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Major Questions in Nuclear Physics

Spin puzzleOrigin of mass

Ortibal angular momentum

𝐿 = Ԧ𝑟 × Ԧ𝑝

Nuclear force

We need to know the structure of nucleon beyond 1D
and how it emerges from QCD  

ℒ𝑄𝐶𝐷 = ത𝜓𝑞(𝑖𝐷 − 𝑚𝑞)𝜓𝑞 −
1

4
𝐺𝜇𝜈
𝛼 𝐺𝛼

𝜇𝜈
/

?
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I n t r o d u c t i on B L F Q | qqq i | qqq i + | qqqg i C on c l u si on s

Fundamental Propert ies: Mass and Spin

• About 99% of the visible mass is

contained within nuclei

• Nucleon: composite part icles, built

from nearly massless quarks (⇠ 1%

of the nucleon mass) and gluons

• How does 99% of the nucleon mass

emerge?

• Quant itat ive decomposit ion of

nucleon spin in terms of quark and

gluon degrees of freedom is not yet

fully understood.

• To address these fundamental issues

! nature of the subatomic force

between quarks and gluons, and the

internal landscape of nucleons.

1
P i c t u r es ( t op t o b ot t om ) t ak en f r om A . Si gn or i ’ s t a l k , J . Q u i t a l k , C . L or ce’ s t a l k
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Electron–Ion Colliders

• EIC in the US is under construction by BNL@New York
• EicC in China is been planned by IMPCAS@Huizhou

• Electron-Ion colliders with large collision energy and high luminosity

Complimentarity
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Nonperturbative Approach to Proton Structure

• Schrödinger equation universally describes bound-state structure

Nonrelativistic Nonrelativistic Relativistic

atom nucleus nucleon

• Eigenstates 𝜓 encode full information of the system

𝐻 𝜓 = 𝐸|𝜓〉

9

• Major challenges from relativity: frame dependence in wave 
function, particle number not conserving…



t º x0
2 HAMILTONIAN DYNAMICS 19

Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x) = ||∂x/ ∂x||, part icularly

d4x = J (x) d4x. We shall keep track of the Jacobian only implicit ly. The three-volume

element dω0 is t reated correspondingly.

All the above considerat ions must be independent of this reparametrizat ion. The

fundamental expressions like the Lagrangian can be expressed in terms of either x or x.

There is however one subt le point . By matter of convenience one defines the hypersphere

as that locus in four-space on which one sets the ‘init ial condit ions’ at the same ‘init ial

t ime’, or on which one ‘quant izes’ the system correspondingly in a quantum theory. The

hypersphere is thus defined as that locus in four-space with the same value of the ‘t ime-

like’ coordinate x0, i.e. x0(x0, x) = const. Correspondingly, the remaining coordinates

are called ‘space-like’ and denoted by the spat ial three-vector x = (x1, x2, x3). Because

of the (in general) more complicated metric, cuts through the four-space characterized

by x0 = const are quite different from those with x0 = const. In generalized coordinates

the covariant and contravariant indices can have rather different interpretat ion, and one

must be careful with the lowering and rising of the Lorentz indices. For example, only

∂0 = ∂/ ∂x0 is a ‘t ime-derivat ive’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P0

which in general are completely different objects. The actual choice of x(x) is a matter

of preference and convenience.

2D Forms of H amilt onian D ynamics

Obviously, one has many possibilit ies to parametrize space-t ime by introducing some

generalized coordinates x(x). But one should exclude all those which are accessible by a
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i
¶

¶t
j(t) = H j(t) i

¶

¶x+
j(x+ ) =

1

2
P- j(x+ )

P0 = m2 + P2
P- =

m2 + P̂2

P+

𝑥1, 𝑥2, 𝑥3

𝑃0, 𝑃

𝑥− = 𝑥0 − 𝑥3,
𝑥⊥ = 𝑥1,2

𝑃− = 𝑃0 − 𝑃3,
𝑃+ = 𝑃0 + 𝑃3,𝑃⊥ = 𝑃1,2

Main advantage:

• Parton distribution functions are defined
on the light front

• Frame-independent light-front wave 
functions

• …

Light-front Quantization

Equal time quantization Light-front quantization [Dirac, 1949]

Eg., operator definition for GPD:

Φ 𝛾+ 𝑥, Δ; 𝑄2

= න
𝑑𝑧−

8𝜋
𝑒𝑖𝑥𝑃

+𝑧−/2⟨𝑃 + Δ, Λ ത𝜓 𝑧 𝛾+𝜓 0 𝑃, Λ⟩
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Basis Light-Front Quantization

