ATLAS physics

Pavol Bartoš (Comenius University) on behalf of the ATLAS collaboration

Triggering Discoveries in High Energy Physics III 10 December, 2024

ATL-PHYS-PUB-2024-011 (L dt Reference [fb⁻¹] $\begin{array}{l} \sigma = 104.7 \pm 0.22 \pm 1.07 \mbox{ mb} \mbox{ (data)} \\ COMPETE.HPR.H2 \mbox{ (theory)} \\ \sigma = 96.01 \pm 0.18 \pm 0.91 \mbox{ mb} \mbox{ (data)} \\ COMPETE.HPR.H2 \mbox{ (theory)} \\ \sigma = 95.35 \pm 0.38 \pm 1.3 \mbox{ mb} \mbox{ (data)} \\ \sigma = 10.7 \pm 0.1 \pm 0.5 \mbox{ mb} \mbox{ (data)} \\ \sigma = 10.7 \pm 0.1 \pm 0.5 \mbox{ mb} \mbox{ (data)} \end{array}$ EPJC 83 (2023) 441 ATLAS Preliminary Ċ. 34×10-8 pp Δ. 50×10⁻⁸ PLB 761 (2016) 158 Nucl. Phys. B (2014) 486 0 8×10⁻⁸ PLB 854 (2024) 138725 $\sqrt{s} = 5.7.8.13.13.6$ TeV 29.0 Ó 0.3 arXiv:2404.06204 w 20.2 EPJC 79 (2019) 760 ö 4.6 EPJC 77 (2017) 367 0.3 arXiv:2404.06204 29.0 PLB 854 (2024) 138725 0.3 ÷. arXiv-2404 06204 $\begin{array}{l} & = 42.212764 \times 14.8 (Within Mull, (Mecry) \\ & = 82784 \times 0.118 \, \text{Mell}\, (Within Mull, (Mecry) \\ & = 20744 \times 0.118 \, \text{Mell}\, (Ziggn') \\ & = 82744 \times 0.118 \, \text{Mell}\, (Ziggn') \\ & = 82744 \times 0.118 \, \text{Mell}\, (Ziggn') \\ & = 82745 \times 0.118 \, \text{Mell}\, (Ziggn') \\ & = 14254 \times 0.118 \, \text$ z 20.2 JHEP 02 (2017) 117 4.6 JHEP 02 (2017) 117 0.3 arXiv:2404.06204 29.0 PLB 848 (2024) 138376 Ó 140 JHEP 07 (2023) 141 Theory tī 20.2 EPJC 74 (2014) 3109 ò 4.6 EPJC 74 (2014) 3109 JHEP 06 (2023) 138 0.3 D LHC pp $\sqrt{s} = 13.6$ TeV 140 JHEP 05 (2024) 305 $\sigma = 221 \pm 1 \pm 15 \text{ pb (data)}$ MCFM (NNLO) (theory) $\sigma = 89.6 \pm 1.7 \pm 7.2 \pm 0.4 \text{ pb (data)}$ 20.3 EPJC 77 (2017) 531 Δ $\sigma = 68 \pm 2 \pm 8 \text{ pb} (\text{data})$ t_{t-chan} o 0 4.6 PRD 90, 112006 (2014) stat $\sigma = 2MCFM (NNLQ) (theory) = 3.7 pb (data)$ 0.3 PLB 854 (2024) 138726 σ = 04 ± 10 + 28 - 23 pb (data) . 3.2 JHEP 01 (2018) 63 $\sigma = 23 \pm 1.3 + 3.4 - 3.7$ pb (data) $\sigma = 23 \pm 1.3 + 3.4 - 3.7$ pb (data) $\sigma = 10.8 \pm 2.9 \pm 3.9$ pb (data) Wt 20.3 JHEP 01, 064 (2016) LHC pp $\sqrt{s} = 13$ TeV $\begin{array}{l} \sigma = 16.8 \pm 2.9 \pm 3.9 \ \text{ps} \ (\text{uaw}) \\ \hline \sigma = 58.2 \pm 7.5 \pm 4.5 \ \text{ps} \ (\text{data}) \\ \sigma = 55.2 \pm 7.5 \pm 4.5 \ \text{ps} \ (\text{data}) \\ \sigma = 55.5 \pm 3.2 \pm 7.2 \ \text{s} - 2.2 \ \text{ps} \ (\text{data}) \\ \sigma = 1.16 \ \text{c} + 10.5 \ \text{s} + 3.2 \ \text{s} - 2.2 \ \text{ps} \ (\text{data}) \\ \sigma = 1.16 \ \text{c} + 10.5 \ \text{s} + 3.2 \ \text{s} - 2.2 \ \text{ps} \ (\text{data}) \\ \sigma = 1.16 \ \text{c} + 10.5 \ \text{s} + 3.2 \ \text{s} - 2.2 \ \text{ps} \ (\text{data}) \\ \sigma = 1.16 \ \text{c} + 10.5 \ \text{s} + 3.2 \ \text{s} - 2.2 \ \text{ps} \ (\text{data}) \\ \sigma = 1.16 \ \text{c} + 10.5 \ \text{s} + 3.2 \ \text{s} + 2.2 \ \text{ps} \ (\text{data}) \\ \sigma = 1.16 \ \text{c} + 10.5 \ \text{s} + 3.2 \ \text{s} + 2.2 \ \text{ps} \ (\text{data}) \\ \sigma = 1.16 \ \text{c} + 10.5 \ \text{s} + 3.2 \ \text{s} + 2.2 \ \text{ps} \ (\text{data}) \\ \sigma = 1.16 \ \text{c} + 10.5 \ \text{s} + 3.2 \ \text{s} + 2.2 \ \text{ps} \ (\text{data}) \\ \sigma = 1.16 \ \text{s} + 10.5 \ \text{s} + 3.2 \ \text{s} + 10.5 \ \text{s} + 3.2 \ \text{s} + 10.5 \ \text$ Ö. - **1** 2.0 PLB 716, 142-159 (2012) Data 1 31.4 EPJC 84 (2024) 78 Ó. stat 139 JHEP 05 (2023) 028 н 20.3 EPJC 76 (2016) 6 h. 1 A . $\sigma = 221 \pm 6.7 \pm 5.3 \pm 3.3 \pm 2.7$ pb (data) stat ⊕ syst . Ö. 4.5 EPJC 76 (2016) 6 LHC-HXSWG YB4 (theory) 36.1 EP.IC 79 (2019) 884 D $\sigma = 68.2 \pm 1.2 \pm 4.6 \text{ pb (data)}$ LHC pp $\sqrt{s} = 8$ TeV ww $\begin{array}{l} \sigma = 68.2 \pm 1.2 \pm 6.