Introduction to LHC physics

Adam Takacs Heidelberg University

special thanks to A.Mazeliauskas, P.Monni, U.Wiedemann

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Triggering Discoveries in High Energy Physics III, Vysoke Tatry, Slovakia 2024

1. LHC: Stress-testing the SM

images: home.cern

Adam Takacs (Heidelberg)

The Standard Model

- no free parameters (since M_H) \rightarrow fully predictive
- Stress-testing the SM at LHC Very good overall agreement!

Jet measurements

- Jets: (the most common process) background of most SM/BMS process
- Driven by QCD: test of perturbative (and nonperturbative) QCD

The Standard Model

- Electroweak bosons: γ, W[±], Z: involving 1, 2, or 3 of them
- Clean signatures^{*} (<1% unc.)

^{*}QCD contributes at higher orders

Standa	rd Model Production Cross Section	on Measurements	Status: June 2024
PP pp inelastic Jets R=0.4 Dijets R=0.4			
γ	$E_{\gamma} > 125 \text{ GeV}$ $E_{\gamma}^2 > 100 \text{ GeV}$	E ^Y _T > 25 GeV 🗳	40
w	8	* ⁶	60 90
z	\$		eo.
tĒ		I heory	
t _{t-chan} t _{s-chan}		LHC pp √s = 13.6 TeV Data	
Wt tZj		stat ⊕ syst —	
ww wz	e [*] -	LHC pp √s = 13 TeV	
zz	Esan guldeav n	- stat - stat ⊕ syst	24-20 4-20
γγ ₩γ Ζυ		LHC pp $\sqrt{s} = 8$ TeV	2 2
2γ wv	۴ ۴	- Data	<u> </u>
tī Z tī z			
****		Data	<u> </u>
YYY titt YYY WYY WYY		LHC pp √s = 5 TeV	
ŽγjjEwk γγ→WW W ⁺ W ⁻ jjEWK W [±] W [±] jjEWK			8
VVZ jjewk ZZjjewk			
10	10^{-4} 10^{-3} 10^{-2} 10^{-1} 1 10^{1} 10^{2} 10^{3}	10^4 10 ⁵ 10 ⁶ 10 ¹¹ σ [pb] (0.5 1.0 1.5 2.0 2.5 data/theory

Adam Takacs (Heidelberg)

The Standard Model

- Top quarks: heaviest particle small hadronization corr, sensitive to BSM
- Higgs boson: priority of LHC

first non-electrodynamics like interaction

• New physics searches direct: data driven methods indirect: tension in SM $(g_{\mu} - 2, M_W)$?

Adam Takacs (Heidelberg)

2. Precision phenomenology with the SM

Adam Takacs (Heidelberg)

Most^{*} common process: jets

experiment

theory

*The most common is when nothing happens... Adam Takacs (Heidelberg)

Jet measurements

• Underlying $2 \rightarrow 2$ scattering: 3 independent variables $(+ \varphi)$ $\frac{d^3\sigma}{dy^*dy_b dm_{ij}}$

Adam Takacs (Heidelberg)

Jet measurements

• Underlying $2 \rightarrow 2$ scattering: 3 independent variables $(+ \varphi)$ $\frac{d^3\sigma}{dy^*dy_b dm_{jj}}$ 200 bins, few % uncertainty

How to make reliable predictions?

Adam Takacs (Heidelberg)

Calculating cross sections

 \circ Observables = combinations of outgoing momenta

$$\frac{d\sigma}{d\mathcal{O}} = \int d\Phi_n \, \sigma_{pp \to n} \, \delta \left(\mathcal{O} - \hat{\mathcal{O}}(p_1, \dots, p_n) \right)$$
phase space of
outgoing particles
multileg
cross-section
observable = combining
final momenta

◦ Separation of scales: $Q_{hard} ≥ Q_{jet} ≫ \Lambda_{QCD}$

 $\leftarrow \text{Implied by choosing clever } \mathcal{O}!$

Collinear factorization:

$$\sigma_{pp \to n} = \int dx_i dx_j f_i^p(x_i) f_j^p(x_j) \otimes \hat{\sigma}_{ij \to n} \otimes \left[1 + \mathcal{O} \left(\frac{\Lambda}{Q} \right)^p \right]$$
parton distribution
parton distribution
partonic cross
sections
partonic cross
power corrections:
non-fact, hadronization, etc.

