

Spin asymmetry and electroweak properties of SM and beyond at the EIC

Bin Yan Institute of High Energy Physics

The 4th EIC-Asia Workshop July 1-5, 2024

The status of SM

Remarkable agreement between SM theory and data

New Physics beyond the SM new measurements

New Physics Searches @ LHC

*Only a selection of the available mass limits on new states or phenomena is shown † Small-radius (large-radius) jets are denoted by the letter j (J).

Top-down approach

Bottom-up approach

Why Electron-Ion Collider?

- 1. Explore and image the spin and 3D structure of the nucleon
- 2. Discover the role of gluons in structure and dynamics
- 3. Constraint for the PDFs, Polarized and unpolarized
- 4. Possibilities of Beyond the Standard Model?

 $10\sim 100~{\rm fb}^{-1}$

High Polarization: $P_e = P_p = 0.7$

Electroweak properties

EIC is also an important machine for the New Physics

Longitudinal polarization of the electron

Electroweak Precision measurement

		Measurement with	Systematic	Standard Model	Pull
		Total Error	Error	$\operatorname{High-}Q^2$ Fit	
$\Delta \alpha_{ m had}^{(5)}(m_{ m Z}^2)$ [59]		0.02758 ± 0.00035	0.00034	0.02767 ± 0.00035	0.3
$m_{ m Z}$	[GeV]	91.1875 ± 0.0021	(a)0.0017	91.1874 ± 0.0021	0.1
$\Gamma_{\rm Z}$	[GeV]	2.4952 ± 0.0023	$^{(a)}0.0012$	2.4965 ± 0.0015	0.6
$\sigma_{ m had}^0$	i [nb]	41.540 ± 0.037	$^{(a)}0.028$	41.481 ± 0.014	1.6
R^0_ℓ		20.767 ± 0.025	$^{(a)}0.007$	20.739 ± 0.018	1.1
$A_{ m FI}^{0,}$	ℓ 3	0.0171 ± 0.0010	(a)0.0003	0.01642 ± 0.00024	0.8
+ con T	relation matrix able 2.13				
\mathcal{A}_{ℓ}	(P_{τ})	0.1465 ± 0.0033	0.0015	0.1480 ± 0.0011	0.5
\mathcal{A}_{ℓ}	(SLD)	0.1513 ± 0.0021	0.0011	0.1480 ± 0.0011	1.6
$R_{ m b}^0$		0.21629 ± 0.00066	0.00050	0.21562 ± 0.00013	1.0
$R_{\rm c}^0$		0.1721 ± 0.0030	0.0019	0.1723 ± 0.0001	0.1
$A_{\rm FI}^{0,}$	b 3	0.0992 ± 0.0016	0.0007	0.1037 ± 0.0008	2.8
$A_{ m FI}^{0,}$	с 3	0.0707 ± 0.0035	0.0017	0.0742 ± 0.0006	1.0
\mathcal{A}_{b}		0.923 ± 0.020	0.013	0.9346 ± 0.0001	0.6
\mathcal{A}_{c}		0.670 ± 0.027	0.015	0.6683 ± 0.0005	0.1
+ con T	relation matrix able 5.11				
sin^2	$^2 heta_{ ext{eff}}^{ ext{lept}} \left(Q_{ ext{FB}}^{ ext{had}} ight)$	0.2324 ± 0.0012	0.0010	0.23140 ± 0.00014	0.8
$m_{ m t}$	[GeV] (Run-I [212])	178.0 ± 4.3	3.3	178.5 ± 3.9	0.1
$m_{ m W}$	[GeV]	80.425 ± 0.034		80.389 ± 0.019	1.1
Γ_{W}	[GeV]	2.133 ± 0.069		2.093 ± 0.002	0.6
+ corr Se	relation given in ection 8.3.2				

Phys.Rept. 427 (2006) 257-454

LEP: 1989-2000

Electroweak Precision measurement

Excluded by off-Z pole data

$$e^{-}$$
 Y b Z e^{+} \overline{b} \overline{b}

 $\mathcal{L} = \bar{b}\gamma_{\mu}(\kappa_V g_V - \kappa_A g_A \gamma_5) bZ_{\mu}$

