ATLAS physics

Pavol Bartoš (Comenius University) on behalf of the ATLAS collaboration

Triggering Discoveries in High Energy Physics III 10 December, 2024

3

[ATL-PHYS-PUB-2024-011](http://cds.cern.ch/record/2903866)L dt Reference $[fb^{-1}]$ $\sigma = 104.7 \pm 0.22 \pm 1.07 \text{ mb (data)}$
 $\sigma = 96.04 \text{ PEF} + 1.07 \text{ mb (data)}$
 $\sigma = 96.04 \text{ PEF} + 1.54 \pm 0.91 \text{ mb (data)}$
 $\sigma = 95.35 \pm 0.33 \pm 1.37 \text{ p (beta)}$
 $\sigma = 187.4 \text{ lb} + 1.3 \text{ mb (data)}$
 $\sigma = 187.4 \text{ lb} + 1.5 \text{ pb (data)}$ EPJC 83 (2023) 441 **ATLAS** Preliminary o 34×10^{-8} pp PLB 761 (2016) 158 ▲ 50×10^{-8} Nucl. Phys. B (2014) 486 ۰ 8×10^{-8} \sqrt{s} = 5.7.8.13.13.6 TeV ۰ 29.0 PLB 854 (2024) 138725 ó. 0.3 arXiv:2404.06204 w 20.2 EPJC 79 (2019) 760 Ö 4.6 EPJC 77 (2017) 367 0.3 arXiv:2404.06204 DYTURBO+CT18 (NNLO+NNLL) (theory)
= 59:12 + 0.029 + 1.6 nb (data)
= 00:19 + 0.24 + 1.78 (NNLO+NNLL) (theory)
= 00:18 + 0.2+ 1.78 nb (data) 29.0 PLB 854 (2024) 138725 n 0.3 arXiv:2404.06204 BYZ4PBO3 CL38 (MYGGta)NNLL) (theory) $\sigma =$ z 20.2 JHEP 02 (2017) 117 c 4.6 JHEP 02 (2017) 117 0.3 arXiv:2404.06204 29.0 PLB 848 (2024) 138376 Ó. 140 JHEP 07 (2023) 141 Theory tī 20.2 EPJC 74 (2014) 3109 ò 4.6 EPJC 74 (2014) 3109 JHEP 06 (2023) 138 0.3 LHC pp \sqrt{s} = 13.6 TeV ۰ 140 JHEP 05 (2024) 305 20.3 EPJC 77 (2017) 531 Data t_{t-chan} \circ stat to. 4.6 PRD 90, 112006 (2014) $\sigma = \frac{100 \text{ F} \cdot \text{M}}{24.4 \text{ F} \cdot \text{M}}$ (the exp) 3.7 pb (data) 0.3 PLB 854 (2024) 138726 $\sigma = 342$ FM (NNLO) (theory) ata) $stat \oplus syst$ ш m 3.2 JHEP 01 (2018) 63 NLO + NNLL (theory) pb (data) Wt 20.3 JHEP 01, 064 (2016) $\sigma = 23 + 3 + 3.4 - 3.7$ po (d)
 $\sigma = 16.8 + 9.4 + 3.9$ d) (data) LHC pp \sqrt{s} = 13 TeV **D** man a 2.0 PLB 716, 142-159 (2012) $\sigma = 58.2 \pm 91.1$
 $\sigma = 58.2 \pm 91.1$ $\sigma = 14.1$ $\sigma = 1.1$ σ Data EPJC 84 (2024) 78 훕 31.4 \mathbf{B} . o. 139 JHEP 05 (2023) 028 $\sigma = 35.3 + 3.6 + 6.4 = 2.2$ po (data)
