

CMS Trigger in High Luminosity LHC

A focus on LST, a novel algorithm for the Phase 2 CMS High Level Trigger tracking

Silvia Goy Lopez, Sioni Paris Summers, <u>Manos Vourliotis</u> on behalf of the CMS Collaboration

Challenges for Phase 2 High Level Trigger

- The High Luminosity LHC (HL-LHC) brings new opportunities: A new phase for the LHC experiments!
 - Tremendous increase of promptly reconstructed data to be delivered:
 - Run 4: 500 kHz (L1T output/HLT input) \rightarrow 5 kHz (HLT output)
 - Run 5: 750 kHz (L1T output/HLT input) \rightarrow 7.5 kHz (HLT output)
- To realize new opportunities, new challenges surface:
 - High luminosity ⇒ Large number of concurrent collisions (PU): Up to 200 ⇒ Superlinear increase of computational complexity.
- Combining the above:
 - Increased timing
 - Increased cost

The Goals and the Plan

COMPACT MARKED AND A MARKED AND A MARKED A MARKE

- On the physics side:
 - Retain the performance on the already covered phase space
 - Take after the Run 3 example.
 - Take advantage of the new detectors.
 - E.g. timing and improved spatial resolution of the HGCal.
 - Extend the acceptance to more exotic scenarios (also using ML methods).
 - E.g. new algorithm to reconstruct displaced tracks.

• On the **computational side**:

- Consider a fixed-budget scenario
 ⇒ Optimize the hardware & software to fit the timing budget.
- Parallelize and vectorize the CPU algorithms.
 - The <u>mkFit</u> example.
- Complement CPUs with hardware well suited for parallelization
 ⇒ Heterogeneous computing using GPUs.
 - The <u>Patatrack</u> example.

A Rich Landscape of Improvements

- To reach the physics and computational goals, every part of the HLT reconstruction is being reworked:
 - Tracking:
 - New algorithms, <u>Patatrack</u> & <u>LST</u>, aim to speed up the track reconstruction with improved physics performance.
 - Jets and heavy flavor tagging:
 - Simplification of the inputs for jet reconstruction aims to decrease the time needed to achieve a comparable physics performance.
 - Latest and greatest ML models implemented to improve the heavy flavor tagging.
 - Particle Flow (PF):
 - New algorithms, <u>CLUE</u> & <u>TICL</u>, adapted to <u>optmize the PF</u> logic to the Phase 2 detectors, also exploiting <u>ML</u> techniques.
 - Leptons (e, μ, τ) & photons:
 - ML methods applied to improve the reconstruction & identification.
 - Timing information:
 - Usage explored in every physics object for isolation & PU mitigation.

HLT Highlight: LST

- A nice example to highlight all of the ways to improve the HLT: The Line Segment Tracking (LST) algorithm!
 - Moves away from sequential pattern recognition ⇒ Designed for parallelization.
 - Leverage GPU performance for parallel tasks ⇒ Hardware agnostic implementation (<u>Alpaka framework</u>): CPU and GPU variants with common codebase.
 - Machine learning to improve pattern recognition.
 - Extend acceptance to displaced tracks.

The CMS Phase 2 Outer Tracker

CCMS under the second s

- Key characteristic of the CMS Phase 2 Outer Tracker (OT): Each layer comprises 2 closely-spaced silicon sensors.
- MiniDoublets (MDs): Linked pair of hits in sensors of the same layer.
 - Reduce combinatorics.
 - Can be locally reconstructed \Rightarrow Allow for parallelization.
 - Elementary building block for tracks.
- Further combinatorics reduction: Tune the search window for hit pairs $\Rightarrow p_{\tau}$ threshold (0.8 GeV for LST).

12 Dec 2024

LST Logic and Objects

12 Dec 2024

12 Dec 2024

LST Selection in a Nutshell

- LST selection for object creation relies on:
 - Precomputed connection maps
 - OT and IT+OT
 - Geometric criteria
- Longer objects get more complicated ⇒
 Opportunity for machine learning to do better!
 - Simple DNN implemented to select T5s.
 - No effect on the timing.
 - Significant reduction in fakes and duplicates.
 - Important gains in efficiency for displaced tracks.
- Final LST output objects:
 - **pT5s**: Longest tracks \Rightarrow Efficiency driver.
 - pT3s: Efficiency recovery.
 - T5s: OT-only object \Rightarrow Efficiency for displaced tracks.
 - Unlinked pLSs with \geq 4 hits: Efficiency for high $|\eta| \& \log p_{\tau}$.

Simulated track r_{vertex} [cm]

modules"

HLT setup

- CMS Phase 2 High Level Trigger (HLT) tracking (Base CKF): Reconstruction of tracks with p_γ>0.9 GeV in 2 iterations with different set of initial track estimations (track seeding):
 - initialStep:

Tracks from pixel seeds $w/ \ge 4$ hits (quads) from the Patatrack algorithm.

• highPtTripletStep:

Tracks from pixel seeds w/ 3 hits (triplets) from the <u>legacy pixel seeding algorithm</u>.

- Pattern recognition (track building) with the usage of the Combinatorial Kalman Filter algorithm (CKF):
 - Inherently sequential.
 - Implemented only on CPU.
- Built tracks (collection of hits from the same track) undergo:
 - Track fitting to extract final track parameters.
 - Selection based on track parameter requirements (tracking ID):
 - <u>highPurity ID</u> applied ⇒ Good efficiency with low fake and duplicate rate for prompt tracks.