Adam Takacs (Heidelberg)

Calculating cross sections

 \circ Observables = combinations of outgoing momenta

$$\frac{d\sigma}{d\mathcal{O}} = \int d\Phi_n \, \sigma_{pp \to n} \, \delta \left(\mathcal{O} - \hat{\mathcal{O}}(p_1, \dots, p_n) \right)$$
phase space of
outgoing particles
multileg
cross-section
observable = combining
final momenta

• Separation of scales: $Q_{hard} \gtrsim Q_{jet} \gg \Lambda_{QCD}$

 $\leftarrow \text{Implied by choosing clever } \mathcal{O}!$

Collinear factorization:

$$\sigma_{pp \to n} = \int dx_i dx_j f_i^p(x_i) f_j^p(x_j) \otimes \hat{\sigma}_{ij \to n} \otimes \left[1 + \mathcal{O} \left(\frac{\Lambda}{Q} \right)^p \right]$$
parton distribution
parton cross
sections
power corrections: power corrections:

Adam Takacs (Heidelberg)

Calculating cross sections

Adam Takacs (Heidelberg)

Evaluate cross sections with precision!

*also mixtures of $\alpha_s \& \alpha_e!$

Adam Takacs (Heidelberg)

[adapted from A.Huss]

Adam Takacs (Heidelberg)

[adapted from A.Huss

Adam Takacs (Heidelberg)

[adapted from A.Huss]

Main challenges:

1. Multi-dimensional integral

NNLO $pp \rightarrow jjj$ needs 100M CPUh to measure α_s . [ATLAS 2301.09351]

2. Infrared singularity

matrix elements are divergent but their sum is finite

3. Multi-loops complexity

Main challenges:

1. Multi-dimensional integral

NNLO $pp \rightarrow jjj$ needs 100M CPUh to measure α_s . [ATLAS 2301.09351]

2. Infrared singularity

matrix elements are divergent but their sum is finite

- 3. Multi-loops complexity
- \rightarrow Feasible for a few legs $\ensuremath{\mathfrak{S}}$

Jet resummation

Separation of scales: $Q_{hard} \gtrsim Q_{jet} \gg \Lambda_{QCD}$

 $Collinear \ ({\rm to \ the \ beam}) \ factorization:$

$$\sigma_{pp \to n} = \int f_i^p(x_i) f_j^p(x_j) \otimes \hat{\sigma}_{ij \to n}$$

• Additionally: $Q_{hard} \gg Q_{jet} \gg \Lambda_{QCD}$ Soft or collinear limit (to the jet)

$$\hat{\sigma}_{ij \to (n+1)} = \hat{\sigma}_{ij \to n} \otimes \hat{\sigma}_{1 \to 2}$$

Markov-like process \rightarrow parton shower

Only for a few legs.

For many legs

Adam Takacs (Heidelberg)

Jet resummation and event generators

Separation of scales: $Q_{hard} \gtrsim Q_{jet} \gg \Lambda_{QCD}$

 $Collinear \ ({\rm to \ the \ beam}) \ factorization:$

$$\sigma_{pp \to n} = \int f_i^p(x_i) f_j^p(x_j) \otimes \hat{\sigma}_{ij \to n}$$

• Additionally: $Q_{hard} \gg Q_{jet} \gg \Lambda_{QCD}$ Soft or collinear limit (to the jet)

 $\hat{\sigma}_{ij \to (n+1)} \approx \hat{\sigma}_{ij \to n} \otimes \hat{\sigma}_{1 \to 2}$

Markov-like process \rightarrow parton shower

Recent progression in (N)NLL parton showers!

Adam Takacs (Heidelberg)

Triggering Discoveries in HEP, Slovakia

Only for a few legs.