• Hamiltonian eigenvalue equation:

𝑃− ⟩𝛽 = 𝑃𝛽
− ⟩𝛽

o 𝑷−: Light-Front Hamiltonian
o | ⟩𝜷 : Eigenstates
o 𝑷𝜷

−: Eigenvalues for eigenstates

[Vary, et.al, Phys.Rev.C ’10] 

| ⟩𝛽nucleon = | ⟩𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑞ത𝑞 + ⋅⋅⋅⋅⋅⋅Fock sector expansion:

Single particle basis
in |𝑞𝑞𝑞⟩:

𝛼 = |𝑛1, 𝑚1, 𝑛2, 𝑚2, 𝑛3, 𝑚3⟩

2-dimension harmonic 
oscillator

⨂ |𝑘1
+, 𝑘2

+, 𝑘3
+⟩⨂|𝜆1, 𝜆2, 𝜆3, 𝐶⟩

Discretized longitudinal 
momentum

Helicity and color

෍

𝑖

(2𝑛𝑖 + 𝑚𝑖 + 1) ≤ 𝑁max
෍

𝑖

𝑘𝑖
+ = 𝐾max

• Basis setup:

Basis truncation:

• Advantages:
1. Rotational symmetry in transverse plane
2. Exact factorization between center-of-mass motion and intrinsic motion
3. Harmonic oscillator basis supplies infrared behavior for hadrons

Λ =෍

𝑖

(𝜆𝑖 +𝑚𝑖)
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Publications on Nucleon

➢ GPDs:

➢ TMDs:

⟩𝑃, Λ = ⟩𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑢ത𝑢 + 𝑞𝑞𝑞 𝑑 ҧ𝑑 + 𝑞𝑞𝑞 𝑠 ҧ𝑠 + ⋯

➢ Wave Functions:

13

[Xu et al., Phys.Rev.D,104.094036] (2021)

[Liu et al., Phys.Rev.D,105.094018]  (2022)

[Zhang et al.,Phys.Rev.D,109.034031] (2023)

[Kaur et al., Phys. Rev. D 109, 014015] (2024)

[Lin et al., Phys.Lett.B,847 138305]  (2023)

[Liu et al., Phys.Lett.B,855.138809]  (2024)

[Chandan et al., Phys.Rev.D,102.016008] (2019)

[Xu et al.,  Phys.Rev.D,108 9, 094002] (2023) 

[Zhi Hu et al., Phys.Lett.B,833.137360] (2022)

[Zhimin Zhu et al., Phys.Rev.D,108.036009] (2023)

[Zhimin Zhu et al., 1404.13720 [hep-ph]] (2024)



Light-front Hamiltonian
➢ QCD light-front Hamiltonian can be derived from QCD Lagrangian:

𝑃𝑄𝐶𝐷
− = 𝐻𝐾 + 𝐻𝐼ℒ𝑄𝐶𝐷 = ത𝜓 𝑖𝐷 − 𝑚 𝜓 −

1

4
𝐺𝜇𝜈
𝛼 𝐺𝛼

𝜇𝜈/

𝐻𝐾 =

𝐻𝐼 =

𝜓: quark field operator
𝐴𝜇
𝑎: gluon field operator

𝐴+ = 0

14



First Step: Up to |𝒒𝒒𝒒𝒒ഥ𝒒⟩

ൿ𝑃𝑏𝑎𝑟𝑦𝑜𝑛 = Ψ1 ⟩𝑞𝑞𝑞 + Ψ2 𝑞𝑞𝑞𝑔 + Ψ31 𝑞𝑞𝑞 𝑢ത𝑢 + Ψ32 𝑞𝑞𝑞 𝑑 ҧ𝑑 + Ψ33 𝑞𝑞𝑞 𝑠 ҧ𝑠

𝑯𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕 = 𝒈ഥ𝝍 𝜸𝝁𝑻𝒂 𝝍 𝑨𝝁
𝒂 +

𝒈𝟐𝑪𝑭
𝟐

𝒋+
𝟏

𝒊𝝏+ 𝟐
𝒋+ +

𝒈𝟐𝑪𝑭
𝟐

ഥ𝝍𝜸𝝁𝑨𝝁
𝜸+

𝒊𝝏+
𝑨𝝂𝜸

𝝂𝝍

𝑷− = 𝑯𝑲.𝑬. +𝑯𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕

𝑯𝑲.𝑬. =෍

𝒊

𝒑𝒊
𝟐 +𝒎𝒒

𝟐

𝒑𝒊
+
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Fock Sector Decomposition
ൿ𝑃𝑏𝑎𝑟𝑦𝑜𝑛 → ⟩𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞𝑢ത𝑢 + 𝑞𝑞𝑞𝑑 ҧ𝑑 + 𝑞𝑞𝑞𝑠 ҧ𝑠