 $\sigma = 27.7 + 3.4 = 9.6$ and $\sigma = 27.7 + 3.4 = 9.6$ (data) stat н × 20.3 EPJC 76 (2016) 6 HC-HXSWG XR4 (theory), pb (data) $stat \oplus syst$ o **Part 19** 4.5 EPJC 76 (2016) 6 $\sigma = \frac{11}{130.6444}$ SWG YB4 (theory) EPJC 79 (2019) 884 ٠ m 36.1 $\sigma = \frac{NNLO}{0.2 \pm 1.2 \pm 4.5}$ pb (data)
 $\sigma = \frac{SNNLO}{2 \pm 4.4}$ pb (data) LHC pp $\sqrt{s} = 8$ TeV ww 20.3 PLB 763, 114 (2016) ▲ PRD 87 (2013) 112001
PRL 113 (2014) 212001 \circ **Data** ы 4.6 o stat 36.1 EPJC 79 (2019) 535 WZ 20.3 PRD 93, 092004 (2016) $stat \oplus syst$ $\sigma = \begin{array}{l} \Delta\theta = 1.4 + 1.4 - 1.3 \pm 1.00 \text{ (data)} \\ \sigma = 16.9 \pm 0.7 \pm 0.7 \text{ (beta)} \\ \sigma = 16.9 \pm 0.7 \pm 0.7 \text{ (beta)} \\ \sigma = \begin{array}{l} \text{Matrix (NNLO), 0} \\ \text{Matrix (NLO), 0} \\ \text{Matrix (NLO), 0} \end{array} \end{array} \text{(NLO) (theory)} \\ \sigma = \begin{array}{l} \text{Matrix (NLO), 0} \\ \text{Matrix (NLO), 0} \\ \text{Matrix (NLO), 0} \end{array}$ \circ ш 4.6 EPJC 72 (2012) 2173 29.0 PLB 855 (2024) 138764 ۰ LHC pp \sqrt{s} = 7 TeV ۰ 36.1 PRD 97 (2018) 032005 ZZ Data n i 20.3 JHEP 01 (2017) 099 $\sigma = 6.7 \pm 0.0$ (the 900 - 0.4 pb (data) \bullet JHEP 03 (2013) 128
PLB 735 (2014) 311 stat ٥ m. 4.6 $\sigma = 8.2^{101}_{200} \times 10^{100} = 2.8$ pb (data) ш $stat \oplus syst$ - 11 140 JHEP 06 (2023) 191 $\sigma = 4.82$ by $\frac{1000}{100}$ (data) $t_{\text{s-chan}}$ m. 20.3 PLB 756 (2016) 228-246 $\sigma = 8862 + 884 + 9986$ (data) ш 140 JHEP 05 (2024) 131 o tīW $\sigma = 369 + 96$ CD₃ N₄₂ EV (theory) LHC pp \sqrt{s} = 5 TeV 20.3 JHEP 11 (2015) 172 B $\sigma = 866 \pm 40 \pm 40$ To data) Data ۰ 140 arXiv:2312.04450 tīZ $\sigma = \frac{N_{0}Q_{0} + N_{1}Q_{1}Q_{2}Q_{3}}{N_{0}Q_{1}Q_{2}Q_{3}}$ (data) stat 20.3 JHEP 11, 172 (2015) $\sigma = 0.85226.01200860$ (data) $stat \oplus syst$ www o œ 139 PRL 129 (2022) 061803 $\sigma = 0.55 + 0.14 + 0.18 - 0.13$ pb (data) **WWZ** ш **State** 79.8 PLB 798 (2019) 134913 $\sigma = 22.5 + 4.7 - 3.4 + 6.6 - 5.5$ fb (data) tītī NLO ^{+4.6} = N ^{++0.0</sub>-5.5
 NLO ⁺ + N ^{++0.0-5.5}} lo **STATISTICS** 140 EPJC 83 (2023) 496 بايتبيان برابرين الربيليا 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} $10²$ 10^{11} ¹ 10^1 $10³$ 10^4 $10⁵$ 10^6 0.5 1.0 1.5 2.0 2.5 Status: June 2024 σ [pb] data/theory

