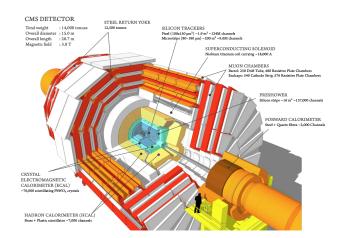
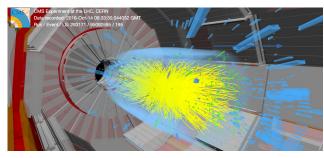


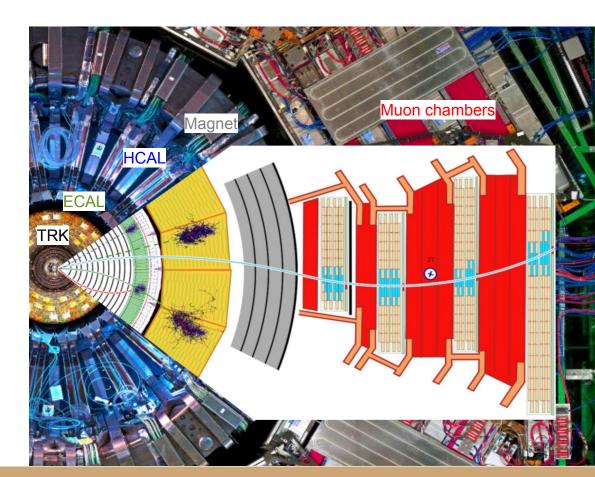
Università di Pisa

Triggering Discoveries in High Energy Physics III Vysoké Tatry, Slovakia

Silvio Donato (INFN and Università Pisa) on behalf of the CMS collaboration


Outline


- The CMS experiment and its trigger.
- Overview of recent physics results from:
 - "standard" triggers;
 - scouting;
 - parking;
 - long-lived particle triggers;
 - PbPb collisions.
- Outlook.
- Conclusions.


The CMS experiment and its trigger

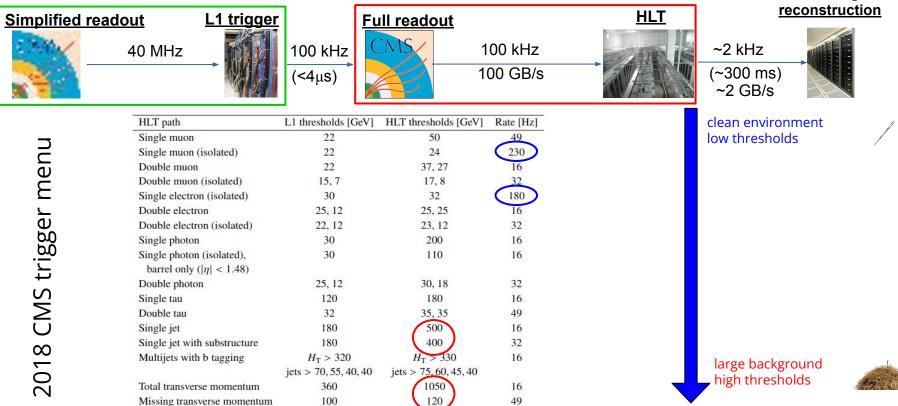
The CMS detector

S. Donato (UniPi and INFN) - CMS physics results and trigger

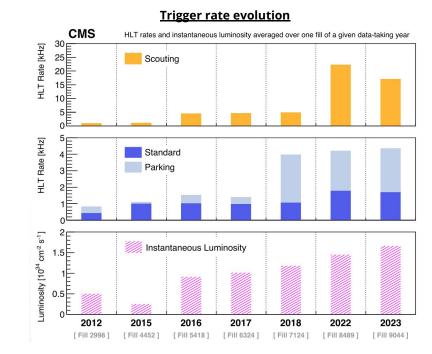
Triggering at hadron collider

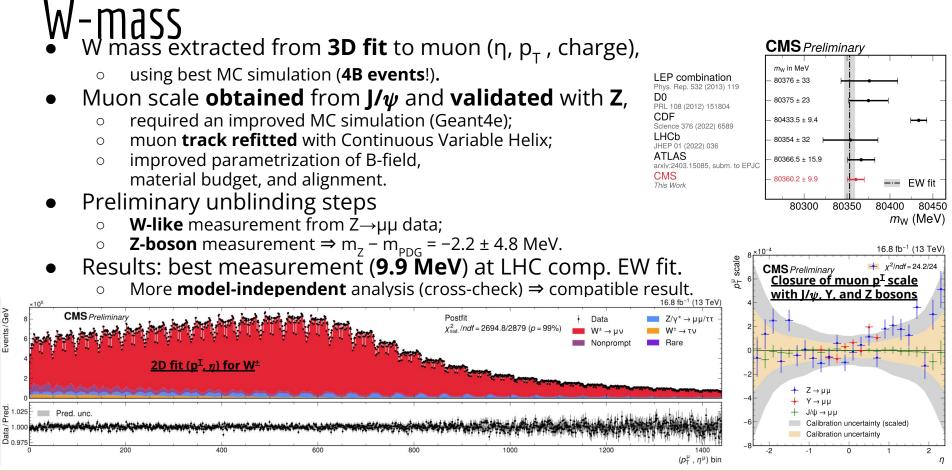
- Trigger is key for success of HEP experiments.
- Trigger is particularly challenging in hadronic collider because of multijet background.
- Main signatures used to trigger in hadronic colliders:
 - Isolated muon/electron(s), eg. from Z/W decay
 - **target**: Higgs and EWK physics, Top, New Physics with Z/W bosons (eg. vector-like quarks)
 - rate: small (W/Z+jets)
 - **Non isolated muon/electron(s)**, eg. double muon from J/psi decay:
 - target: measurements about B and C hadrons
 - rate: signal, combinatorial (from QCD), electron from photon conversion
 - Photons:
 - **target**: Higgs \rightarrow photons, ISR, FSR, new physics with photons (eg. diphoton resonance)
 - **rate**: jet misidentification, photons from QCD production (*a*_{EM} suppressed)
 - Taus (hadronic decay):
 - **target**: Higgs -> *ττ*, new physics with taus (eg. ditau resonance)
 - **rate**: jet misidentification
 - Missing transverse energy:
 - **target**: dark matter, $Z \rightarrow inv.$ (eg. ZH), $H \rightarrow inv.$
 - rate: instrumental background
 - Jets (b-tag):
 - target: large background from strong interaction
 - rate: multijet from QCD

clean environment low thresholds


large background high thresholds

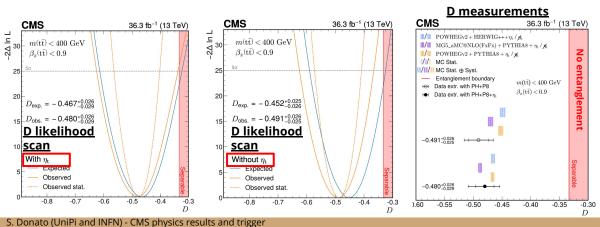
Data storage &

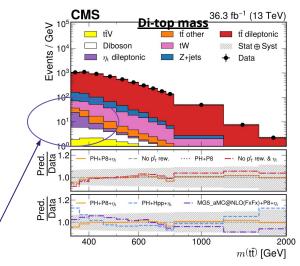

CMS trigger menu


Rate evolution, scouting and parking

- The "standard" HLT rate cross-section increased with lumi since 2012,
 - trigger cross section roughly constant:
 - ~ $1 \text{ kHz}/10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- Large increase of **parking** rate in 2018.
 - 2018 idea: collect additional data to be processed during LHC shutdown 2 (2019-22)
 - **Run-3**: data processed promptly, if possible
- Revolution in **scouting** since 2022:
 - save **all** main physics objects reconstructed at HLT (tracks, vertices, muons, electrons, jets ...) in **20%** of events processed (~20 kHz);
 - \circ event size x100 smaller than full RAW.
- More info in <u>M. Musich talk</u>.