Truncation parameter: 𝑁max = 7 and 𝐾max = 16

49.08%

27.03%

2.52%

13.07%

8.30%
23.89%

𝑞𝑞𝑞𝑔

𝑞𝑞𝑞 𝑠 ҧ𝑠

𝑞𝑞𝑞 𝑑 ҧ𝑑

𝑞𝑞𝑞

𝑞𝑞𝑞 𝑢ത𝑢

In five quark Fock sector, we use current quark masses

𝒎𝒖 𝒎𝒅 𝒎𝒇 𝒈 𝒃 𝒃𝒊𝒏𝒔𝒕

1.0 GeV 0.9 GeV 5.8 GeV 3.0 0.7 GeV 2.8 GeV

16

𝜇0
2 = 0.22 GeV2

Parameter set:



Form Factor 

• Comparing to experimental data, BLFQ results show good agreement at small 𝑄2

• BLFQ results almost satisfy Sudakov FF relation at large 𝑄2

𝑁 𝑝′ 𝐽𝜇 0 𝑁 𝑃

= ത𝑢 𝑃′ 𝛾𝜇𝐹1 𝑄2 +
𝑖𝜎𝜇𝜈

2𝑀𝑃
𝑞𝜈𝐹2 𝑄2 𝑢(𝑃)

𝑟𝐸 = 0.786 fm

𝑟𝑀 = 0.775 fm

𝑟𝐸 = 0.833 ± 0.010 fm

𝑟𝑀 = 0.851 ± 0.026 fm

[Particle Data Group]



Unpolarized PDF

Unpolarized PDFs:

• Particle number density distribution

• Fitting the initial scale by comparing the 

second moment at experimental scale

• Qualitative agreement with global fitting

𝜇2 = 10 GeV2

𝜇0
2 = 0.22 GeV2



Unpolarized PDF

• Gluon and sea quark distribution are calculated
• Qualitative trend with various global fitting results



Helicity PDF

• Helicity PDFs encode information on spin contributions from parton to hadron

• At 𝑥 < 0.2 region, helicity PDFs of u quark qualitatively agree with global fitting data

• Helicity PDF of d quark has a good agreement with global fitting results

[COMPASS, Phys. Lett. B 693, 227 (2010) ]

[HERMES, Phys. Rev. D 71, 012003 (2005)]

ΔΣ𝑢 = 0.86 ΔΣ𝑑 = −0.16

Δ𝐺 = න
0.05

0.2

𝑑𝑥 Δ𝑔 𝑥 =0.26 ~ 0.251(47)(16)

𝜇2 = 5 GeV2

ΔΣ𝑢−𝑑 = 1.02 ~ 1.27
Extracted data

ΔΣ𝑢+𝑑 = 0.7 > 0.35

NNPDF

[NNPDF, Phys. Rev. Lett. 118, 102001 (2017)]



Helicity PDF

➢ Spin decomposition

1

2
=
1

2
ΔΣ + Δ𝐺 + 𝐿𝑞 + 𝐿𝑔

ΔΣഥ𝑢 = 0.008

ΔΣഥd = 0.008

ΔΣ𝑠 = ΔΣതs = 0.007

[JAM, Phys. Rev. Lett. 119, 132001 (2017)] [NNPDF, Nucl. Phys. B 887, 276 (2014)]
21

[Jaffe and Manohar, (1990)]

ΔΣ𝑢 = 0.86

ΔΣ𝑑 = −0.16
𝜇0
2 = 0.22 GeV2



Transversity PDF

• BLFQ show approximately polarized symmetry between the transverse and longitudinal 
direction

• BLFQ results more close to the JAM data.
• Down quark’s tensor charge agrees with the global fitting data
• Up quark’s tensor charge is larger than global fitting data

𝜇2 = 4𝐺𝑒𝑉2



TMDs for Valence and Sea Quarks

• T-even TMDs
• Gauge link ignored (=1)
• Small x behavior is contributed by |𝑞𝑞𝑞𝑞ത𝑞⟩