Large deviation of the Zbb coupling
The degeneracy of the Zbb coupling

Zbb couplings @ Colliders

A. Lepton colliders:

S. Gori, Jiayin Gu, Lian-Tao Wang, JHEP 04(2016) 062 Bin Yan, C.-P. Yuan and Shu-Run Yuan, PRD108(2023)5, 053001

B. LHC Zh production and Z boson rare decay:

Bin Yan, C.-P. Yuan, PRL127(2021)5,051801

Hongxin Dong, Peng Sun, Bin Yan and C.-P. Yuan, PLB829(2022)137076

C. LHC Z+2b-jet production F. Bishara and Zhuoni Qian, 2306.15109

D. HERA and EIC with polarized lepton beam:

Bin Yan, Zhite Yu and C.-P. Yuan, PLB822(2021)136697 Hai Tao Li, Bin Yan and C.-P. Yuan, PLB833(2022)137300

 $\mathbf{Y}(\mathbf{n} \mathbf{s})$

Zbb couplings @ EIC

Bin Yan, Zhite Yu and C.-P. Yuan, PLB822(2021)136697

Single-Spin Asymmetry (SSA):

$$A_e^b = \frac{\sigma_{b,+}^{\text{tot}} - \sigma_{b,-}^{\text{tot}}}{\sigma_{b,+}^{\text{tot}} + \sigma_{b,-}^{\text{tot}}}$$

+/-: right/left-handed lepton

- 1. <u>Photon-only</u> diagrams will cancel in SSA
- 2. Leading contribution: γ -*Z* interference
- 3. Only sensitive to the vector component of the Zbb coupling

DIS cross section

Zbb couplings @ EIC

The minimal luminosities needed to resolve the degeneracy or exclude LEP AFB data: (i) : $\mathcal{L} > 0.5 \text{ fb}^{-1}$; (ii) : $\mathcal{L} > 4.0 \text{ fb}^{-1}$. (i) : $\mathcal{L} > 42.0 \text{ fb}^{-1}$; (ii) : $\mathcal{L} > 332.6 \text{ fb}^{-1}$.

Four-fermion operators

R. Boughezal, F. Petriello, D. Wiegand, PRD 101 (2020) 11,116002

$\mathcal{O}_{lq}^{(1)}$	$(ar l\gamma^\mu l)(ar q\gamma_\mu q)$	\mathcal{O}_{lu}	$(ar l \gamma^\mu l) (ar u \gamma_\mu u)$
$\mathcal{O}_{lq}^{(3)}$	$(ar{l}\gamma^\mu au^I l)(ar{q}\gamma_\mu au^I lq)$	\mathcal{O}_{ld}	$(ar l\gamma^\mu l)(ar d\gamma_\mu d)$
\mathcal{O}_{eu}	$(ar e\gamma^\mu e)(ar u\gamma_\mu u)$	\mathcal{O}_{qe}	$(ar q \gamma^\mu q) (ar e \gamma_\mu e)$
\mathcal{O}_{ed}	$(ar e\gamma^\mu e)(ar d\gamma_\mu d)$		

 $P_{e} = \pm 0.7$

Polarization of the electron plays the key role to resolve the degeneracies from LHC data

Transverse polarization of electron and proton

New Physics and SMEFT

B. Grzadkowski et al, 2010

Interference effects

 $\sim \mathcal{O}(\frac{1}{\Lambda^4})$

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 arphi^3$		
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$	
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$	
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi \right)^{\star} \left(\varphi^{\dagger} D_{\mu} \varphi \right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$	
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$					
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 arphi^2 D$		
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$	
$Q_{arphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q^{(3)}_{\varphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$	
$Q_{\varphi W}$	$arphi^\dagger arphi W^I_{\mu u} W^{I\mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$	
$Q_{\varphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$	
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$	
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu u}B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$	
$Q_{\varphi WB}$	$\varphi^{\dagger}\tau^{I}\varphiW^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$	
$Q_{\varphi \widetilde{W}B}$	$\varphi^\dagger \tau^I \varphi \widetilde{W}^I_{\mu\nu} B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$	