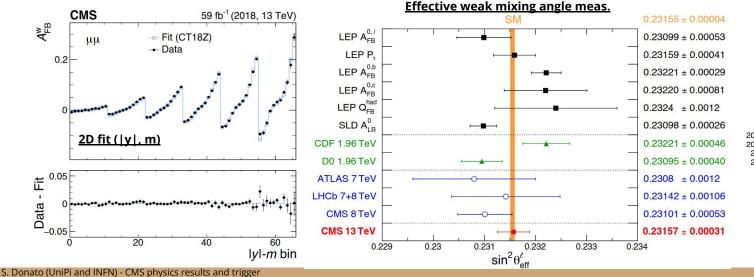
Results from "standard" triggers



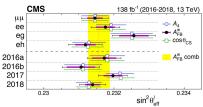


Entanglement in tt events

- Test of entanglement in dileptonic top pair events,
 - Decays to muons and electrons.
- **Spin-correlation** variable (D) $< -\frac{1}{3}$ evidence of entanglement.
- Using the low m_{tt} region, 345 400 GeV, higher sensitivity.
- Measurement:
 - \circ D = -0.480 ± 0.028
 - $D > -\frac{1}{3}$ excluded with **5.1 standard deviations**.



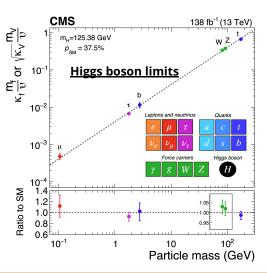
Need to model possible effects of a contribution of **tt bound states** (toponium) at low $m_{tt} (\eta_t)$



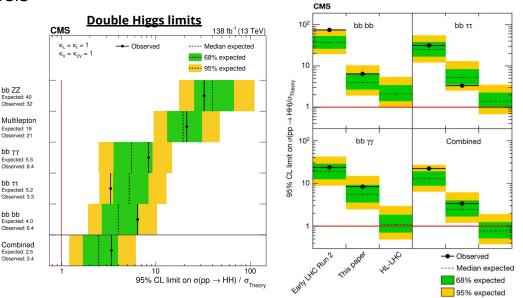
Weak mixing angle

- First measurement from Gargamelle in 1973 $\sin^2\theta_W$: 0.3-0.4. Precision measurement from $qq \rightarrow Z/\gamma^* \rightarrow \ell\ell$ forward/backward asymmetry in double muon and electron final states.
- Sensitivity enhanced by extended acceptance of electrons to the forward calorimeter (3.14< $|\eta|$ <4.36).
- **Result compatible with the SM. Resolution close to SLD/LEP!**

Effective weak mixing angle measured in different datasets



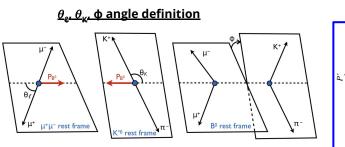
11

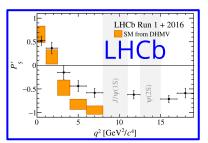


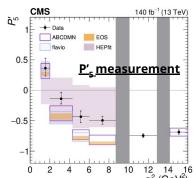
Higgs

- Evidence for Higgs to muons (3*σ*).
- Higgs to $Z\gamma$ (2.7 σ).
- Higgs to invisible: BR<18% (exp. 10%)
- New searches for suppressed channels (H \rightarrow cc, ee, γ +hadron).

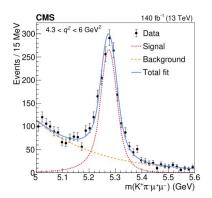
• Double Higgs:

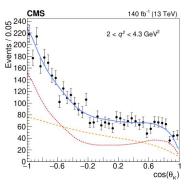



Evolution of double Higgs limits

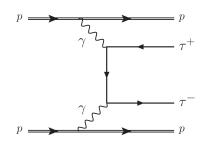


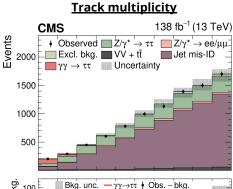
Angular analysis of the $B^0 \rightarrow K^{*0} \mu \mu$

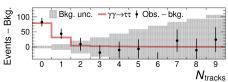

- Trigger based on dimuon + displaced track.
- Fit to m_B and 3 angles ($\theta_{\ell}, \theta_{\kappa}, \phi$) to measure CP-averaged angular obs. $F_L, P_1, P_2, P_3, P'_4, P'_5, P'_6, P'_8$
- Background rejection optimized with a BDT.
- Hints of New Physics from previous measurements,
- Result compatible with <u>LHCb</u>, with a similar sensitivity.

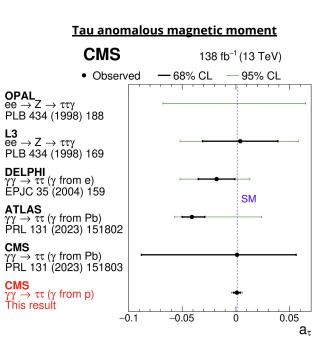


<u>B⁰ candidate mass</u>

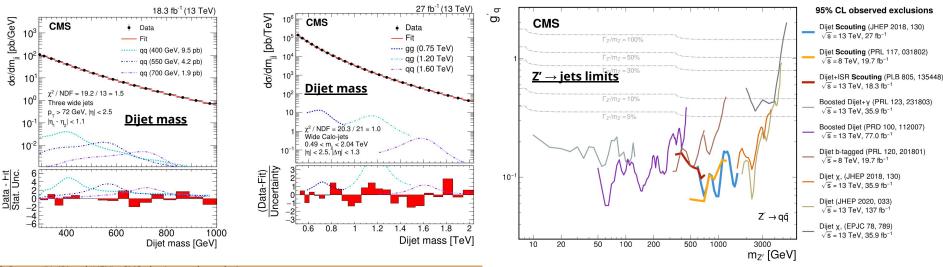


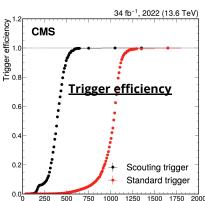





Photon collider: $\gamma + \gamma \longrightarrow$ tau + tau

- **Tau-pair** production from photon fusion,
 - elastic or dissociative events,
 - events with low-multiplicity.
- Several simulated quantities require corrections based on data
 - In particular, track multi. for pileup and hard scatter
- First observation in pp: 5.3 obs (6.5 exp)!
- Anomalous magnetic moment: $a_{\tau} = (0.9 \pm 3.2) \times 10^{-3}$
 - Improves LEP limits by factor 5 !