23



TMDs for Sea Quarks and Gluon

• Strange and anti-strange quarks 

are peaked in the small-x region

24



TMDs with Five Particle Fock Sector

• Up and Down quarks have opposite sign
• Anti-up and anti-down quarks have the same sign



TMDs with Five Particle Fock Sectors

• Strange and anti-strange quark have 

the same distribution



TMDs with Five Particle Fock Sector

• Up and down quarks have opposite sign
• Anti-up and anti-down quarks have the same sign



TMDs with Five Particle Fock Sector

• There is no asymmetry 

between strange and anti-

strange quark in the current 

Fock space truncation

• Strange and anti-strange quark 

have the same distribution



GPDs for Valence Quarks

• 𝑢 and 𝑑 quark GPDs (contributions from all Fock sectors) 

• 𝐸𝑢 has positive distribution while 𝐸𝑑 is negative, consistent with Dirac FF

Preliminary
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GPDs for Gluon and Sea Quarks

• Gluon and 𝑠 quark GPDs

• 𝐸𝑠 mainly contributes at small 𝑥 region

Preliminary
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GPDs for Sea Quarks

• ത𝑢 and ҧ𝑑 GPDs are concentrated in small-x region

• ത𝑢 and ҧ𝑑 GPD 𝐸 have small negative region around 𝑥~0.2

𝐻ഥ𝑢

𝐸 ത𝑑𝐻 ത𝑑

𝐸ഥ𝑢 Preliminary

31



Transverse Radius

• Valence quarks occupy core region

• Gluon radius > sea quark radius > valence quark radius

• As 𝑥 → 1, nucleon behaves like point particle 32



Conclusion

• Basis Light-front Quantization: 

- Nonperturbative approach to quantum field theory in Hamiltonian formalism

- Full relativistic effects included

- Access to 3D structure of hadrons: FFs, PDFs, GPDs, TMDs…

- Access to parton correlation / higher twist distributions

• Clean input from QCD interactions

- Correct overall behavior in both longitudinal and transverse directions

- Almost correct spin structure

- Insufficient large-x component (possibly due to missing confinement)
33



OutLook

• First principles calculation of proton structure
- Full QCD light-front Hamiltonian implemented

- More higher Fock sectors included

• Excited nucleon states/mesons/light nuclei

• Reaction dynamics through time-dependent light-
front Schrödinger equation

34
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TMDs for Valence and Sea Quarks

• Small x behavior is contributed by |𝑞𝑞𝑞𝑞ത𝑞⟩
37



TMDs for Sea Quarks and Gluon

• Strange and anti-strange quarks 

are peaked in the small-x region

38



Average Transverse Momentum Distribution

• In small-x region, average transverse momentum of gluon is larger than quark
• In large-x region, gluon distribution is almost same with quark distributions

• Total contributions from 𝑞𝑞𝑞 + 𝑞𝑞𝑞 𝑔 + 𝑞𝑞𝑞𝑞ത𝑞

39



Publications on Nucleon GPDs

➢ | ⟩𝒒𝒒𝒒 :

[Xu et al., Phys.Rev.D,104.094036] (2021)

[Liu et al., Phys.Rev.D,105.094018]  (2022)

[Zhang et al., arXiv:2312.00667 [hep-th]] (2023)

[Kaur et al., Phys. Rev. D 109, 014015] (2024)

➢ ⟩|𝒒𝒒𝒒 + ⟩|𝒒𝒒𝒒𝒈 :

[Xu et al.,  Phys.Rev.D,108 9, 094002] (2023) 

[Lin et al., Phys.Lett.B,847 138305]  (2023)

⟩𝑃, Λ = ⟩𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔 + 𝑞𝑞𝑞 𝑢ത𝑢 + 𝑞𝑞𝑞 𝑑 ҧ𝑑 + 𝑞𝑞𝑞 𝑠 ҧ𝑠 + ⋯

➢ ⟩|𝒒𝒒𝒒 + ⟩|𝒒𝒒𝒒𝒈 + 𝒒𝒒𝒒𝒒ഥ𝒒 :

Work in progress
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Deeply Virtual Compton Scattering