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 51.9 \pm 2.4 \pm 6.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 51.9 \pm 2.4 \pm 6.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 31.9 \pm 2.4 \pm 6.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 24.3 \pm 0.6 \pm 0.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 24.2 \pm 0.6 \pm 0.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 19.4 \pm 1.4 \pm 0.1 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 19.4 \pm 4.4 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 19.4 \pm 4.4 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 19.4 \pm 4.4 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 19.4 \pm 4.4 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 19.4 \pm 1.4 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 19.4 \pm 1.4 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 19.4 \pm 1.4 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 19.4 \pm 1.4 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 10.9 \pm 1.4 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 10.9 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 10.9 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 10.9 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 10.9 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 10.9 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 10.9 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 10.9 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 10.9 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 10.9 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 10.9 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 10.9 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 10.9 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 10.9 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 10.9 \pm 1.5 \ {\rm pb} \ ({\rm data}) \\ \sigma = 10.5 \ {\rm pb} \ ({\rm data}) \ {\rm pb} \ ({\rm data}) \\ \sigma = 10.5 \ {\rm pb} \ {\rm pb}$ Δ 20.3 PLB 763, 114 (2016) PRD 87 (2013) 112001 PRL 113 (2014) 212001 o 4.6 36.1 EPJC 79 (2019) 535 Ċ. stat WZ stat ⊕ syst 20.3 PRD 93, 092004 (2016 4.6 EPJC 72 (2012) 2173 0 Ċ. 29.0 PLB 855 (2024) 138764 ٥ $\begin{array}{l} Matrix (NLO) & Sherpa (NLO) (theory) \\ \sigma = 17.3 \pm 0.6 \pm 0.8 \text{ pb} (data) \\ Matrix (NNLO) & Sherpa (NLO) (theory) \\ \sigma = 7.3 \pm 0.4 \pm 0.4 - 0.3 \text{ pb} (data) \\ \end{array}$ LHC pp $\sqrt{s} = 7$ TeV PRD 97 (2018) 032005 36.1 Ċ. n ZZ Data JHEP 01 (2017) 099 Δ 20.3 $\sigma = 6.7 \pm 0.7 \pm 0.5 - 0.4 \text{ pb (data)}$ JHEP 03 (2013) 128 PLB 735 (2014) 311 stat 10 4.6 σ = 8.2 ± 0.6 + 3.4 - 2.8 pb (data) Ó 10 stat ⊕ syst 140 JHEP 06 (2023) 191 r = 4 8 ± 0.8 + 1.6 - 1.3 pb (data) t_{s-chan} 4 20.3 PLB 756 (2016) 228-246 $\sigma = \frac{1}{880 \pm 50 \pm 70} \frac{1}{10} \frac{1}$ 140 JHEP 05 (2024) 131 LHC pp $\sqrt{s} = 5$ TeV tŦW 20.3 JHEP 11 (2015) 172 $\sigma = 860 \pm 40 \pm 40 \text{ fb} \text{ (data)}$ D 140 arXiv:2312.04450 $\sigma = 176 + 52 - 48 \pm 24 \text{ (black)}$ tīZ stat 20.3 JHEP 11, 172 (2015) $\sigma = 0.82 \pm 0.01 \pm 0.08 \text{ pb} (\text{data})$ www stat ⊕ syst 139 PRL 129 (2022) 061803 $\sigma = 0.55 \pm 0.14 \pm 0.15 - 0.13 \text{ pb} (data)$ WWZ 79.8 PLB 798 (2019) 134913 $\sigma = 22.5 \pm 4.7 = 3.4 \pm 0.6 = 5.5$ fb (data) tītī 140 EPJC 83 (2023) 496 NLO QCD + EW (theory) during the second second ______M____ 10³ $10^{-5} \ 10^{-4} \ 10^{-3} \ 10^{-2} \ 10^{-1} \ 1$ 10^1 10^2 10^{6} 10^{11} 0.5 1.0 1.5 2.0 2.5 10^{4} 10^{5} Status: June 2024