LST in HLT setup

- LST to replace track building for initialStep:
 - Using pixel seeds with \geq 3 hits as pLSs.
- Different tracking ID applied to different LST output objects:
 - No selection (apart from the LST one) applied on T5s \Rightarrow High efficiency for displaced tracks.
- LST does not build tracks for |η|>2.5 (out of OT acceptance) ⇒ Run CKF on different sets of seeds in highPtTripletStep to recover efficiency:
 - Legacy triplets.
 - LST pLSs quads or quads+triplets ⇒ LST can also be used as a seeding algorithm!

Iteration	Procedure	Base CKF	LST w/ CKF on Legacy Triplets	LST w/ CKF on LST Quads	LST w/ CKF on LST Quads+Triplets
Initial Step	Seeding	Patatrack quads	Patatrack quads + Legacy triplets	Patatrack quads + Legacy triplets	Patatrack quads + Legacy triplets
	Building	CKF	LST	LST	LST
	Tracking ID	highPurity	highPurity (pT3, pT5, pLS) None (T5)	highPurity (pT3, pT5) None (T5)	highPurity (pT3, pT5) None (T5)
HighPtTriplet Step	Seeding	Legacy triplets	Legacy triplets	LST pLS quads	LST pLS quads+triplets
	Building	CKF	CKF	CKF	CKF
	Tracking ID	highPurity	highPurity	highPurity	highPurity

- Lower efficiency when triplets are not built ⇒ Mostly from the endcaps ⇒ Triplets important in current setup. Alternatives:
 - Use triplets from the Patatrack algorithm.
 - Improve quad reconstruction.

- Lower efficiency when triplets are not built ⇒ Mostly from the endcaps ⇒ Triplets important in current setup. Alternatives:
 - Use triplets from the Patatrack algorithm.
 - Improve quad reconstruction.
- Similar/higher efficiency when all LST pLSs built:
 - Efficiency improvement from p_{τ} <5 GeV or $|\eta|$ <1.
 - Highlights usefulness of LST as a seeding algorithm.

Simulated track r

- Lower efficiency when triplets are not built ⇒ Mostly from the endcaps ⇒ Triplets important in current setup. Alternatives:
 - Use triplets from the Patatrack algorithm.
 - Improve quad reconstruction.
- Similar/higher efficiency when all LST pLSs built:
 - Efficiency improvement from p_{τ} <5 GeV or $|\eta|$ <1.
 - Highlights usefulness of LST as a seeding algorithm.
- Efficiency dip for LST seeding (orange, purple) for 2.5<|n|<3.0:
 - Room for improvement for LST reconstruction and selection in the OT-IT transition region.

- Any configuration using LST for track building (red, orange, purple) allows for acceptance of displaced tracks (r_{vertex} >5 cm):
 - Completely new feature for CMS HLT!
- Efficiency drops roughly corresponding to tracker layers:
 - Endpoint: ~35cm \Rightarrow Less than 4 layers available \Rightarrow No T5 possible.

- Lower fake rate for any configuration using LST for track building (red, orange, purple):
 - Mostly for p_{τ} <10 GeV, where the bulk of tracks are \Rightarrow Significant computing reduction downstream.
 - Mostly for |η|<2.5, where LST builds tracks ⇒ Implying effective selection for LST objects.

- Higher duplicate rate when CKF run on legacy triplets:
 - Duplicates between LST objects for $|\eta| < 2.5$.
 - Duplicates between LST and CKF for $|\eta|$ >2.5.
- Solution from LST seeding (orange, purple):
 - Better cross-cleaning for $|\eta|$ <2.5.
 - Effective duplicate merging for $|\eta|$ >2.5.

Throughput wrt. Base CKF

- A look at **Run 3 computational performance**:
 - Tracking: Complex task performed by serial algorithm ⇒ Most time-consuming reconstruction step (offline & online).
 - Displaced tracking: 50% reduction of offline tracking reconstruction throughput ⇒ Computationally-heavy task due to large combinatorics.
- LST configurations allows for:
 - displaced tracking,
 - with similar (red) or even better (purple) physics performance,
 - with marginal speed up or slowdown of HLT tracking.
- LST on CPU (not optimized and not parallelized currently) shows a slowdown up to 30%:
 - Still better than 50% slowdown expected from Run 3.
- LST on GPU shows a similar throughput with all the physics gains applied.
- Majority of the time spent on the CKF iteration to recover endcap efficiency:
 - Triplets from legacy pixel seeding algorithm ⇒
 Numerous and impure (compare orange vs. purple) ⇒ Slow down for building...

	LST w/ CKF on Legacy Triplets	LST w/ CKF on LST Quads	LST w/ CKF on LST Quads+ Triplets
LST on CPU Throughput / Base CKF	0.72±0.07	0.86±0.07	0.70±0.09
LST on GPU Throughput / Base CKF	1.03±0.09	1.35±0.12	0.92±0.09

Summary

- HL-LHC brings about an unprecedented amount of data
 → With it, an unprecedented amount of challenges.
- The triggering system in the frontline to address them
 ⇒ Extensive overhaul of the total reconstruction to achieve:
 - Better physics performance.
 - At reduced timing.
- Innovative software to take advantage of the appropriate hardware ⇒ Parallelized algorithms optmized for GPU execution.
- Some of the improvement aspects highlighted by the LST algorithm ⇒
 LST in HLT opens up the possibility for:
 - Extension of acceptance: Displaced tracking at HLT at negligible timing cost!
 - Heterogeneous computing: Offloading of the track building step on GPUs!

Proof of principle for multiple improvements More developments ⇒ Faster & more efficient.