➢ The deeply virtual Compton scattering describes the process: 𝑒 + 𝑝 → 𝑒 + 𝑝 + 𝛾

GPDs

𝑃′

𝑞′𝑄2𝛾∗

𝑥 + 𝜉

𝑃

𝑥 − 𝜉

𝑘𝑘′ Hard part:
Perturbative 
description

Soft part:
Non-perturbative 
description

GPDs

𝑃′

𝑞′𝑄2𝛾∗

𝑥 + 𝜉

𝑃

𝑥 − 𝜉

𝑘𝑘′

➢ The DVCS cross-section is distinguishable with BH process: 

𝑝′

𝑞′
𝛾∗

𝑝

𝑘

𝑘′

𝑝′

𝑞′

𝛾∗

𝑝

𝑘

𝑘′

𝑝′

𝑞′

𝛾∗

𝑝

𝑘

𝑘′

DVCS Bethe-Heitler 41



GPDs and Compton Form Factors

Cross-section
Structure 
functions

42



GPDs and Compton Form Factors
➢ Cross sections to Compton form factors 

𝑇 2 = 𝑇𝐵𝐻 + 𝑇𝐷𝑉𝐶𝑆
2 = 𝑇𝐵𝐻

2 + 𝑇𝐷𝑉𝐶𝑆
2 + 𝑇𝐵𝐻

∗ 𝑇𝐷𝑉𝐶𝑆 + 𝑇𝐷𝑉𝐶𝑆
∗ 𝑇𝐵𝐻

Cross-section
Structure 
functions

Compton 
form factors

➢ GPDs to Compton form factors 

ℱ 𝜉, −𝑡 = න
−1

1

𝑑𝑥
1

𝑥 − 𝜉 − 𝑖𝜖
−

1

𝑥 + 𝜉 − 𝑖𝜖
𝐹(𝑥, 𝜉, −𝑡)

෨ℱ 𝜉, −𝑡 = න
−1

1

𝑑𝑥
1

𝑥 − 𝜉 − 𝑖𝜖
+

1

𝑥 + 𝜉 − 𝑖𝜖
෨𝐹(𝑥, 𝜉, −𝑡)

GPDsCFFs

• Compton form factors are integrations of GPDs over 𝑥
• It is challenging to extract GPDs from CFFs

• Exploring GPDs from theory is interesting 

43



Semi-Inclusive DIS

44



Spin Asymmetry

➢ Sivers Asymmetry:

➢Collins Asymmetry:

➢ Structure functions:

45



Spin Asymmetry

experiment data is HERMES 2020 

𝐴𝑈𝑇
sin 𝜙ℎ+𝜙𝑆 ∝

𝒞 𝜔3ℎ1𝐻1
⊥

𝒞[𝑓1𝐷1]
𝜔3 = −

෠ℎ ⋅ 𝑘𝑇
𝑀

𝑀 is the mass of nucleon
𝑀ℎ is the mass of Hadron 46



Light-Front Hamiltonian

𝑷− = 𝑯𝑲.𝑬. +𝑯𝒕𝒓𝒂𝒏𝒔 +𝑯𝒍𝒐𝒏𝒈𝒊 +𝑯𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕

𝑯𝒕𝒓𝒂𝒏𝒔 ~ 𝜿𝑻
𝟒𝒓𝟐

𝑯𝒍𝒐𝒏𝒈𝒊 ~−෍

𝒊𝒋

𝜿𝑳
𝟒𝝏𝒙𝒊 𝒙𝒊𝒙𝒋𝝏𝒙𝒋

𝑯𝑲.𝑬. =෍

𝒊

𝒑𝒊
𝟐 +𝒎𝒒

𝟐

𝒑𝒊
+

---Y Li, X Zhao , P Maris , J Vary, PLB 758(2016)

-- Brodsky, Teramond arXiv: 1203.4025

𝑯𝑰𝒏𝒕𝒆𝒓𝒂𝒄𝒕 = 𝑯𝑽𝒆𝒓𝒕𝒆𝒙 +𝑯𝒊𝒏𝒔𝒕 = 𝒈ഥ𝝍 𝜸𝝁𝑻𝒂 𝝍 𝑨𝝁
𝒂 +

𝒈𝟐𝑪𝑭
𝟐

𝒋+
𝟏

𝒊𝝏+ 𝟐
𝒋+

ൿ𝑃𝑏𝑎𝑟𝑦𝑜𝑛 = Ψ1 ⟩𝑞𝑞𝑞 + Ψ2 𝑞𝑞𝑞𝑔
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BLFQ without DGBLFQ with DG

MMHT 14 NNPDFunpol3.1
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Unpolarized Parton Distribution Functions

Including the One Dynamical Gluon Fock Sector, the gluon distribution is closer to the global fit.