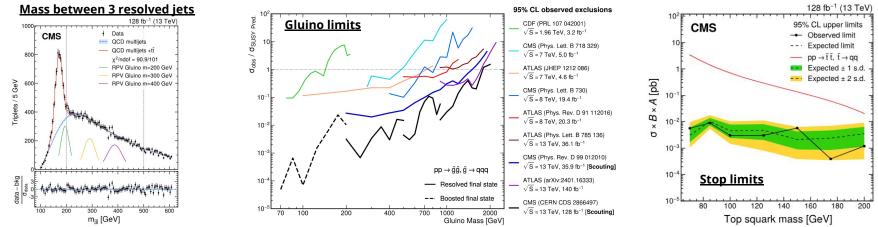



Results from scouting Run-2

Dijet measurements

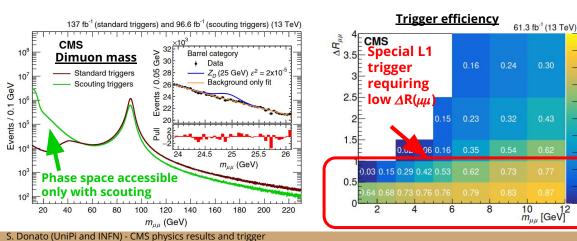
- Scouting originally developed to extend dijet searches to light mass.
 - large trigger threshold reduction (HT ~1000 GeV \rightarrow 300 GeV).
- Search for resonance in two resolved jets in the inclusive and in the three jet final states, down to 350 GeV.

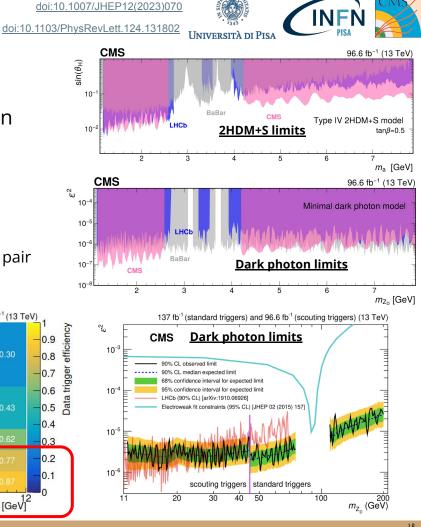
doi:10.1007/JHEP08(2018)130 UNIVERSITÀ DI PISA


1000

H_⊤ (GeV)

Scouting pair-produced multijet resonances

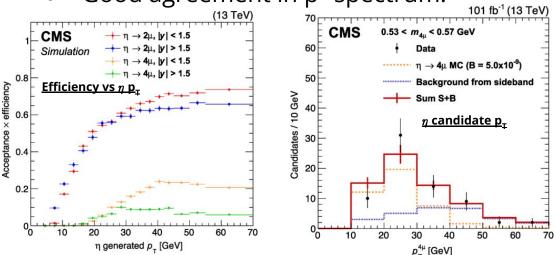

- Search for pair-produced resonances, fully hadronic final state.
 - Benchmark models: higgsinos (${}^{\sim}h \rightarrow qqq$), top squarks (${}^{\sim}t \rightarrow qq$), and gluinos (${}^{\sim}g \rightarrow qqq$).
- Resonances decay considered:
 - 3 resolved jets,
 - 3 merged jets in a wide jet,
 - 2 merged jets in a wide jet.
 - Wide mass range covered from 2000 GeV down to **70 GeV**.
 - Fully hadronic ttbar peak clearly visible \rightarrow standard candle

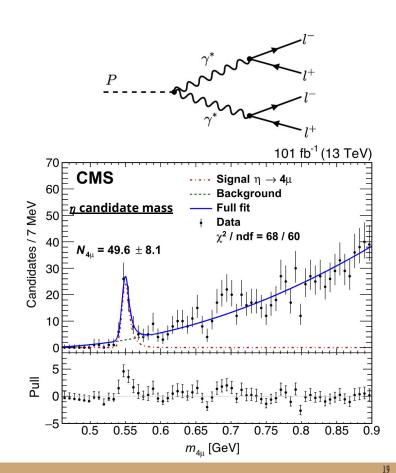


S. Donato (UniPi and INFN) - CMS physics results and trigger

Scouting Muons

- Two searches for dimuon resonances performed in Run-2 scouting.
 - Low mass: **1.1 GeV** and 7.9 GeV (scouting),
 - Medium mass: 11.5 45 GeV (scouting), High mass: 45 – 200 GeV, Z boson veto (standard trigger).
- Benchmark models:
 - $\circ \quad \ \ {\rm Dark \ photon \ decaying \ to \ a \ muon \ pair \rightarrow limit \ on \ \epsilon^2,}$
 - 2HDM+S, with a light pseudo-scalar S decaying to a muon pair \rightarrow limit on sin($\theta_{\rm H}$).

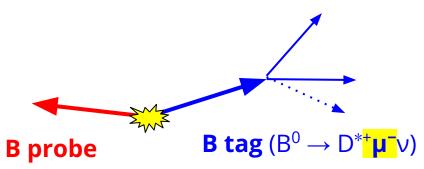


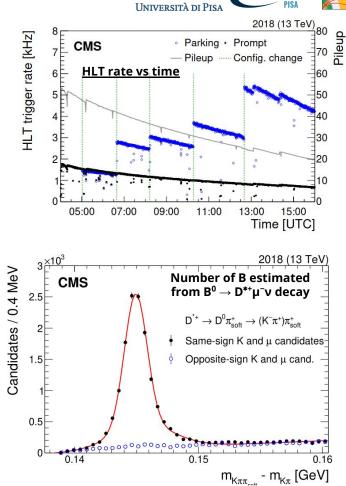

Observation of $\eta \longrightarrow \mu \mu \mu \mu$

- First **observation** of $\eta \rightarrow \mu \mu \mu \mu$ (>5 σ),
 - BR = $[5.0\pm0.8(\text{stat})\pm0.7(\text{syst})\pm0.7(\text{B}_{2\mu})]\times10^{-9}$.
- BR measured wrt $\eta \rightarrow \mu\mu$.

CMS physics results and

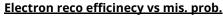
- Improvement 5 order of magnitude wrt previous measurement (WASA).
- Good agreement in p^T spectrum.

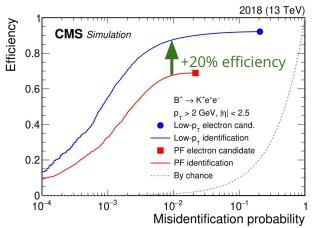



Results from parking Run-2

Parking Run-2 (2018)

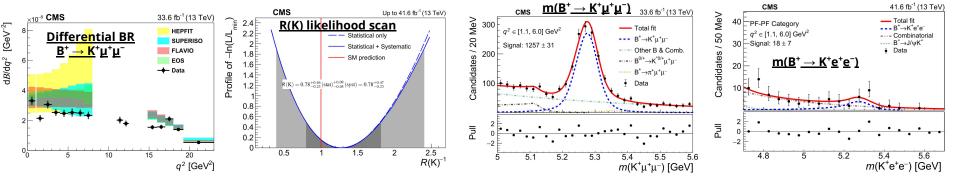
- Idea: collect B hadron pairs:
 - CMS as a "B factory",
 - tag: $B \rightarrow \mu + X \Rightarrow$ trigger: displaced muon,
 - **probe**: $B \Rightarrow$ anything (unbiased).
- Explore **untriggerable** B decay (probe).
- Collected 1×10¹⁰ events:
 - purity 80% \Rightarrow 1.2×10¹⁰ unbiased B hadron decay;
 - low threshold trigger activated at low luminosity.