ATLAS Run 2 summary: Measurements in agreement with the SM predictions

Higgs boson discovery was announced by ATLAS and CMS Collaborations in 2012

2024: Re-discovering Higgs in the same decay channels **using first Run 3 data (2022)** Each channel measured in fiducial phase space and extrapolated to full phase space for combination

$Higgs \rightarrow \tau\tau$ differential cross-section

Previously: $H\rightarrow \tau\tau$ provided the most sensitive measurement of vector-boson fusion (VBF) \Rightarrow used to further investigation

compatibility with the SM:

overall p-value of 6% (reasonable agreement)

For vector boson fusion:

 \rightarrow first measurements for higher p_T^{H} \rightarrow **most precise for** p_T^{H} **< 200 GeV**

[arXiv:2407.16320](https://arxiv.org/abs/2407.16320)

Full Run 2 data set is used to measure the mass of Higgs boson

Improved precision: Combination of Run 1 and Run 2 data

 $H\rightarrow \gamma\gamma$ [Phys. Lett. B 847 \(2023\) 138315](https://www.sciencedirect.com/science/article/pii/S0370269323006494?via=ihub)
*H→ZZ***^{*}→4l** [Phys. Lett. B 843 \(2023\) 137880](https://www.sciencedirect.com/science/article/pii/S0370269323002149?via=ihub)

Precision 0.11%

 $H\rightarrow \gamma\gamma$ mass resolution systematic reduced by a factor 4!

[Phys. Rev. Lett. 131 \(2023\) 251802](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.131.251802)

Full Run 2 data set is used to measure the mass of Higgs boson

Improved precision: Combination of Run 1 and Run 2 data

Main challenge: How to separate signal Pushing our understanding on *ttH(bb)*

- \rightarrow Improved reconstruction and particle identification: PFlow jets, DL1r *b*-tagging
- \rightarrow Improved modelling of background: data-driven corrections, systematic model
- \rightarrow Machine learning: Better signal / background classification

Improved Higgs reconstruction

→**Inclusive:**

 $\sigma_{\bar{t}H}$ = 411 $^{+101}_{-92}$ fb

→Overall **uncertainty reduced by factor** of **1.8**

Best single measurement to date!

Higgs decay width from ttH and tttt

Constraints on Higgs decay width I_H use to be obtained from ZZ^* final state *NEW*: Using combined measurement of **[arXiv:2407.10631](https://arxiv.org/abs/2407.10631)**

Higgs couplings to fermions and vector bosons

→Higgs boson coupling **to fermion vector bosons**

$$
g_F = \kappa_F \frac{m_F}{\eta} \qquad g_V = \sqrt{\kappa_V} \frac{m_V}{\eta}
$$

SM: $\kappa_F = 1$, $\kappa_V = 1$
New physics: $\kappa_F \neq 1$, $\kappa_V \neq 1$

Measurement of Yukawa coupling to bottom is reaching precision era!

Growing interest towards the second generation (Yukawa coupling to charm)

Nature **607** [52-59 \(2022\)](https://www.nature.com/articles/s41586-022-04893-w)

The Yukawa couplings to bottom and charm

- **→**Legacy *VH* (*H→bb/cc*) improves and combines previous full Run 2 results: *[VH](https://link.springer.com/article/10.1140/epjc/s10052-022-10588-3)*(*cc*), *[VH](https://link.springer.com/article/10.1140/epjc/s10052-020-08677-2)* (*bb*), [boosted](https://www.sciencedirect.com/science/article/pii/S0370269321001441?via%3Dihub) *VH* (*bb*)
	- better reconstruction and calibration, extended acceptance of events
	- improved flavour tagging, that combines *b-* and *c-*jet identification
	- Complex fit model (\sim 50) SRs and (\sim 100) CRs defined by tagging and kinematic criteria

Challenging: *pp→HH* cross-section **1000**⨯ **smaller than** *pp→H* Access to trilinear λ_{hhh} coupling, unique probe of *VVhh* interaction κ_{yy} Dominant SM processes:

[Phys. Lett. B 848 \(2024\) 138376](https://www.sciencedirect.com/science/article/pii/S0370269323007104)

First Run 3 measurement, using 2022 data, dilepton decay channel $\rightarrow \sigma_{\rm t}/\sigma_{\rm z}$ => uncertainty reduction \rightarrow compatible with SM predictions

[JHEP 11 \(2024\) 101](https://link.springer.com/article/10.1007/JHEP11(2024)101)

in each of used channels

[arXiv:2411.10186](https://arxiv.org/abs/2411.10186)

Obs (exp) significance 5σ **(4.1** σ **)**

Consistent with different nuclear PDFs!