𝜇0
2 = 0.19 ± 0.02 GeV2
𝜇0
2 = 0.24 ± 0.01 GeV2

[EPJC 77 (2017) 663]S. Xu, CM, X. Zhao, Y. Li, J. P. Vary, 2209.08584 [hep-ph].

Unpolarized PDFs:

• Interpret as particle number density

distribution

• The data point are extracted from 

MARATHON data
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BLFQ without DG

BLFQ with DG
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Nucleon Spin with BLFQ
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➢ Spin decomposition in BLFQ

1

2
=
1

2
ΔΣ + Δ𝐺 + 𝐿𝑞 + 𝐿𝑔

xΔ
Σ

xΔ
𝐺

➢ Obtain observables from wave function

𝑂 ≡ 𝛽′, Λ′ ෠𝑂 𝛽, Λ

Nucleon
spin

Quark Helicity
∼ 72%

Gluon Helicity
∼ 36%

Orbital Angular
Momentum

∼ 2%

S. Xu, CM, X. Zhao, Y. Li, J. P. Vary, 2209.08584 [hep-ph].
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BLFQ with DG

COMPASS all pT(2002- 06)

COMPASS high pT(2002- 04)

COMPASS open charm (2002- 07,NLO)

HERMES high pT

SMC high pT
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Helicity Parton Distribution Functions

N. Sato et al. [JAM], PRD93 (2016); E. R. Nocera et al. [NNPDF], NPB 887 (2014). 

S. Xu, CM, X. Zhao, Y. Li, J. P. Vary, 2209.08584 [hep-ph].

LFH I & II

LSS NLO

Chiral Soliton Model

Statistical Model

E99- 117/EG1

E06- 014/EG1
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BLFQ with DG
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The sea quarks' contributions come from the DGLAP evolution
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Orbital angular momentum distributions

ℓ𝑢 = 0.0327 ± 0.0013 ℓ𝑔 = −0.0065 ± 0.0005ℓ𝑑 = −0.0114 ± 0.0004Canonical: 

At the LC gauge : 
1

2
ΔΣ = 0.359 ± 0.002 Δ𝐺 = 0.131 ± 0.003

u quark

d quark

gluon

0.0 0.2 0.4 0.6 0.8
- 0.01

0.00

0.01
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0.03

x

x
L
(x

)

[In preparation, Siqi Xu, C. Mondal et.al ]
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BLFQ with DG

COMPASS all pT(2002- 06)

COMPASS high pT(2002- 04)

COMPASS open charm (2002- 07,NLO)

HERMES high pT

SMC high pT
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Helicity Parton Distribution Functions

N. Sato et al. [JAM], PRD93 (2016); E. R. Nocera et al. [NNPDF], NPB 887 (2014). 

S. Xu, CM, X. Zhao, Y. Li, J. P. Vary, 2209.08584 [hep-ph].

LFH I & II

LSS NLO

Chiral Soliton Model

Statistical Model

E99- 117/EG1

E06- 014/EG1

EG1b

HERMES

BLFQ with DG
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The sea quarks' contributions come from the DGLAP evolution
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3-Dimension Structure of Nucleon
➢ Obtain observables from wave function

𝑂 ≡ 𝛽 ෠𝑂 𝛽

[arXiv:2209.08584 [hep-ph]]

Fock 
sector

Leading Fock 
sector

𝑞𝑞𝑞 ∼ 44%

Next leading 
Fock sector
𝑞𝑞𝑞𝑔 ∼ 56%

| ⟩𝛽nucleon = | ⟩𝑞𝑞𝑞 + 𝑞𝑞𝑞𝑔

[In preparation, Bolang Lin, Siqi Xu, C. Mondal et.al ]
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TMDs with One Dynamical Gluon

• Including 𝑞𝑞𝑞 + |𝑞𝑞𝑞 𝑔⟩ Fock 
sector, we calculate the gluon 
distribution in the proton

• Small x behaviour: higher Fock 
sector
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Orbital angular momentum distributions

ℓ𝑢 = 0.0327 ± 0.0013 ℓ𝑔 = −0.0065 ± 0.0005ℓ𝑑 = −0.0114 ± 0.0004Canonical: 

At the LC gauge : 
1

2
ΔΣ = 0.359 ± 0.002 Δ𝐺 = 0.131 ± 0.003
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[In preparation, Siqi Xu, C. Mondal et.al ]
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