A. Andronic - University of Münster

for the CBM Collaboration

- FAIR
- CBM
	- Detector
	- Physics: motivation, goals, performance
	- Current status
- Summary / Outlook

Workshop "Triggering Discoveries in High Energy Physics III" - High Tatras, 9-13 Dec. 2024

FAIR Complex at GSI Darmstadt

Facility for Antiproton and Jon Research multi-purpose (strong interaction) facility

FAIR

- **Civil construction work completed** ٠
- Installation of accelerator components begun

Facility for Antiproton and Jon Research multi-purpose (strong interaction) facility

FAIR

- **Civil construction work completed** ٠
- Installation of accelerator components begun

Inside FAIR

see [More photos, videos](https://www.gsi.de/en/researchaccelerators/fair/fair_civil_construction/photos_and_videos)

A.Andronic **CBM** $|6\rangle$

CBM Detector

Challenges: huge variation in occupancy (fixed-target); event rates up to 10 MHz

CBM: MVD

- Charmed-hadron reconstruction
- MAPS (180 nm CMOS, Tower; MIMOSIS-3)
- $\sigma_{x,y} = 5 \,\mu$ m; Power: 100 mW/cm²
- Radiation: 5 Mrad & 5×10^{14} ${\rm n_{eq}/cm^2}$
- 4 planes, operated in vacuum

CBM: STS

- Tracking and momentum measurement, $\Delta p/p = 1-2\%$ (B=1 T)
- $\sigma_{x,y} = 30 \,\mu \text{m}$; $\sigma_t = 5 \text{ ns}$
- \bullet Low material budget (2-8% $X_0)$
- Double-sided silicon strip det.
- 876 modules, 2x1024 ch. each $(62x22, 42, 62, 124 \text{ mm}^2)$ 106 ladders (up to 10 modules)

see [JINST 9 \(2024\)](https://iopscience.iop.org/article/10.1088/1748-0221/19/07/C07002)

CBM: RICH

- Electron identification
- \bullet CO₂ at normal pressure n=1.00043, $\gamma_{thr} = 33$ $p_{thr}^{\pi} \simeq 4.8$ GeV/ c
- R^e =4.8 cm
- 2 mirros, focal length 1.5 m
- Multi-anode PMTs (1100) 70k pixels

- Electron, light nuclei identification Track matching STS-TOF
- $\sigma_{x,y} = 100 300 \,\mu m$ (outer, long pads: ∼cm)
- Radiator (PE foam), TR: 5-30 keV $MWPC (1.2 \text{ cm}, \text{ Xe-CO}_2)$
- Pad readout, FADC; 250k channels

Modules installed in STAR, FXT program

- Hadron identification
- Multi-gap RPCs (glass, strips)
- Resolution: 50-60 ps

Electron identification performance

 1.0 1.0 1.0 0.8 -0.8 0.8 max. Significance Electron Efficency 2016
Politica
Good
Contract
Contract
Contract
Contract
Contract
Contract
Contract
Contract
Contract
Contract
Contract
Contract
Contract
Contract
Contract
Contract
Contract
Contract
Contract
Contract
Contract
Contract
Contr 0.6 0.6 **Conventional Methods** - Conventional Methods 0.4 0.4 **Add ROC Random Forest** 0.2 0.2 0.2 single clf. Random Forest single clf. XGBoost **Conventional Extention** Conventional new RICH clf. 0.0 0.0 0.0 0.2 0.4 0.6 0.8 0.000 0.001 0.002 0.003 0.0 1.0 **Hadron Purity Hadron Purity**

A.Andronic **CBM** 13

Combined RICH-TRD-TOF, ML methods (Au-Au, $\sqrt{s_{NN}} = 4.9$ GeV)

Master Thesis, Hendrik Schiller (Münster, 2022)

Heavy-ion collisions at FAIR energies

A.Andronic **CBM** 14

Au-Au collisions, $E_{beam} = 2-11$ GeV/nucleon on fixed target $\sqrt{s_{NN}} = 2.7 - 4.9$ GeV); centrality selection (FSD)