Quantum state of one particle cannot be described independently from another particle.

observed

"here"

affected

⇒ **Correlations** of observed physical properties of both systems

Single observable *D***:**

 \rightarrow depends on the angle between leptons measured in the parent top/antitop rest frame **if D** < $-\frac{1}{3}$ => entanglement

Entanglement is observed with sensitivity of more than 5σ **observed** $D = -0.537 \pm 0.002$ [stat.] ± 0.019 [syst.] expected $D = -0.470 \pm 0.002$ [stat.] ± 0.017 [syst.]

Main source of systematic uncertainty is signal modelling.

[Nature 633 \(2024\) 542](https://www.nature.com/articles/s41586-024-07824-z)

[Phys. Rev. Lett. 132 \(2024\) 261902](http://dx.doi.org/10.1103/PhysRevLett.132.261902)

ATLAS+CMS combination 7 & 8 TeV data

 $m_t = 172.52 \pm 0.14 \text{(stat)} \pm 0.30 \text{(syst)} \text{ GeV}$

Relative precision of 0.2%!

[arXiv:2404.10674](https://arxiv.org/abs/2404.10674)

ttZ – result reaches the precision of the theory ttW – slightly above the SM prediction (1.4 σ) tZq – precision well $> 5\sigma$ *tty/tWy* – differential distr. agree with the SM $tq\gamma$ – first observation (obs. significance $> 9.3\sigma$) **4 tops** – first observation (obs. significance $> 6.1\sigma$)

Dominant systematic uncert.: b-tagging, JES, tt-bar modelling.

26 **NLO+PS prediction unpredicts the observed results, but are compatible with them**

7 TeV *pp*-collision data re-analyzed (improved fitting techniques, updated PDFs)

Tension between the CDF and LHC results!

SM electroweak fit compared to the recent ATLAS results

Assumption:

W/Z couplings are independent of mass \rightarrow LFU is fundamental axiom in the SM

Test:

 $R^{\mu}_{\rm \scriptscriptstyle II}$

Measure

→Using *W→e*

 \rightarrow Analy

e the ratio of boson decay rates
\ng
$$
W \rightarrow e \nu_e
$$
 and $W \rightarrow \mu \nu_{\mu}$
\n $W \rightarrow e \nu_e$ and $W \rightarrow \mu \nu_{\mu}$
\n $W \rightarrow e \nu_{\mu}$
\n $W \rightarrow \mu \$

ATLAS

 e^+e^- WW, \sqrt{s} = 183-207 GeV

LEP₂

 $B(W\rightarrow \mu\nu)/B(W\rightarrow e\nu)$ **Higher precision than current world average!**

[Eur. Phys. J. C 84 \(2024\) 993](https://doi.org/10.1140/epjc/s10052-024-13070-4)

CERN [press release](https://atlas.cern/Updates/Briefing/LFU-Wdecays)

- Using 20.2 fb⁻¹ of 8 TeV *pp* collisions data
- Based on Sudakov peak in *Z*-boson p_{T}
- *Z*-boson p_T measure strength of recoil of *Z*-boson, which is proportional to $\alpha_{\rm s}$
- Precision depends on precise theory predictions

Most precise experimental determination achieved! 31

[Eur. Phys. J. C 81 \(2021\) 342](https://link.springer.com/article/10.1140/epjc/s10052-021-09011-0) [JHEP 09 \(2023\) 199](https://link.springer.com/article/10.1007/JHEP09(2023)199) CP-violation phase ϕ_s in B^0_s s \rightarrow *J/* $\psi \phi$ *B*⁰