The constraints will be very weak

Example: Dipole Operator

R. Boughezal et al. Phys. Rev. D 104 (2021) 9, 095022

New Physics and Dipole Operator

How to Probe Dipole Operator

Transversely polarized effect of beams: The interference between the different helicity states

$$oldsymbol{s} = (b_1, b_2, \lambda) = (b_{\mathrm{T}} \cos \phi_0, b_{\mathrm{T}} \sin \phi_0, \lambda)$$

$$\rho = \frac{1}{2} \left(1 + \boldsymbol{\sigma} \cdot \boldsymbol{s} \right) = \frac{1}{2} \begin{pmatrix} 1 + \lambda & b_{\mathrm{T}} e^{-i\phi_0} \\ b_{\mathrm{T}} e^{i\phi_0} & 1 - \lambda \end{pmatrix}$$

Breaking the rotational invariance & A nontrivial azimuthal behavior

Xin-Kai Wen, Bin Yan, Zhite Yu, C.-P. Yuan, PRL 131 (2023) 241801

Transverse Spin Polarization

- Linearly dependent on the dipole couplings C_{dipole} and spin b_T
- Without depending on other NP operators

Single Transverse Spin Asymmetries

$$A_{LR}^{i} = \frac{\sigma^{i}(\cos\phi > 0) - \sigma^{i}(\cos\phi < 0)}{\sigma^{i}(\cos\phi > 0) + \sigma^{i}(\cos\phi < 0)} = \frac{2}{\pi}A_{R}^{i}$$

$$\sqrt{s} = 250 \text{ GeV}, \mathcal{L} = 5 \text{ ab}^{-1}$$
 $(b_T, \bar{b}_T) = (0.8, 0.3)$

 $A_{UD}^i = \frac{\sigma^i(\sin\phi > 0) - \sigma^i(\sin\phi < 0)}{\sigma^i(\sin\phi > 0) + \sigma^i(\sin\phi < 0)} = \frac{2}{\pi}A_I^i,$

Xin-Kai Wen, Bin Yan, Zhite Yu, C.-P. Yuan,

PRL 131 (2023) 241801

CP-conserved dipole operator

CP-violated dipole operator

> Our bounds are much stronger than other approaches by $1 \sim 2$ orders of magnitude

Transverse spin effects@ EIC

Dipole operators

R. Boughezal, D. Florian, F. Petriello, W. Vogelsang, PRD 107 (2023) 7, 075028

$$\mathcal{O}_{eW} = (\bar{l}\sigma^{\mu\nu}e)\tau^{I}\varphi W^{I}_{\mu\nu},$$

$$\mathcal{O}_{eB} = (\bar{l}\sigma^{\mu\nu}e)\varphi B_{\mu\nu},$$

$$\mathcal{O}_{uW} = (\bar{q}\sigma^{\mu\nu}u)\tau^{I}\varphi W^{I}_{\mu\nu},$$

$$\mathcal{O}_{uB} = (\bar{q}\sigma^{\mu\nu}u)\varphi B_{\mu\nu},$$

$$\mathcal{O}_{dW} = (\bar{q}\sigma^{\mu\nu}d)\tau^{I}\varphi W^{I}_{\mu\nu},$$

$$\mathcal{O}_{dB} = (\bar{q}\sigma^{\mu\nu}d)\varphi B_{\mu\nu}.$$

$$A_{TU} = \frac{\sigma\left(e^{\uparrow}p^{U}\right) - \sigma\left(e^{\downarrow}p^{U}\right)}{\sigma\left(e^{\uparrow}p^{U}\right) + \sigma\left(e^{\downarrow}p^{U}\right)}$$

$$A_{UT} = \frac{\sigma\left(e^{U}p^{\uparrow}\right) - \sigma\left(e^{U}p^{\downarrow}\right)}{\sigma\left(e^{U}p^{\uparrow}\right) + \sigma\left(e^{U}p^{\downarrow}\right)}$$

Scalar and tensor four fermion operators

 $\begin{aligned} \mathcal{O}_{ledq} &= \left(\bar{L}^{j} e \right) \left(\bar{d} Q^{j} \right), \\ \mathcal{O}_{lequ}^{(1)} &= \left(\bar{L}^{j} e \right) \epsilon_{jk} \left(\bar{Q}^{k} u \right), \\ \mathcal{O}_{lequ}^{(3)} &= \left(\bar{L}^{j} \sigma^{\mu\nu} e \right) \epsilon_{jk} \left(\bar{Q}^{k} \sigma_{\mu\nu} u \right), \end{aligned}$