CBM will measure pA collisions too, rich hadron physics program (proton momentum up to 30 GeV $/c$)

broad phase space coverage, down to low p_T

- characterize hot and dense QCD matter at high μ _B (500-800 MeV), EoS - establish order of phase transition(s), conjectured QCD critical point

HADES, [Nature Phys. 15 \(2019\) 1040](http://arxiv.org/abs/1801.07801) Andronic et al, [Nature 561 \(2018\) 321](http://arxiv.org/abs/1710.09425)

Observables (abundant/rare):

- light flavour hadrons, incl. multi-strange hyperons \rightarrow chemical freeze-out T,μ_B flow, vorticity \rightarrow EoS
- event-by-event fluctuations (criticality)
- dileptons (emissivity)
- charm (transport properties)
- hypernuclei (interaction, prod. mechanism)

DENSE MATTER

 \blacksquare

 $\overline{\mathbf{c}}$

€

 \overline{a}

6

Neutron stars get denser with depth. Although researchers have a good sense of the composition of the outer layers, the ultra-dense inner core remains a mystery.

Core scenarios

A number of possibilities have been suggested for the inner core, including these three options.

OUp quark **Strange quark O** Down quark **O** Anti-down quark

Quarks

The constituents of protons and neutrons - up and down quarks - roam freely.

Bose-Einstein condensate

Particles such as pions containing an up quark and an anti-down quark combine to form a single quantum-mechanical entity.

Hyperons

Particles called hyperons form. Like protons and neutrons, they contain three quarks but include 'strange' quarks.

cnature

A.Mann, [Nature 579 \(2020\) 20](https://www.nature.com/articles/d41586-020-00590-8)

EoS of crucial relevance

Theoretical calculations, Annala et al, [Nature Phys. 16 \(2020\) 907](https://arxiv.org/abs/1903.09121)

the closer to ideal gas $(c_s^2=1/3)$ quark matter is, the larger/heavier the core

NB: not the quark-gluon matter of LHC ...antiquarks and gluons largely absent here; neutron star quark matter may be produced at FAIR/GSI ...hotter though

Directed and elliptic flow

$$
\frac{dN}{d\varphi} \sim [1 + 2v_1 \cdot \cos(\varphi) + 2v_2 \cdot \cos(2\varphi) + \ldots]
$$

 $\phi =$ azimuthal angle with respect to reaction plane $v_1 = \langle \cos(\varphi) \rangle$ directed flow, $v_2 = \langle \cos(2\varphi) \rangle$ elliptic flow (coefficients)

R. Snellings, [arXiv:1102.3010](http://arxiv.org/abs/1102.3010)

3 regimes:

 $v_2 > 0$ at low energies: in-plane, rotation-like emission

 $v_2 < 0$ onset of expansion, in competition with shadowing by spectators ... which act as a *clock* for the collective expansion:

$$
t_{coll}=2R/\gamma_{\rm cm}c\text{=}40\text{-}10\ \text{fm}/c
$$

transport models

 $v_2 > 0$ at high energies: "free" fireball (almond-shape) expansion "genuine" elliptic flow hydrodynamic description

AGS: CBM regime

EoS and the stars

Dark: 68%; Light: 95% C.L. (credible intervals) Huth et al., [Nature 606 \(2022\) 276](http://arxiv.org/abs/2107.06229)

Du, Sorensen, Stephanov, [arXiv:2402.10183](http://arxiv.org/abs/2402.10183)

Flow data compared to microscopic transport simulations (bands, hadronic) Momentum-dependent interactions (repulsive at $E_{kin} \gtrsim 200$ MeV) are needed (included only in calc. of black and blue bands in the Fig.)