For many legs!

Jet resummation and event generators

Separation of scales: $Q_{hard} \gtrsim Q_{jet} \gg \Lambda_{QCD}$

 $Collinear ({\tt to the beam}) factorization:$

$$\sigma_{pp \to n} = \int f_i^p(x_i) f_j^p(x_j) \otimes \hat{\sigma}_{ij \to n}$$

• Additionally: $Q_{hard} \gg Q_{jet} \gg \Lambda_{QCD}$ Soft or collinear limit (to the jet)

 $\hat{\sigma}_{ij \to (n+1)} \approx \hat{\sigma}_{ij \to n} \otimes \hat{\sigma}_{1 \to 2}$

Markov-like process \rightarrow parton shower

Theory behind **event generators**.

Adam Takacs (Heidelberg)

Triggering Discoveries in HEP, Slovakia

[Pythia8: P. Skands]

Jet resummation and event generators

Separation of scales: $Q_{hard} \gtrsim Q_{jet} \gg \Lambda_{QCD}$

 $Collinear ({\tt to the beam}) factorization:$

$$\sigma_{pp \to n} = \int f_i^p(x_i) f_j^p(x_j) \otimes \hat{\sigma}_{ij \to n}$$

• Additionally: $Q_{hard} \gg Q_{jet} \gg \Lambda_{QCD}$ Soft or collinear limit (to the jet)

 $\hat{\sigma}_{ij \to (n+1)} \approx \hat{\sigma}_{ij \to n} \otimes \hat{\sigma}_{1 \to 2}$

Markov-like process \rightarrow parton shower

Event generators also include: hadronization, MPI, ...

Adam Takacs (Heidelberg)

Triggering Discoveries in HEP, Slovakia

[Pythia8: P. Skands]

Adam Takacs (Heidelberg)

Summary of SM studies:

 \circ SM is complete: stress testing with LHC \rightarrow good agreement!

- Predictions are based on perturbation theory.
- At high accuracies QCD & EW diagrams are needed.
- $\circ~$ At 1% precision non-perturbative effects also comes to play

3. Heavy ions and the quark-gluon plasma

Adam Takacs (Heidelberg)

 ^{208}Pb

- Heavy-ion program at LHC and RHIC
- Nuclear matter at high energy
- Discovery of the quark-gluon plasma:
 - **Quenching** (= energy loss)
 - Collective flow
 - Soft photon excess
 - Strangeness enhancement
 - etc.

Adam Takacs (Heidelberg)

- Heavy-ion program at LHC and RHIC
- Nuclear matter at high energy
- Discovery of the quark-gluon plasma:
 - **Quenching** (= energy loss)
 - Collective flow
 - Soft photon excess
 - Strangeness enhancement
 - etc.

Adam Takacs (Heidelberg)

- Heavy-ion program at LHC and RHIC
- Nuclear matter at high energy
- Discovery of the quark-gluon plasma:
 - **Quenching** (= energy loss)
 - Collective flow
 - Soft photon excess
 - Strangeness enhancement
 - etc.

ERNCourier

Adam Takacs (Heidelberg)

- \circ $\,$ Heavy-ion program at LHC and RHIC $\,$
- Nuclear matter at high energy
- Discovery of the quark-gluon plasma:
 - **Quenching** (= energy loss)
 - Collective flow
 - Soft photon excess
 - Strangeness enhancement
 - etc.

"Hydrodynamic" picture of AA collisions!

- Heavy-ion program at LHC and RHIC
- Nuclear matter at high energy
- Discovery of the quark-gluon plasma:
 - **Quenching** (= energy loss)
 - Collective flow
 - Soft photon excess
 - Strangeness enhancement
 - etc.

"Hydrodynamic" picture of AA collisions!

Adam Takacs (Heidelberg)

Real-time dynamics of HI collisions

[Berges, Heller, Mazeliauskas, Venugopalan 2005.12299]

- 1. Initial state:
 - Nucleus geometry
 - (Sub)nucleon structure
 - Fluctuations

Adam Takacs (Heidelberg)

2. Reaching-equilibrium:

- Dense gluon fields (glasma)
- Far-from-equilibrium evolution
- Attractor behavior

3. Hydrodynamics:

- Close to equilibrium
- Very small viscosity
- Freeze-out.