 $\phi_{\rm s}$ = – 0.087 ± 0.036 (stat.) ± 0.021 (syst.) rad $\Delta\Gamma_s = 0.0657 \pm 0.0043 \text{ (stat.)} \pm 0.0037 \text{ (syst.)} \text{ ps}^{-1}$ $\Gamma_{\rm s}$ $= 0.6703 \pm 0.0014 \text{ (stat.)} \pm 0.0018 \text{ (syst.)} \text{ ps}^{-1}$

0 \int_{s} $\rightarrow \mu\mu$ effective lifetime

$$
\tau_{\mu\mu}^{\text{Obs}} = 0.99_{-0.07}^{+0.42} \text{ (stat.)} \pm 0.17 \text{ (syst.)} \text{ ps}
$$

34

Very nice summary from Monica Dunford

Ultra peripheral collisions (UPC) in Pb-Pb UPC used to search for magnetic monopole pair production

- 262 μ b⁻¹ data collected in 2023,
- Looking at high pixel activity with no associated tracks

Magnetic monopoles with mass < 120 GeV excluded at 95% CL

Improves on limits reported by MoEDAL

Monopole mass [GeV]

[ATL-PHYS-PUB-2022-018](http://cds.cern.ch/record/2805993)

- $H \rightarrow \mu\mu$ and $H \rightarrow Z\gamma$ measurements still limited by size of the collected dataset
- Other couplings dominated by theoretical \bullet uncertainties (despite assumed /2 improvement)
	- Impressive projected precisions
		- 1.5% for boson couplings
		- 2-4% for fermion couplings

Multiple updates since the European strategy \rightarrow Update of bb $\tau\tau$ and bb $\gamma\gamma$ for Snowmass (**[ATL-PHYS-PUB-2022-018](http://cds.cern.ch/record/2805993)**)

- →Updated of bbbb (**[ATL-PHYS-PUB-2022-053](http://cds.cern.ch/record/2841244)**) combined with $b\overline{b\tau\tau}$ and $b\overline{b\gamma\gamma}$
- Di-Higgs significance for 1 experiment

 Reach 4.9 σ stat-only

 3.4 σ with systematics (wrt 3.0 σ at ESPP)

 Constraints on self-coupling

 $\kappa_2 \in [0.5, 1.6]$ at 68% CL (wrt [0.25, 1.9])

→ Recent update of
	-
	-
	- -
-

[ATL-PHYS-PUB-2024-016](http://cds.cern.ch/record/2910850)

- **Di-Higgs significance for 1 experiment**

 Reach 4.6 σ stat-only

 3.5 σ with systematics (wrt 3.0 σ at ESPP)

Constraints on self-coupling

 $\kappa_2 \in [-0.1, 2.7] \cup [4.5, 6.4]$ at 95% CL
	-
	-
- -

H \rightarrow er and H \rightarrow ur latest results published in [JHEP 07 \(2023\) 166](https://link.springer.com/article/10.1007/JHEP07(2023)166)

At HL-LHC we expect the limits to be improved by factor of 4-5

[ATL-PHYS-PUB-2022-054](http://cds.cern.ch/record/2841245)

- Small part of very interesting results provided by the ATLAS Collaboration have been presented
- Results based mainly on full Run 2 datasets (many refined analysis)
- So far, no significant sign of new physics

- We can expect many Run 3 results with improved techniques
- Prospects for HL-LHC promise bright future :)

Thanks you for your attention!