CBM will measure flow in detail and polarization of hyperons (from initial $\vec{L})$...will constrain EoS in the range 2-5 ρ_0 but uncertainties due to transport models need to be reduced too

(baryon number conserved) moments of net-proton $(N_{\rm p}-N_{\overline{\rm p}})$ event-by-event distributions:

probe local fluctuations of baryon number

...expected to increase near a critical point

Debated effects: event-by-event volume and detection efficiency fluctuations; what effect have missed neutrons, hyperons, nuclei?

CBM: dileptons

Rapp, Wambach, [Adv. Nucl. Phys. \(2000\) 25](https://arxiv.org/abs/hep-ph/9909229)

https://github.com/tgalatyuk/QCD_caloric_curve

A.Andronic **CBM** 25

fit data with: ${\rm d}N/{\rm d}M\sim M^{3/2}\exp(-M/T)$

Temperature averaged over the lifetime of the fireball (QGP+hadronic phase)

A.Andronic **CBM** 26

...are copiously produced at low (RHIC-BES/FAIR) energies

Statistical Hadroniz. Model (thermal)

central AA collisions

maxima: interplay between T and μ_B vs. $\sqrt{s_{NN}}$

AA, PBM, JS, HS, [PLB 697 \(2011\) 203](https://arxiv.org/abs/1010.2995)

CBM will study $\frac{3}{4}$ Λ H and $\frac{4}{\Lambda}$ Λ H in detail

and can discover the doublestrange hyperons

 \mathbb{F} in

T.Galatyuk, NPA 982 (2019), https://github.com/tgalatyuk/interaction_rate_facilities

Free-streaming readout and First Level Event Selection (FLES) Full readout in mCBM@SIS18, currently commissioning FLES (Λ) production)

mCBM

Final prototypes or first-of-series detectors

A.Andronic CBM 31

mCBM run 2448 June 16, 2022 Au + Au, T = 1.23 AGeV av. collision rate: 300 - 400kHz av. data rate 2.4 GB/s to disc

first, preliminary results!

mCBM: Λ reconstruction (benchmark observable)

- CA track reconstruction
- KFParticle package
- Goal: online reconstruction in 2025

- CBM is progressing well towards the science program with SIS100 beams
- High-rate capabilities (detector, readout) achieved in extensive R&D phase
- Almost all systems in (pre-)series production
- Start of commisioning with SIS100 beam in 2028

Thank you for your attention!

A.Andronic CBM 36

thermal fits exhibit a limiting temperature:

 $T_{lim} = 158.4 \pm 1.4$ MeV

$$
T_{CF} = T_{lim\frac{1}{1+\exp(2.60-\ln(\sqrt{s_{NN}}(\text{GeV}))/0.45)}}
$$

 $\mu_B[\text{MeV}] = \frac{1307.5}{1+0.288\sqrt{s_{NN}}(\text{GeV})}$

[NPA 772 \(2006\) 167,](https://arxiv.org/abs/nucl-th/0511071) [PLB 673 \(2009\) 142](https://arxiv.org/abs/0812.1186)

 μ_B is a measure of the net-baryon density, or matter-antimatter asymmetry

determined by the "stopping" of the colliding nuclei

The grand (albeit partial) view

A.Andronic **CBM** 37

AGS: E895, E864, E866, E917, E877 SPS: NA49, NA44 RHIC: STAR, BRAHMS LHC: ALICE

Data:

NB: no contribution from weak decays

no S-matrix correction (p, \overline{p})

d/p ratio is well described for all energies

"structures" described by SHM ...determined by strangeness conservation

 Λ/π peak reflects increasing T and decreasing μ_B

Sampled phase diagram (points) in a merger of 2 neutron stars with 1.33 M_{\odot}

A.Andronic **CBM** 38

A. Prakash et al., [PRD 104 \(2021\) 083029](http://arxiv.org/abs/2106.07885)

EoS with quark degrees of freedom used here; not well constrained for $\rho/\rho_0 \gtrsim 2$ Matter in the NS cores crosses the phase boundary several times post-merger