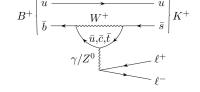


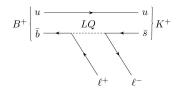


Parking Run-2 (2018)

- **Tag B** (B \rightarrow μ +X) can be used for all B decay with a muon in the final state:
 - include also $B \rightarrow \tau \rightarrow \mu$, 0
 - large number of events. 0
- **Probe B** (B \rightarrow anything):
 - access to untriggerable event $B \rightarrow e + X$ or $B \rightarrow hadrons$, 0
 - dedicated new soft electron reconstruction;
 - "small" number of events because of B tag acceptance. 0
- Possible measurements based on:
 - B flavor anomalies: $b \rightarrow c\ell v$ and $b \rightarrow s\ell\ell$; Ο
 - R_{D*} using $B^0 \rightarrow D^{*-}\ell^+ v_{\rho}$ from muon and tau 0 (decaying to muon);
 - search for $B^0_{s} \rightarrow \mu^+ \mu^-$; Ο
 - searching for lepton violation in $B^0_{s} \rightarrow \mu^- e^+$ decays; Ο
 - charge-parity violating processes fully reconstructed hadronic final states such 0 as $D^{0} \rightarrow K_{s}K_{s}$ and $B^{0}_{s} \rightarrow \phi$ ($\rightarrow K^{+}K^{-})\phi$ ($\rightarrow K^{+}K^{-}$); physics with soft untriggerable b-jets containing B $\rightarrow \mu + X$;
 - 0
 - search in any untriggerable topology using 3×10^{11} pileup collisions. Ο

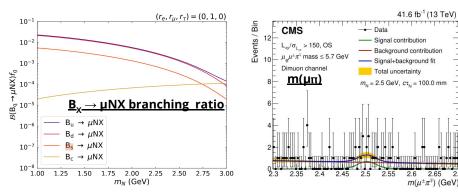


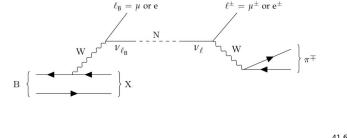

Measurement of the $R_{\mbox{\tiny K}}$ observable

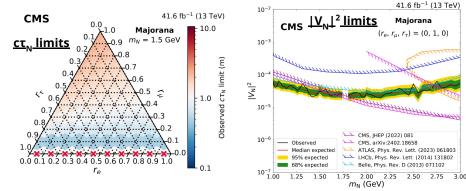

- $R_{K} = B(B^{+} \rightarrow K^{+}e^{+}e^{-}) / B(B^{+} \rightarrow K^{+}\mu^{+}\mu^{-})$:
 - o expected close to unity (lepton flavour universality),
 - sensitive to new physics (eg. lepto-quark),
 - $\circ \quad B \to K^+ J/\psi \, (\ell \ell) \text{ used for normalization.}$

• Excellent sensitivity in muon channel:

- B(B⁺ → K⁺µ⁺µ⁻) = (12.42 ± 0.68) × 10⁻⁸ in q² = [1.1, 6.0] GeV²,
- $\circ \quad \text{differential branching fraction of the } B^+ \to K^+ \mu^+ \mu^- \text{ vs } q^2.$
- Result compatible with SM (R=1): $R_{\kappa} = 0.78^{+0.47}_{-0.23}$
 - sensitivity limited by the statistical uncertainty for electron channel.

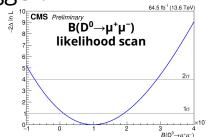




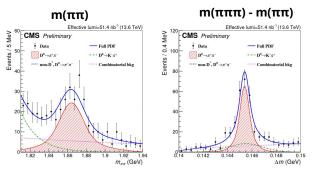


Search for long-lived heavy neutrinos in B meson decays

- Search for long-lived **heavy neutrinos** (1-3 GeV) with a decay length of $c\tau_N$ (10⁻²-10⁴ mm) in B meson decay.
- Signal topology: $B \to \ell \ell^{\pm} \pi^{\mp}$
 - with at least a **displaced** μ ,
 - both letponic and semileptonic decay,
 - \circ B_u, B_d, B_s, B_c considered.
- Veto on known ll and lπ resonances.
- No significant excess found.

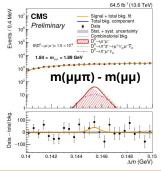


Results from parking Run-3



Search for rare charm decays into two muons

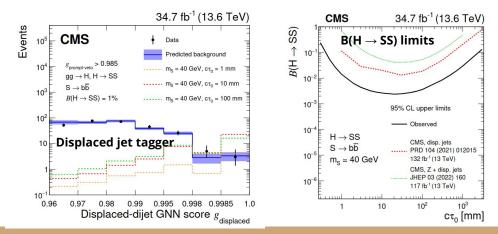
- SM prediction $B(D^0 \rightarrow \mu^+ \mu^-)$: 3×10^{-13}
- D^0 tagged from: $D^{*+} \rightarrow D^0 \pi^+$ decay to reduce bkg,
 - displacement from D^0 (ct = 0.123 mm) and B (~0.5 mm).
- Large theoretical uncertainty.
- Signal extraction: 2D fit on (m(D⁰), m(D⁰) m(D^{*+})).
- Normalization channel $D^0 \rightarrow \pi^+ \pi^$ measured from zero-bias trigger.
- MVA to enhance purity.
- Best limit on
 B(D⁰→µ⁺µ⁻)< 2.6 × 10⁻⁹,
 - (previous best limit 3.5×10^{-9}).

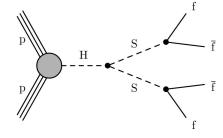

 $\mathcal{B}(\mathrm{D}^0 \to \mu^+ \mu^-) = \mathcal{B}(\mathrm{D}^0 \to \pi^+ \pi^-) \frac{N_{\mathrm{D}^0 \to \mu^+ \mu^-}}{N_{\mathrm{D}^0 \to \pi^+ \pi^-}} \frac{\varepsilon_{\mathrm{D}^0 \to \pi^+ \pi^-}}{\varepsilon_{\mathrm{D}^0 \to \mu^+ \mu^-}}$

Preliminar

m(µµ

1.92




Long-lived particle triggers

Search for light LLP decaying to displaced jets

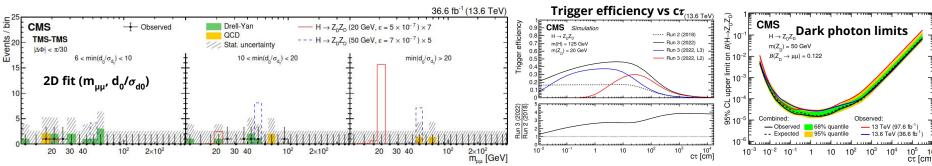
- Search for $H \rightarrow LLP$ scalars \rightarrow displaced jets.
- Dedicated new trigger developed in 2022:
 - HT>430 GeV + \geq 2 jets with \leq 1 tracks,
 - HT>250 GeV + soft muon from B decay + \geq 2 jets with no prompt track & \leq 1 displaced tr.
- Displaced and prompt jet tagger based on a graph neural network.
- No significant excess found.
- Sensitivity improved up to a factor 10 thanks to new triggers and other improvements.