Real-time dynamics of HI collisions

[Berges, Heller, Mazeliauskas, Venugopalan 2005.12299]

1. Initial state:

- Nucleus geometry
- (Sub)nucleon structure
- Fluctuations

Adam Takacs (Heidelberg)

2. Reaching-equilibrium:

- Dense gluon fields (glasma)
- Far-from-equilibrium evolution
- Attractor behavior

Triggering Discoveries in HEP, Slovakia

B. Hydrodynamics:

- Close to equilibrium
- Very small viscosity
- Freeze-out.

Real-time dynamics of HI collisions

[Berges, Heller, Mazeliauskas, Venugopalan 2005.12299]

1. Initial state:

- Nucleus geometry
- (Sub)nucleon structure
- Fluctuations

Adam Takacs (Heidelberg)

2. Reaching-equilibrium:

- Dense gluon fields (glasma)
- Far-from-equilibrium evolution
- Attractor behavio

3. Hydrodynamics:

- Close to equilibrium
- Very small viscosity
- Freeze-out.

Success of the "hydrodynamic picture"

Bayesian analysis:

Triggering Discoveries in HEP, Slovakia

Adam Takacs (Heidelberg)

Success of the "hydrodynamic picture"

Bayesian analysis:

Success of the "hydrodynamic picture"

Bayesian analysis:

Nucleus structure in heavy-ion collisions

- Hydro response is sensitive to the nucleus shape
- Clever measurements constrains nucleus structures
- $\circ~$ State-of-the-art precision in:
 - nucleus shape
 - neutron skin

Adam Takacs (Heidelberg)

The puzzle of small systems

QGP in large

systems

energy loss

collective flow

QGP in small

systems?

Small system collectivity

[Grosse-Oetringhaus, Wiedemann 2407.07484]

- o **flow-**like signals in: pA, pp, γA
- strangeness enhancement in: pA, pp
- Hydro description works!
- Quenching haven't been observed
- Why does hydro work?!
- Where is energy loss?
 - \rightarrow precision is needed! (jets)

[ALICE: Nature13 (2017)] [PHENIX pA: Nature15.214] [STAR pA: PRL.130.242301] [CMS pp: PRL116.172302] [ALICE pp: PRL.132.172302]

Adam Takacs (Heidelberg)

Small system collectivity

[Grosse-Oetringhaus, Wiedemann 2407.07484]

- o **flow-**like signals in: pA, pp, γA
- strangeness enhancement in: pA, pp
- Hydro description works!
- Quenching haven't been observed
- Why does hydro work?!
- Where is energy loss?
 - \rightarrow precision is needed! (jets)

[ALICE: Nature13 (2017)] [PHENIX pA: Nature15.214] [STAR pA: PRL.130.242301] [CMS pp: PRL116.172302] [ALICE pp: PRL.132.172302]

2-jets in pp collision

2-jets in PbPb collision

Use jets to learn about the PbPb, and pPb

Adam Takacs (Heidelberg)

Summary:

- \circ Heavy-ion collisions \rightarrow nuclear matter under extreme conditions
- \circ Heavy-ion "standard model" = hydro picture
- Success of hydro:
 - thermodynamic properties of QGP
 - nuclear structure!
- QGP-droplets creates a great challenge for the future

Thank you for your attention!

Precision with jets

- o Adding flavor and masses (c-, b-quark jet)
- o Identified particles (isolated photons, hadrons)
- $\circ~$ mixing QCD & EW corrections
- Resummation at NNLL
- Matching to (N)NLO
- Improve hadronization
- +1 Improve underlying event (needed)

[Pythia8: P. Skands]

Early-time dynamics in HI collisions

Berges,Heller,Mazeliauskas,Venugopalan 2005.12299

Adam Takacs (Heidelberg)