 σ [pb]

data/theorv

Higgs boson discovery was announced by ATLAS and CMS Collaborations in 2012

2024: Re-discovering Higgs in the same decay channels **using first Run 3 data (2022)** Each channel measured in fiducial phase space and extrapolated to full phase space for

combination

$\underset{\text{\tiny EXPERIMENT}}{\text{\tiny Higgs}} \rightarrow \tau \tau \text{ differential cross-section}$

Previously: $H \rightarrow \tau \tau$ provided the most sensitive measurement of vector-boson fusion (VBF)

=> used to further investigation

compatibility with the SM:

overall p-value of 6% (reasonable agreement)

For vector boson fusion:

→first measurements for higher p_{T}^{H} →most precise for $p_{T}^{H} < 200 \text{ GeV}$

arXiv:2407.16320

Full Run 2 data set is used to measure the mass of Higgs boson

Improved precision: Combination of Run 1 and Run 2 data

 $H \rightarrow ZZ^* \rightarrow 4\ell$ Phys. Lett. B 843 (2023) 137880

Precision 0.11%

 $H \rightarrow \gamma \gamma$ mass resolution systematic reduced by a factor 4!

Full Run 2 data set is used to measure the mass of Higgs boson

Improved precision: Combination of Run 1 and Run 2 data

Main challenge: How to separate signal Pushing our understanding on *ttH(bb)*

- →Improved reconstruction and particle identification: PFlow jets, DL1r *b*-tagging
- → Improved modelling of background: data-driven corrections, systematic model

 \rightarrow Machine learning:

Better signal / background classification Improved Higgs reconstruction

ttH signal

arXiv:2407.10904

12

 \rightarrow Measure σ_{ttH} in p_T^H bins up to 450 GeV

→Inclusive:

 $\sigma_{t\bar{t}H} = 411 \, {}^{+101}_{-92} \, \text{fb}$

→Overall uncertainty reduced by factor of 1.8

arXiv:2407.10904

Best single measurement to date!