H→ZZ*→4ℓ, 29.0 fb-1

Photons Leading (sub-leading) p_T^{γ} $p_T^{\gamma}/m_{\gamma\gamma} > 0.35(0.25)$ Pseudorapidity $|\eta|$ < 2.37 and outside 1.37 < $|\eta|$ < 1.52 $E_{\rm T}^{\rm iso}/E_{\rm T}^{\gamma}$ < 0.05 Isolation ($\Delta R = 0.2$) **Di-photon system**

 $H \rightarrow \gamma \gamma$, 31.4 fb⁻¹

Mass window $105 \,\text{GeV} < m_{\gamma\gamma} < 160 \,\text{GeV}$

$$
\sigma_{\text{fid},\gamma\gamma} = 76^{+14}_{-13} \text{ fb}
$$

$\sigma_{\text{fid},4\ell} = 2.80 \pm 0.74$ fb

┉

The Yukawa couplings to bottom and charm

 $\mathbf{Probe}\, p_{\text{T}}^{\!\!\top\! \text{V}}$ spectrum up to 600 GeV

Many possible decay channels:

- *● bb̅ bb̅*
- $b\bar{b}\tau\tau$
- *● bb̅*
- \bullet $b\overline{b}\ell^+\ell^- + E_{\rm T}^{\rm miss}$
- **● Multileptons**

HHH mm

- \bullet $b\overline{b}\ell^+\ell^-$ + $E_{\underline{T}}^{\text{miss}}$ \circ H \rightarrow *b_b* \overline{b} and H \rightarrow *ZZ*/WW*/* τ
- **● Multileptons**

Number of light leptons

[arXiv:2404.10674](https://arxiv.org/abs/2404.10674)

In the differential measurements: agreement between measurement and prediction improved when comparing to NNLO QCD fixed order predictions (or after NNLO reweighting of MC)

7 TeV *pp*-collision data re-analyzed (improved fitting techniques, updated PDFs)

ATLAS, 7 TeV: m_W = **80366.5** \pm **15.9** MeV **[CMS, 13 TeV](https://cds.cern.ch/record/2910372/files/SMP-23-002-pas.pdf)** (2016 data only)**:** m_W = 80360.2 ± 9.9 MeV Tension between the CDF and LHC results!

Improved *W***-boson mass First measurement of** *W***-boson width at LHC**

 \rightarrow **CP violation** in the $B_s^0 \rightarrow J/\psi \phi$ decay occurs due to interference of **direct decays** and **decays** occurring through $B_s^0 - \overline{B}_s^0$ mixing

oscillation frequency is characterized by Δm_{s} , mass difference of heavy (B_H) and light (B_L) mass eigenstates

 \rightarrow quantities involved in $B_s^0 - B_s^0$ mixing:

CP-violating phase ϕ _s – weak phase difference between amplitudes of B-mixing and direct decay

 \rightarrow some New Physics models predict large values, while satisfying all existing constrains

Width difference $\Delta\Gamma_s = \Gamma(B_L) - \Gamma(B_H)$ **:**

 \rightarrow should not be affected as significantly as ϕ s by beyond-SM physics Average decay width $\Gamma_{\rm s} = \left[\Gamma(B_L) + \Gamma(B_H) \right] / 2$

 n PixCl $T = (1/n_{\text{pixCl}}) \sum_{i=1} |\hat{r}_i \cdot \hat{n}|$

where \hat{r}_i is the direction (unit vector) of a given pixel cluster in the transverse plane with respect to the origin of the ATLAS coordinate system, and the transverse direction \hat{n} maximizes the expression and corresponds to an azimuthal angle ϕ_T . The solution for \hat{n} (or ϕ_T) is found iteratively. The direction of \hat{n} roughly aligns in $r-\phi$ with the monopole's trajectory. The T variable has a maximum value of 1, for a set of fully aligned pixel clusters, and a minimum value of around $2/\pi$, for a uniform distribution of clusters in the transverse plane.

[arXiv:2407.10631](https://arxiv.org/abs/2407.10631)

Higgs **on-shell** and **off-shell** production are connected to **Higgs decay width**

Experimentally unable to distinguish *H* production from *gg→ZZ* background:

interference effect => deficit of *gg→ZZ*, which depends on the off-shell signal strength

13 TeV result **[arXiv:2412.01548](https://arxiv.org/abs/2412.01548)**: **off-shell Higgs** production measured **with 3.7 significance**

[arXiv:2407.16320](https://arxiv.org/abs/2407.16320)

[FTAG-2023-01](https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2023-01/)

