Pierre Auger Observatory – physics

Triggering Discoveries in High Energy Physics III, High Tatras

Michael Prouza FZU - The Institute of Physics of the Czech Academy of Sciences Prague, Czech Republic

What is ASTROPARTICLE PHYSICS?

Pierre Auger Observatory and Cherenkov Telescope Array

AUGER – AugerPrime, AugerPhase II has started

CTAO - construction, ready for operation in 2024

FZU - Team of more than 20 people, AUGER, CTAO, SWGO + SST1M (Patrik)

Motivation

Similar sources !?

Motivation

Fluorescence detection - Auger

Cherenkov detection - CTA

What are the sources of the highest energies?

Most energetic particles -The Pierre Auger Observatory (AUGER)

History: Discovery of cosmic rays

1912

Viktor Hess has discovered cosmic rays.

Some of his balloon flights starting from Bohemia.

1936 – Nobel Prize

Cosmic ray flux

Scaled cosmic ray flux

Academy of Sciences

Distortions in Magnetic Fields

Galactic field

- B_G ≈ 3μG
- Proton with E ~ 10¹⁸ eV
 r₁ = 0.3 kpc (disc thickness)

Extragalactic field

- Extragalactic field $B_{EG} \le nG$
- The closest AGN is Centaurus A (≈ 4 Mpc)

Indirect detection – extensive air showers

Detection of athmospheric showers

Pierre Auger collaboration

Pierre Auger Observatory

AMARILLA (mirrors from CZE)

FZU Institute of Physics of the Czech Academy of Sciences

Pierre Auger Observatory

Institute of Physics of the Czech Academy of Sciences

Fluorescence detector

Integration of G.H. fit -> cal. energy

- Calorimetric measurement (+ correction for invisible energy)
- 13% duty cycle
- Hybrid detection improves the precision of shower reconstruction

- Observation of X_{max} in FOV
- Energy resolution 7-8%
- Sys. uncertainty decreased to 14%

Measurement principle

Measurement principle

²⁶

Our data

27

Spectral features

Low energy spectrum

Combined spectrum

compatible within uncorrelated uncertainties

normalization shifts after comb.:

SD 1500 m	<1 %
SD 750 m	-2 %
SD 1500 m inclined	+5 %
Hybrid	<1 %
Cherenkov	+7 %

10

Spectrum features

fit parameters (± stat. ± syst.) $\gamma_0 = 3.09 \pm 0.01 \pm 0.10$ $E_{01} = (2.8 \pm 0.3 \pm 0.4) \times 10^{16} \text{ eV}$ $\gamma_1 = 2.85 \pm 0.01 \pm 0.05$ $E_{12} = (1.58 \pm 0.05 \pm 0.2) \times 10^{17} \text{ eV}$ $\gamma_2 = 3.283 \pm 0.002 \pm 0.10$ $E_{23} = (5.0 \pm 0.1 \pm 0.8) \times 10^{18} \text{ eV}$ $\gamma_3 = 2.54 \pm 0.03 \pm 0.05$ $E_{24} = (1.4 \pm 0.1 \pm 0.2) \times 10^{19} \text{ eV}$ $y_4 = 3.03 \pm 0.05 \pm 0.10$ $E_{45} = (4.7 \pm 0.3 \pm 0.6) \times 10^{19} \text{ eV}$ $\gamma_5 = 5.3 \pm 0.3 \pm 0.1$ $J_0 = (8.34 \pm 0.04 \pm 3.40) \times 10^{-11} \text{ km}^{-2} \text{ sr}^{-1}$ yr-1 eV-1

14

Mass composition

Models of hadronic interactions tuned to the LHC data (Run I)

Observables relevant to hadronic interaction models

FZU Institute of Physics of the Czech Academy of Sciences

Anisotropies at the Highest Energies (above ~ 50 EeV)

Institute of Physics of the Czech

cademy of Sciences

~ 5-σ local significance (no obvious source nearby)

22/44

34

FZU Institute of Physics of the Czech Academy of Sciences

Energy evolution of the anisotropy

Large-scale cosmic-ray anisotropies above 4 EeV measured by the Pierre Auger Observatory ApJ 868 (2018) 4

Questions

- What is the origin of the flux suppression?
- What is the proton fraction at the end of E spectrum?
- Is there an energy dependence of anisotropies?
- What about hadronic physics at highest energies?

We need a large-exposure detector with good composition sensitivity!

AugerPrime – Upgrade of the Pierre Auger Observatory, finished November 2024

- Instalation of 1660 scintillation detectors (3.8 m², 1 cm thick, 3000 km²)
- Instalation of new electronics (40 Mhz → 120 MHz all stations)
- Instalations of small PMTs (all stations saturation of SD signal from 500 m to 300 m from the shower core for log(E/eV)>19.5)
- Cross check with 61 muon detectors (30m² 2.3m under ground - AMIGA, 750m spacing, 23.4 km²)
- Increase of FD exposure by 50% at the highest energies decreasing HV on PMT
- Installation of 1660 radio antennas to improve detection of inclined showers

Pierre Auger Observatory 2018

AUGERPrime – upgrade of the Observatory
30 SSDs in the field

R&D and Pierre Auger Observatory 2018

- FAST simplified (future) FD
- telescope at TA in Utah since Oct. 2018
- FAST telescope at Pierre Auger Observatory since 2019, further three to come in 2025