Higgs decay width from ttH and tttt

Constraints on Higgs decay width Γ_{H} use to be obtained from ZZ* final state **NEW**: Using combined measurement of arXiv:2407.10631

Higgs couplings to fermions and vector bosons

→Higgs boson coupling to fermion vector bosons

$$g_F = \kappa_F \frac{m_F}{\eta} \qquad g_V = \sqrt{\kappa_V} \frac{m_V}{\eta}$$

SM: $\kappa_F = 1$, $\kappa_V = 1$
New physics: $\kappa_F \neq 1$, $\kappa_V \neq 1$

Measurement of Yukawa coupling to bottom is reaching precision era!

Growing interest towards the second generation (Yukawa coupling to charm)

Nature 607 52-59 (2022)

The Yukawa couplings to bottom and charm

- \rightarrow Legacy *VH* (*H* \rightarrow *bb/cc*) improves and combines previous full Run 2 results: <u>*VH*(*cc*), *VH*(*bb*), boosted *VH*(*bb*)</u>
 - better reconstruction and calibration, extended acceptance of events
 - improved flavour tagging, that combines *b* and *c*-jet identification
 - Complex fit model (~50) SRs and (~100) CRs defined by tagging and kinematic criteria

Challenging: $pp \rightarrow HH$ cross-section **1000× smaller than** $pp \rightarrow H$ Access to trilinear λ_{hhh} coupling, unique probe of *VVhh* interaction κ_{2V} Dominant SM processes:

Phys. Lett. B 848 (2024) 138376

First Run 3 measurement, using 2022 data, dilepton decay channel $\rightarrow \sigma_{tt}/\sigma_{z} =>$ uncertainty reduction \rightarrow compatible with SM predictions

<u>JHEP 11 (2024) 101</u>

in each of used channels

arXiv:2411.10186

Obs (exp) significance 5σ (4.1 σ)

Consistent with different nuclear PDFs!

Quantum state of one particle cannot be described independently from another particle.

observed

"here"

affected

"over there"

Darticle-level D

-0.5

-0.6

340 < m_# < 380

- \Rightarrow Correlations of observed physical properties of both systems
- ⇒ Measurement performed on one system seems to be influencing other system entangled with it.

Single observable D:

→depends on the angle between leptons measured in the parent top/antitop rest frame if D < - ¹/₃ => entanglement

Entanglement is observed with sensitivity of more than 5σ observed $D = -0.537 \pm 0.002$ [stat.] ± 0.019 [syst.] expected $D = -0.470 \pm 0.002$ [stat.] ± 0.017 [syst.]

Main source of systematic uncertainty is signal modelling.

Limit (Powheg + Pythia8)

Powheg + Pythia8 (hvq)

Powheg + Herwig7 (hvg)

 $m_{\rm H} > 500$

Theory Uncertainty

Data

380 < m_# < 500

Particle-level Invariant Mass Range [GeV]

Phys. Rev. Lett. 132 (2024) 261902

ATLAS+CMS combination 7 & 8 TeV data

 $m_t = 172.52 \pm 0.14(\text{stat}) \pm 0.30(\text{syst}) \text{ GeV}$

Relative precision of 0.2%!

arXiv:2404.10674

ttZ – result reaches the precision of the theory ttW – slightly above the SM prediction (1.4 σ) tZq – precision well > 5 σ $tt \gamma/tW \gamma$ – differential distr. agree with the SM $tq\gamma$ – first observation (obs. significance > 9.3 σ) 4 tops – first observation (obs. significance > 6.1σ)

Dominant systematic uncert.: b-tagging, JES, tt-bar modelling.