Hao-Lin Wang, Xin-Kai Wen, Hongxi Xing, Bin Yan, 2401.08419 (PRD)

$$A_{TT} = \frac{\sigma\left(e^{\uparrow}p^{\uparrow}\right) + \sigma\left(e^{\downarrow}p^{\downarrow}\right) - \sigma\left(e^{\uparrow}p^{\downarrow}\right) - \sigma\left(e^{\downarrow}p^{\uparrow}\right)}{\sigma\left(e^{\uparrow}p^{\uparrow}\right) + \sigma\left(e^{\downarrow}p^{\downarrow}\right) + \sigma\left(e^{\uparrow}p^{\downarrow}\right) + \sigma\left(e^{\downarrow}p^{\uparrow}\right)}$$

Transverse spin effects@ EIC

Hao-Lin Wang, Xin-Kai Wen, Hongxi Xing, Bin Yan, PRD 109 (2024) 095025 $P_{T,e}=P_{T,p}=0.7, \mathcal{L}=100~{
m fb}^{-1}$

Linear polarization @ UPCs

C.Li, J.Zhou, Y.J.Zhou, Phys. Lett. B. 795, 576 (2019)

- Ultra-relativistic charged nuclei produce highly Lorentz contracted electromagnetic field
- Weizsacker-Williams equivalent photon approximation
- Photons are linearly polarized
- > Large quasi-real photon flux $\propto Z^2$
- ▶ The impact parameter $b_{\perp} > 2R_A$

Linear polarization @ UPCs

D. Y. Shao, C. Zhang, J. Zhou, Y. Zhou, PRD107 (2023) 3, 036020

Tau pair production @ UPCs

Phys. Rev. Lett. 131 (2023) 15, 151802

Phys. Rev. Lett. 131 (2023) 151803

Linear polarization @ UPCs

Summary

- EIC is an important machine for probing the new physics;
- > The longitudinal polarized beams: Zbb couplings;
- > The transversely polarized beams : Chirality-flipped interactions
- The photons from UPCs are linearly polarized and can be used to probe the NP

The search for new physics at the EIC is just beginning

New Physics and EFT

1. The κ framework for the couplings:

BSM physics is expected to affect the production modes and decay channels by a SM like interactions

2. The Standard Model Effective Field Theory

Higgs is a fundamental particle Weak interacting

Linear realized FFT

W. Buchuller, D. wyler 1986

B. Grzadkowski et al, 2010

W. Buchuller, D. wyler 1986 B. Grzadkowski et al, 2010 L. Lehman, A. Marin, 2015 B. Henning et al, 2015 H-L. Li et al, 2020 Murphy, 2020

$$\mathcal{L} = rac{C_6}{\Lambda^2} \mathcal{O}_6 + rac{C_8}{\Lambda^4} \mathcal{O}_8 {+} {\dots}$$

3. Higgs Effective Field Theory

Callan, Coleman, Wess, Zumino, 1969 The electroweak chiral Lagrangian+light Higgs, A.C. Longhitano, 1980,....

Global analysis @ SMEFT

SMEFiT Collaboration, JHEP 11 (2021) 089 The SMEFT approach allows for the Top + Higgs + VV, Quadratic NLO EFT S MEFiT Magnitude of 95% Confidence Level Bounds $(1/{\rm TeV}^2)$ 10^{3} Top + Higgs + VV, Linear NLO EF combination 10^{2} 10^{1} Higgs data 10^{0} 10^{-10} Electroweak precision observables 10^{-10} 10^{-10} COO1
 COO1
 COO1
 COO1
 COO2
 <li **Diboson production Top quark Physics** 2.5 SU(3)5: No EWPO I $SU(3)^5: C_G = 0$ 95%CL marginalised; $C_i \frac{(1 \text{ TeV})^2}{2}$ 2.0 SU(3)⁵: EWPO+Higgs+diboson 1.5 1.0 0.5 0.0 -0.5 -1.0 SMEFT is becoming one of -1.5 J. Ellis, JHEP 04 (2021) 279 -2.0 the standard tool for the WPO Yukawa -2.5 10¹ C_{TH} C_{HWB} 10¹ C_{HG} CHB 10⁻¹ C_G-10¹ C_{μH}-10¹ C_{bH}-10⁻¹ C_{tH} CHD 10¹ C_{II} C⁽³⁾ CII C CH3) C⁽¹⁾ Сни C_{He} CHd CE 10⁻¹ C_{HBox} S LHC experimental analysis