Run 2 (2016)

Run 2 (2018)

10, 10 -

Run 3 (2022, L3)

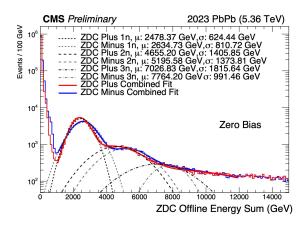

Run 3 (2022 L

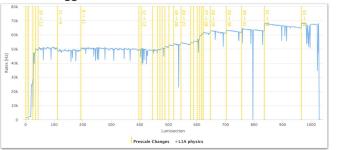
Tracker end

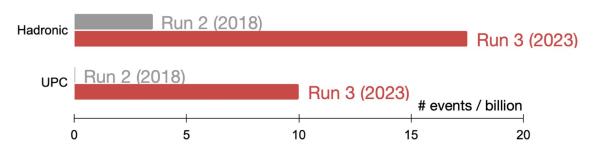
d_o [cm]

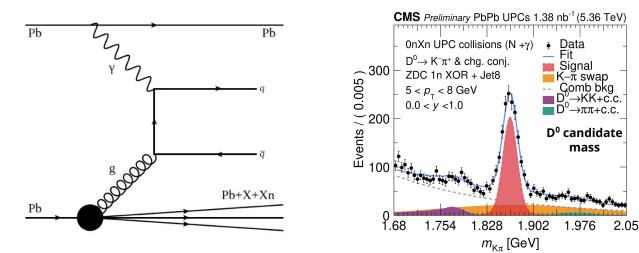
Search for LLP decaying to pairs of muon pairs

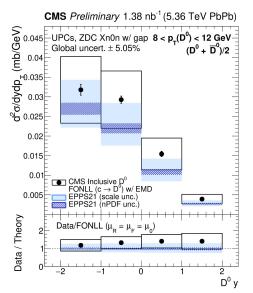
- Displaced dimuon vertex from <1 mm to >1m
- Trigger development on displaced muon. L1 triggers:
 - 0
 - Muon p_τ computed **without beamspot** constraint; Double muon with small **ΔR_{uu}** without p_τ requirement
- HLT triggers:
 - Run-2: two muons reconstructed using only muon chambers; Ο
 - Run-3 (L2): as Run-2 + veto on tracker prompt muons & lower thresholds; \cap
 - Run-3 (L3): two tracker prompt muons with small displacement (d>0.1mm). Ο
- Limits interpreted using two models:
 - HAHM(hidden Abelian Higgs model) decaying to LLP dark photons; 0
 - RPV SUSY (R-parity violating SUSY) with a LL neutralino decaying to muons.
- More stringent limit wrt Run-3 even using only ¹/₃ of lumi!


Results from PbPb trigger


PbPb collisions, trigger, and DAQ in 2023


- Major improvements in 2023 PbPb collisions.
- Level-1 trigger rate increased to ~50 kHz.
- Collected almost **all minimum bias** hadronic events, thanks to
 - higher **DAQ** limits in **bandwidth**;
 - reduced raw data format by a factor ~2 (**RawPrime**),
 - ie. replacement strip raw data with **strip clusters**.
- First use of zero-degree calorimeter (ZDC) in trigger,
 - allow to tag **ultra-peripheral collision** (UPC) events.



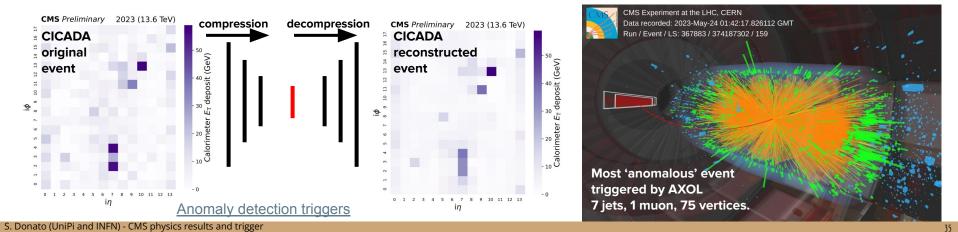


D⁰-photoproduction in UPC in PbPb

- First data analysis done with 2023 PbPb data.
- Target: D0-photoproduction $\gamma^* + N \rightarrow D^0 + X$.
- New triggers targeting ultraperiferic collision (UPC):
 - zero-degree calorimeter (ZDC) use to "tag" the intact Pb ion,
 - no activity (rapidity gap) on the intact Pb ion side.

D⁰-photoproduction differential cross section

Outlook


Expected results

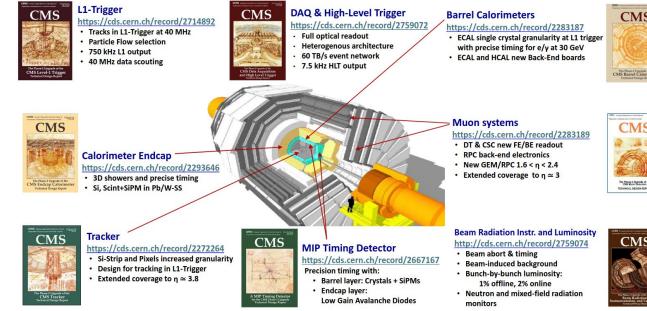
- Many **new triggers** have been deployed online recently in **Run-3**,
 - new physics results will arrive in the next months/years;
 - many Run-3 data analyses are starting ~now.
- In particular we expect new results from:
 - searches from **long-lived particle**: new trigger exploits **timing** for the first time;
 - the new **Run-3 scouting** strategy (~20 kHz with all physics objects reconstructed)
 - JetHT, double muon, double e/γ, single muon, AXOL1T, single photon, zero bias;
 - the new **high-rate parking** strategy which now targets
 - double muon, VBF, displaced single muon, multijet + 2 b-tag (HH), LLP;
 - anomalies detection trigger (<u>AXOL1T</u> and <u>CICADA</u>);
 - **L1 trigger scouting** at 40 MHz (triggerless analyses!).
- Even more for **Phase-2** upgrade (2030):
 - new **timing** detector in both barrel and endcap;
 - **high-granularity** calorimeter with a new reconstruction;
 - smarter L1 trigger able to run particle flow, and more powerful HLT farm at higher rate,
 track trigger.
- More info in <u>M. Musich talk</u> (Run 3) and <u>T. Chatzistavrou talk</u> (Phase 2).

Anomalies detection triggers

- **Anomaly** detection triggers are based on ML **autoencoder** which attempts to reproduce an event using few variables.
 - "Anomaly" is defined as the distance between the original and the reconstructed events.
- **AXOL1T** uses L1 trigger objects (**muons, jets, EG, MET**) as input.
 - Trigger with different thresholds: 1500 Hz in scouting (nominal WP), 10 Hz in parking (very tight WP).
- CICADA is based on L1 ECAL and HCAL deposits.
 - Discussion ongoing about the deployment (some concern about possible rate instability).

Conclusions

- The CMS experiment is steadily producing important physics results,
 - The W mass measurement released after a decade with an excellent resolution.
- Some results obtained very large improvements thanks to new triggers exploring new signal topology.
- In Run-3, the trigger got significant improvements with new triggers, a revolutionized scouting strategy, and more high-rate triggers (parking):
 - new physics results are expected to come soon.
- With new trigger the Run-3 is much more than just (Run-2)×2!
 - Less than 6 years from the beginning of HL-LHC with the Phase-2 CMS upgrade!