NLO+PS prediction unpredicts the observed results, but are compatible with them 26

7 TeV pp-collision data re-analyzed (improved fitting techniques, updated PDFs)

First measurement of *W*-boson width at LHC

SM electroweak fit compared to the recent ATLAS results

Assumption:

W/Z couplings are independent of mass \rightarrow LFU is

Test:

Measure t

 \rightarrow Using *k*

→Analyze

fundamental axiom in the SM
the ratio of boson decay rates

$$W \rightarrow ev_e$$
 and $W \rightarrow \mu v_{\mu}$
 $e W$ -bosons from top quark decays
 $= 0.9995 \pm 0.0045$
 $e^{+e^{-} \rightarrow WW, \sqrt{s}=183-207 \text{ GeV}}$
 $ATLAS$
 $pp \rightarrow W, \sqrt{s}=7 \text{ TeV}, 4.6 \text{ fb}^{-1}$
LHCb
 $pp \rightarrow W, \sqrt{s}=8 \text{ TeV}, 2 \text{ fb}^{-1}$
CMS
 $pp \rightarrow t\bar{t}, \sqrt{s}=13 \text{ TeV}, 36 \text{ fb}^{-1}$
PDG average
 $ATLAS$ (this result)
 $pp \rightarrow t\bar{t}, \sqrt{s}=13 \text{ TeV}, 140 \text{ fb}^{-1}$
 $pp \rightarrow t\bar{t}, \sqrt{s}=13 \text{ TeV}, 140 \text{ fb}^{-1}$

ATLAS

LEP2

 $B(W \rightarrow \mu \nu)/B(W \rightarrow e \nu)$ Higher precision than current world average!

Eur. Phys. J. C 84 (2024) 993

CERN press release

- Using 20.2 fb⁻¹ of 8 TeV *pp* collisions data
- Based on Sudakov peak in Z-boson p_{T}
- Z-boson $p_{\rm T}$ measure strength of recoil of Z-boson, which is proportional to $\alpha_{\rm s}$
- Precision depends on precise theory predictions

Most precise experimental determination achieved!

CP-violation phase ϕ_s in $B_s^0 \rightarrow J/\psi\phi$ **Eur. Phys. J. C 81 (2021) 342**

$$\begin{split} \phi_{\rm s} &= -\ 0.087 \pm \ 0.036 \ ({\rm stat.}) \pm \ 0.021 \ ({\rm syst.}) \ {\rm rad} \\ \Delta \Gamma_{\rm s} &= 0.0657 \ \pm 0.0043 \ ({\rm stat.}) \pm 0.0037 \ ({\rm syst.}) \ {\rm ps^{-1}} \\ \Gamma_{\rm s} &= 0.6703 \ \pm 0.0014 \ ({\rm stat.}) \pm 0.0018 \ ({\rm syst.}) \ {\rm ps^{-1}} \end{split}$$

 $B^0_{s} \rightarrow \mu\mu$ effective lifetime JHEP 09 (2023) 199

$$\tau_{\mu\mu}^{\text{Obs}} = 0.99^{+0.42}_{-0.07} \text{ (stat.)} \pm 0.17 \text{ (syst.) ps}$$

34

Very nice summary from Monica Dunford

Ultra peripheral collisions (UPC) in Pb-Pb UPC used to search for magnetic monopole pair production

- 262 μb^{-1} data collected in 2023, $\sqrt{s_{NN}} = 5.36$ TeV
- Looking at high pixel activity with no associated tracks

Magnetic monopoles with mass < 120 GeV excluded at 95% CL

Improves on limits reported by MoEDAL

Monopole mass [GeV]

•

Multiple updates since the European strategy \rightarrow Update of bb $\tau\tau$ and bb $\gamma\gamma$ for Snowmass (ATL-PHYS-PUB-2022-018)

- →Updated of bbbb (<u>ATL-PHYS-PUB-2022-053</u>) combined with $bb\tau\tau$ and $bb\gamma\gamma$
 - Di-Higgs significance for 1 experiment
 - Reach 4.9σ stat-only Ο
 - **3.4** σ with systematics (wrt 3.0 σ at ESPP)
 - - Constraints on self-coupling $\kappa_{\lambda} \in [0.5, 1.6]$ at 68% CL (wrt [0.25, 1.9])
- \rightarrow **Recent update of bb** $\tau\tau$ (single channel)

