: Lattice setup

Ensembles	m_{π}	$N_{ m cfg}$	$ n_z $	$ k_z $	$t_{ m sep}/a$	(#ex,#sl)
$a, L_t imes L_s^3$	(GeV)					
a = 0.076 fm	0.14	350	0	0	6	(1, 16)
$64 imes 64^3$			0	0	8,10	(1, 32)
			0	0	12	(2, 64)
			1	0	6,8,10,12	(1, 32)
			4	2	6	(1, 32)
			4	2	8,10,12	(4, 128)
			6	3	6	(1, 20)
			6	3	8	(4, 100)
			6	3	$10,\!12$	(5, 140)

Clover-wilson valence on HISQ sea

Momentum smearing to improve SNR

Backup: Sanity check of the joint fit

Filled points: effective mass from 2pt Open points: effective mass from jointly-fit 2pt Bands: ground-state mass from joint fit of R and 2pt

Good control of lattice discretization effects

Backup:

Renormalized axial-vector charge

Hai-Tao Shu

Backup: covariance matrix (I)

Backup: covariance matrix (II)

Backup: covariance matrix (III)

Backup: covariance matrix (IV)

Backup: covariance matrix (V)

Backup: dependence on DNN parameters

$$\text{Loss} = \frac{\eta}{2} \boldsymbol{\theta} \cdot \boldsymbol{\theta} + \omega ||\nabla f_{\text{DNN}}|| + \frac{\chi^2}{2}$$

Backup: decaying model

$$\left[\frac{c_1}{(i\lambda)^a} + e^{-i\lambda}\frac{c_2}{(-i\lambda)^b}\right]e^{-\lambda/\lambda_0}$$

Hai-Tao Shu

Quark helicity

Euclidean state with momentum squared $-p^2 \gg \Lambda_{\rm QCD}^2$ in a fixed gauge, and then defines $\overline{\rm MS}$ operators as,

$$O_{\overline{\mathrm{MS}}}(z,\mu) \equiv Z_{\overline{\mathrm{MS}}}(z,-p^2,\mu) \frac{O(z,a)}{Z(z,-p^2,a)},\tag{13}$$

where $Z_{\overline{\text{MS}}}$ converts the RI/MOM renormalized result to the $\overline{\text{MS}}$ scheme. The gauge and $-p^2$ dependences cancel between two Z-factors. The r.h.s. has a proper continuum limit $a \to 0$ without divergences.

However, while the RI/MOM approach is justified for local operators, it has potential problems when applied to nonlocal ones. For instance, when z becomes large, $Z_{\overline{\text{MS}}}(z, -p^2, \mu^2)$ contains IR logarithms of z and the perturbative calculation of z-dependence is not reliable. Moreover, although the RI/MOM factor $Z(z, -p^2, a)$ helps to cancel the lattice UV divergences, the composite operator at large-z contains non-perturbative physics as well. Therefore, both Z-factors contain non-cancelling non-perturbative effects which alter the IR properties of O(z). Thus, the RI/MOM renormalization scheme is not reliable at large-z. Moreover, when gluon distributions are involved, it requires external off-shell gluon states which bring in potential mixing with gauge-variant operators and make things much more complicated [67].

arXiv:2008.03886