Backup

upgrade

- New tracker
- Timing
- HGCal
- L1 trigger with tracking at 750 kHz
- More powerful HLT .

Our Future Unprecedented Beauty - A Bold Upgrade

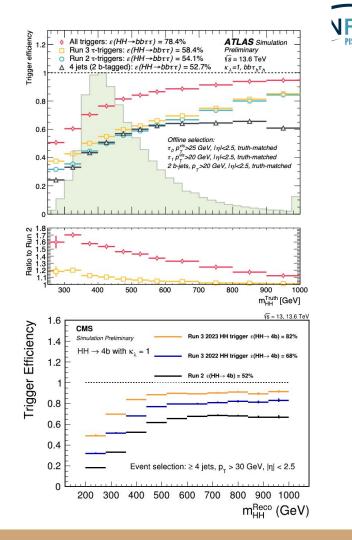
The Phone-2 Upgrade of the Citits Muon Deservors

CMS

TECHNICAL DESIGN REPORT

CMS

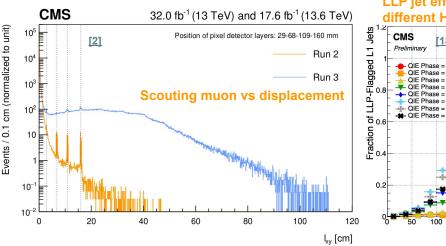
S. Donato (UniPi and INFN) - CMS physics results and trigger

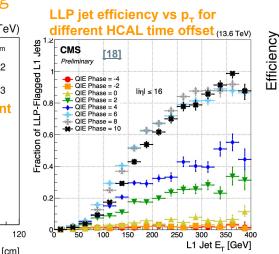

34

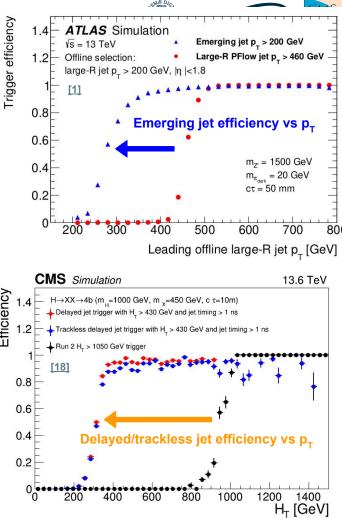
39

upgrade	<u>Trigger</u> rate at 750 kHz, tracking + PFlow HLT: 80% on GPU, L1 scouting	UNIVERSITÀ DI PISA
New silicon trackerExtended coverage η <3.8.	Barrel calorimeterECAL crystal granularityreadout at 40 MHz.Precision timing for e/γ at 30 GeV forvertex localization (H $\rightarrow \gamma\gamma$).ECAL and HCALnew Back-End boards.	New endcap calorimeter (high-granularity calorimeter) 3D showers imaging for pattern recognition Precision timing for PU mitigation Si, Scint+SiPM in Pb/W-SS
		Muon chambers Extended coverage to η <3 New readout New detectors (GEM)
	Pre Bar	ew MIP Timing Detector ecision timing for PU mitigation rrel: LYSO crystals + SiPMs dcap : Low Gain Aval. Diodes

HH trigger

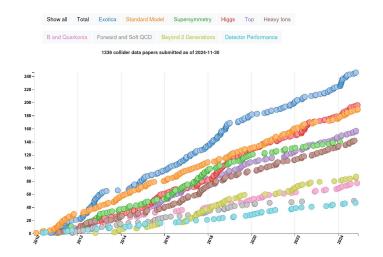

- Dedicated trigger in delayed reconstruction for parking
- Better discriminator, more rate, large increase in acceptance



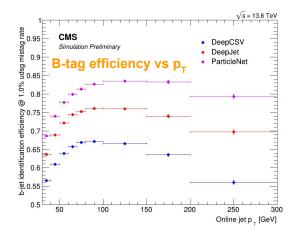

41

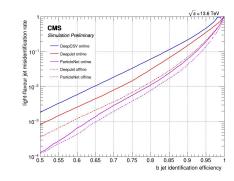
Long lived particles

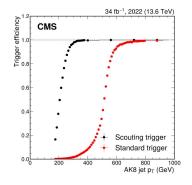
- New set of triggers targeting long-lived particles
 - Trackless or displaced jets;
 - Measurement of time delay in ECAL and HCAL;
 - Displaced muons
 - Dedicated L1 trigger
 - Included in scouting

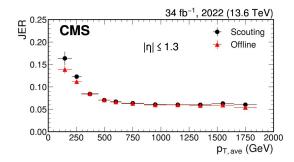


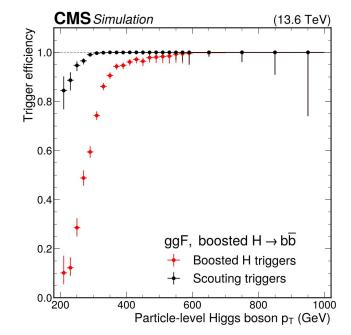
papers vs time


CMS publications

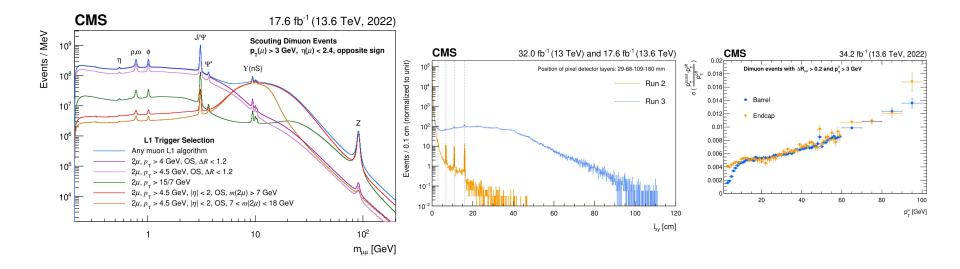

- 1338 papers submitted
 - about 100 papers per years
- Here a selection of focused on
 - most important results
 - most recent ones
 - based on new triggers