ATL-PHYS-PUB-2024-016

- Di-Higgs significance for 1 experiment
 - Reach 4.6 σ stat-only
 - **3.5** σ with systematics (wrt 3.0 σ at ESPP)
- Constraints on self-coupling $\kappa_{1} \in [-0.1, 2.7] \cup [4.5, 6.4]$ at 95% CL

 $H \rightarrow e\tau$ and $H \rightarrow \mu\tau$ latest results published in <u>JHEP 07 (2023) 166</u>

At HL-LHC we expect the limits to be improved by factor of 4-5

ATL-PHYS-PUB-2022-054

- Small part of very interesting results provided by the ATLAS Collaboration have been presented
- Results based mainly on full Run 2 datasets (many refined analysis)
- So far, no significant sign of new physics

- We can expect many Run 3 results with improved techniques
- Prospects for HL-LHC promise bright future :)

Thanks you for your attention!

H→ZZ*→4ℓ, 29.0 fb⁻¹

11 / / / / . 51.4 10				
	Photons			
ding (sub-leading) n^{γ}	$p^{\gamma}/m > 0.35(0.25)$			

H_____31 4 fb⁻¹

Di-photon system				
Isolation ($\Delta R = 0.2$)	$E_{\rm T}^{\rm iso}/E_{\rm T}^{\gamma} < 0.05$			
Pseudorapidity	$ \eta < 2.37$ and outside $1.37 < \eta < 1.52$			
Leading (sub-reading) pT	$P_{\rm T}/m_{\gamma\gamma} > 0.55(0.25)$			

Mass window 105 GeV

Lac

 $105 \,\mathrm{GeV} < m_{\gamma\gamma} < 160 \,\,\mathrm{GeV}$

$$\sigma_{\rm fid, \gamma\gamma} = 76^{+14}_{-13} \,\,{\rm fb}$$

Source	Uncertainty [%]	
Statistical uncertainty	14.0	
Systematic uncertainty	10.3	
Background modelling (spurious signal)	6.0	
Photon trigger and selection efficiency	5.8	
Photon energy scale & resolution	5.5	
Luminosity	2.2	
Pile-up modelling	1.2	
Higgs boson mass	0.1	
Theoretical (signal) modelling	< 0.1	
Total	17.4	

Leptons				
Leptons $p_{\rm T} > 5$ GeV, $ \eta < 2.7$				
Lepton selection and pairing				
Lepton kinematics	$p_{\rm T} > 20, 15, 10 {\rm GeV}$			
Leading pair (m_{12}) SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $				
Subleading pair (m_{34}) remaining SFOC lepton pair with smallest $ m_Z - m_{\ell\ell} $				
Event selection (at most one quadruplet per event)				
Mass requirements	50 GeV < m_{12} < 106 GeV and 12 GeV < m_{34} < 115 GeV			
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.1$			
J/ψ veto	$m(\ell_i, \ell_j) > 5$ GeV for all SFOC lepton pairs			
Mass window	$105 \text{ GeV} < m_{4\ell} < 160 \text{ GeV}$			
If extra lepton with $p_{\rm T} > 12$ GeV	quadruplet with largest matrix element value			

$\sigma_{\rm fid,4\ell} = 2.80 \pm 0.74 \; \rm fb$

Source	Uncertainty [%]	
Statistical uncertainty	25.1	
Systematic uncertainty	7.9	
Electron uncertainties	6.3	
Muon uncertainties	3.8	
Luminosity	2.2	
ZZ* theoretical uncertainties	0.7	
Reducible background estimation	0.6	
Other uncertainties	<1.0	
Total	26.4	

arXiv:2407.10904 submitted to EPJC

arXiv:2407.10904 submitted to EPJC

Uncertainty source	$\Delta \sigma_{t\bar{t}H}$ (fb)		$\Delta \sigma_{t\bar{t}H} / \sigma_{t\bar{t}H} (\%)$		
Process modelling					
$t\bar{t}H$ modelling					
$t\bar{t}H$ radiation	+35	-21	+9	-5	
$t\bar{t}H$ parton shower	+32	-19	+8	-5	
$t\bar{t}H$ matching	< 0.1	-0.3	< 0.1	-0.1	
$t\bar{t}H$ theory	+25	-17	+6	-4	
$t\bar{t} + \ge 1b$ modelling					
$t\bar{t} + \ge 1b$ radiation	± 31		± 8		
$t\bar{t} + \ge 1b$ parton shower	±29		±7		
$t\bar{t} + \ge 1b$ matching	±19		± 5		
$t\bar{t} + \ge 1c$ modelling	± 18		± 4		
$t\bar{t}$ + light modelling	± 5		± 1		
tW modelling	±16		± 4		
Minor background modelling	±19		± 5		
Flavour tagging	±36		± 9		
Jet modelling	±22		± 5		
Monte-Carlo statistics	±17		± 4		
Other instrumental	±10		± 2		
Total systematic uncertainty	+85	-75	+21	-18	
Normalisation factors	±21		:	±5	
Total statistical uncertainty	±54		±13		
Total uncertainty	+101	-92	+25	-22	

Probe $p_{\rm T}^{\rm V}$ spectrum up to 600 GeV

The Yukawa couplings to bottom and charm

Many possible decay channels:

- *bbbb*
- bbττ
- bБүү
- $b\bar{b}\ell^+\ell^- + E_{\rm T}^{\rm miss}$
- Multileptons

	bb	ww	π	zz	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

- $b\overline{b}\ell^+\ell^- + E_{T}^{\text{miss}}$ • $H \rightarrow b\overline{b} \text{ and } H \rightarrow ZZ^*/WW^*/\tau\tau$
- Multileptons

Number of light leptons

arXiv:2404.10674

In the differential measurements: agreement between measurement and prediction improved when comparing to NNLO QCD fixed order predictions (or after NNLO reweighting of MC)

arXiv: 2403.15085 submitted to EPJC CERN press release

7 TeV pp-collision data re-analyzed (improved fitting techniques, updated PDFs)

Improved W-boson mass

ATLAS, 7 TeV: $m_W = 80366.5 \pm 15.9$ MeV <u>CMS, 13 TeV</u> (2016 data only): $m_W = 80360.2 \pm 9.9$ MeV Tension between the CDF and LHC results!

Compatible with SM within 2σ

First measurement of *W*-boson width at LHC

→ **CP** violation in the $B_s^0 \rightarrow J/\psi \phi$ decay occurs due to interference of direct decays and decays occurring through $B_s^0 - \overline{B}_s^0$ mixing

 $B_{s}^{0}\left\{ \begin{array}{c} \overline{b} \\ s \end{array} \right. \begin{array}{c} \overline{c} \\ c \end{array} \right\} J/\psi$

oscillation frequency is characterized by Δm_s , mass difference of heavy (B_H) and light (B_L) mass eigenstates

 \rightarrow quantities involved in $B_S^0 - \overline{B}_S^0$ mixing:

CP-violating phase ϕ_s – weak phase difference between amplitudes of B-mixing and direct decay

→ some New Physics models predict large values, while satisfying all existing constrains

Width difference $\Delta \Gamma_s = \Gamma(B_L) - \Gamma(B_H)$:

→ should not be affected as significantly as ϕ_s by beyond-SM physics Average decay width $\Gamma_s = [\Gamma(B_L) + \Gamma(B_H)] / 2$

where \hat{r}_i is the direction (unit vector) of a given pixel cluster in the transverse plane with respect to the origin of the ATLAS coordinate system, and the transverse direction \hat{n} maximizes the expression and corresponds to an azimuthal angle ϕ_T . The solution for \hat{n} (or ϕ_T) is found iteratively. The direction of \hat{n} roughly aligns in $r-\phi$ with the monopole's trajectory. The *T* variable has a maximum value of 1, for a set of fully aligned pixel clusters, and a minimum value of around $2/\pi$, for a uniform distribution of clusters in the transverse plane.

arXiv:2407.10631

Higgs on-shell and off-shell production are connected to Higgs decay width

Experimentally unable to distinguish *H* production from $gg \rightarrow ZZ$ background:

interference effect \Rightarrow deficit of $gg \rightarrow ZZ$, which depends on the off-shell signal strength

13 TeV result <u>arXiv:2412.01548</u>: off-shell Higgs production measured with 3.7σ significance

arXiv:2407.16320

FTAG-2023-01