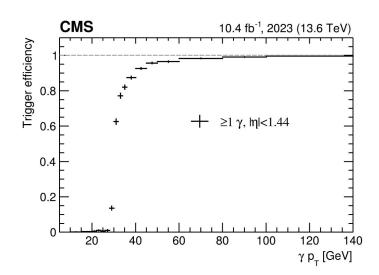

B-tagging and ParticleNet

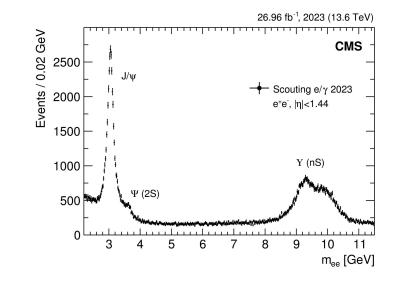




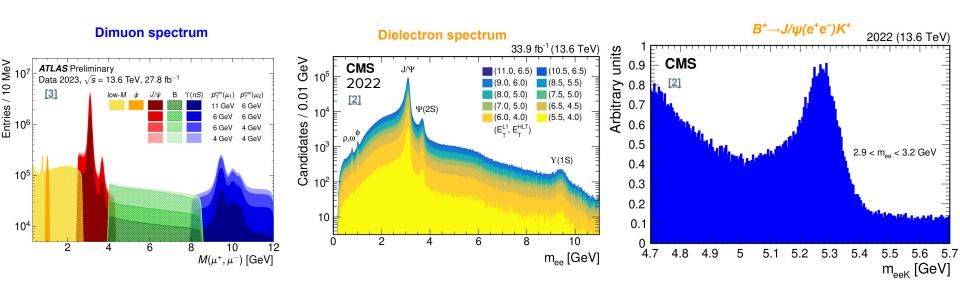
$gg \rightarrow H \rightarrow bb$

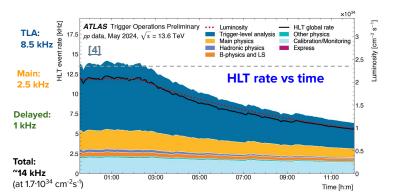


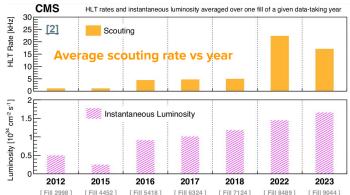

Muons

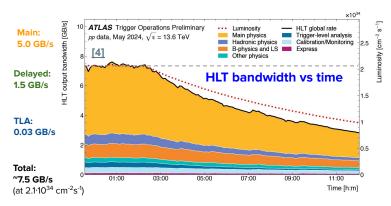


EGamma


Single EG trigger


Delayed reconstruction/parking





Trigger-level analysis/scouting

- Trigger-level analysis (ATLAS) or scouting (CMS) strategy: save directly trigger objects
 - Event size around 10 kB/event instead of ~1 MB/event,
- Important evolution since Run-1:
 - Rate increased is to 8-20 kHz:
 - Multijet, muons, electron/photons, ...
 - All main physics objects reconstructed:
 - Photons, jets, tracks, b-tag (ATLAS), muons, electrons, PF candidates (CMS)
 - Multiple collections stored in the same event.
 - Different or same event content for different streams.

Trigger-level analysis/scouting

(Run-2 scouting)

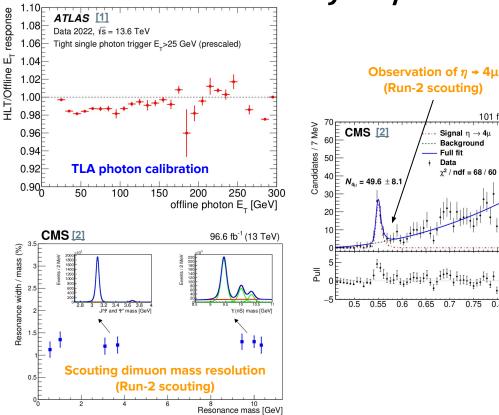
- Signal $\eta \rightarrow 4\mu$

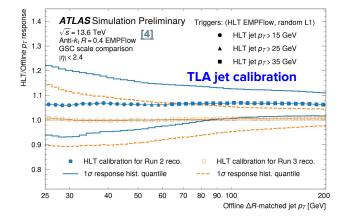
Background

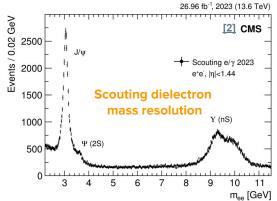
 γ^2 / ndf = 68 / 60

Full fit

Data

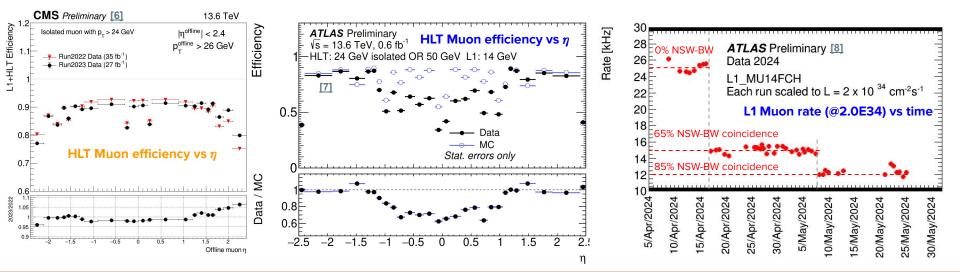

0.6 0.65 0.7 0.75


101 fb⁻¹ (13 TeV)

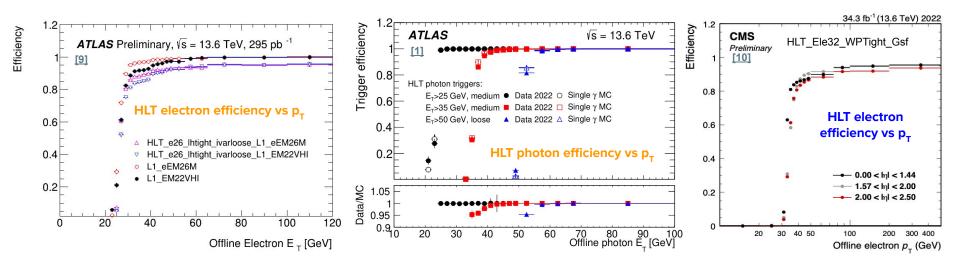

0.8

0.85 0.9

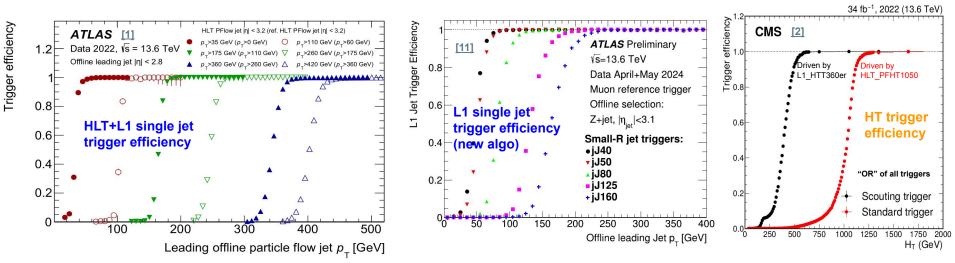
m4. [GeV]



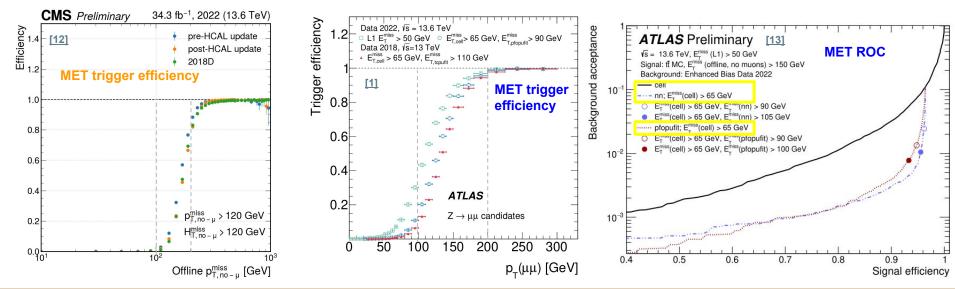
Muons


- Muon efficiency dominated by L1 trigger and isolation cut.
- L1 muon chamber inefficiency recovered during data taking.
- New Small Wheels (ATLAS) improved efficiency/rate ratio in the forward region.
 - Rate reduction: > -50% (13 kHz), with ~98% efficiency.

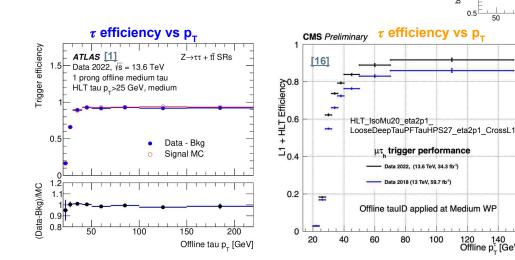
Electrons and photons


- Excellent performance
- New Phase-1 algorithm in ATLAS in L1 trigger \rightarrow better efficiency

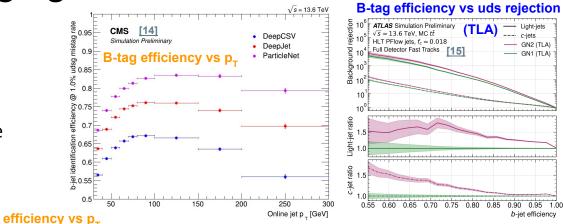
Jet and HT


- Good Jet/HT performance.
- Scouting/TLA allows a large gain in trigger acceptance.
 - Larger gain with the activation of L1_HTT280er in 2023
- New Phase-I jet triggers
 - jet Feature Extractor (jFEX) applies a more refined jet calibration than the legacy L1 jets received

Missing transverse energy


- Missing transverse energy computed as the sum of particle flow candidate
- New method based on NN deployed by ATLAS in 2024
 improved efficiency at fixed rate

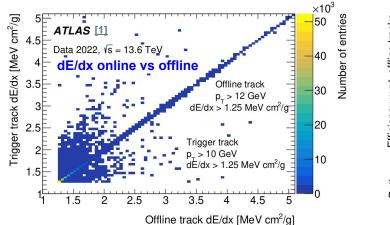
B-tagging and tau tagging

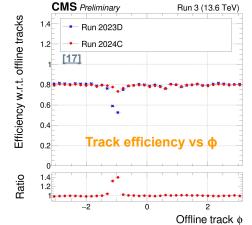

- Graph neural network used for b-tagging (ParticleNet, GN2)
- Large improvement in performance
- GN2 used in TLA

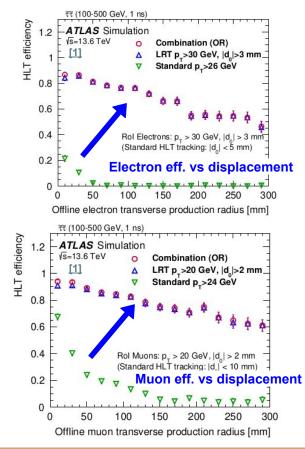
80

100

 $\begin{array}{ccc} 120 & 140 \\ Offline \ p_{\tau}^{\tau} \ [GeV] \end{array}$



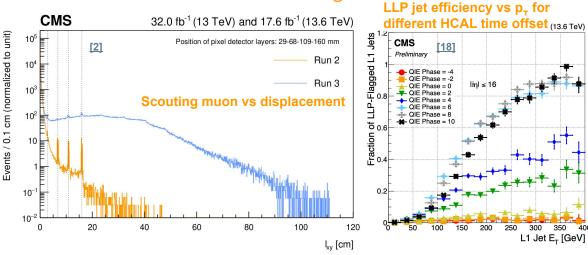

- Good performance in tau reconstruction
 - Migration of tau reconstruction to ParticleNet in 2024 (CMS)

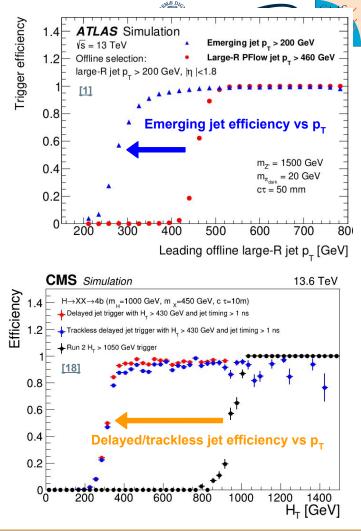


Tracking

- Excellent precision in dE/dX measurement
- Issues in few pixel modules in CMS after TS1 in 2023
 recovered using a doublet recovery in 2024
- Development of dedicated tracking for long-lived particles

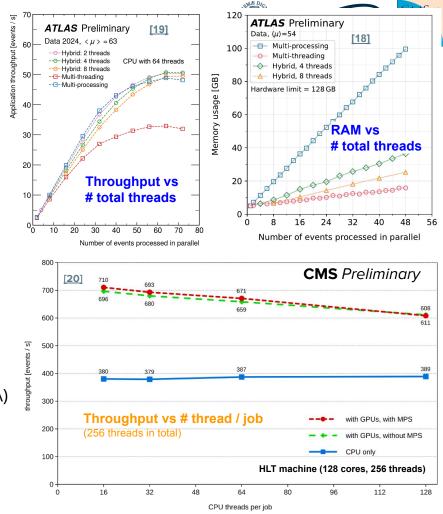
Long lived particles


- New set of triggers targeting long-lived particles
 - Trackless or displaced jets; 0
 - Measurement of time delay in ECAL and HCAL;

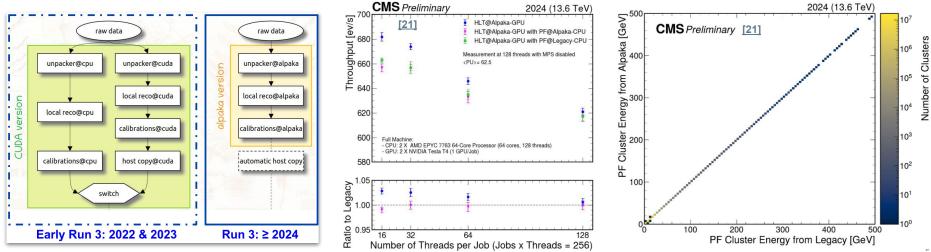

linl ≤ 16

250

L1 Jet E_T [GeV]


- Displaced muons 0
 - Dedicated L1 trigger
 - Included in scouting

Multithreading and GPU


- Multithreading (MT) is key to fully exploit HLT farm computational power
 - inter-event, intra-event, in-algorithm parallelism;
 - usage of "data handles" to define the data dependency among modules;
 - lower memory usage.
 - AthenaMT online since 2022.
 - CMSSW support MT since 2015.
- CMS HLT farm heterogeneous since 2022 (AMD CPU + Nvidia T4):
 - **40%** of HLT reconstruction ported to **GPU** (CUDA)
 - Pixel local reconstruction
 - Pixel tracking and vertexis
 - ECAL local reconstruction
 - HCAL local reconstruction

Migration to alpaka (CMS)

- Alpaka is a portability library. Same code able to run on
 - **multiple** hardware **vendors** (eg. AMD GPU, Intel GPU)
 - **multiple** kinds of **accelerators** (eg. GPU, FPGA)
- Pixel and ECAL code migrated from CUDA to Alpaka in 2024.
 - HCAL local reco migration in progress.
- Part of the Particle Flow recently ported directly to Alpaka from CPU-only.

