Electron Ion Collider

Jaroslav Adam Czech Technical University in Prague

High Tatras, December 9 - 13, 2024

Triggering Discoveries in High Energy Physics III

Electron Ion Collider (EIC)

- Polarized ep and e-ions up to 18×275 GeV
- One of RHIC beams is re-used as hadron beam
- Two rings for electrons, accelerator and storage ring
- Detector experiment (ePIC) at location of current STAR, second experiment possible
- First data early 2030s

ePIC detector (Electron-Proton/Ion Collider Experiment)

Jaroslav Adam (CTU Prague)

Electron Ion Collider

Physics case for the EIC

- Spin and mass composition of nucleons (proton spin puzzle)
- QCD dynamics in unexplored kinematic regions
- Jet interactions in cold nuclear matter
- Electroweak physics and beyond the standard model

Looking into a nucleus at the EIC

Energies and beam species

Species	Energy (GeV)	\sqrt{s} (GeV)
ер	18×275 10×275 10×100 5×100 5×41	140.7 104.9 63.2 44.7 28.6
eAu	18×110 10×110 5×110 5×41	89.0 66.3 46.9 28.6

- +all hadron species as at current RHIC
- High luminosity $10^{33}-10^{34}\ cm^{-1}s^{-1},$ $100-1000\times$ more than HERA
- Integrated 10–100 fb⁻¹ / year

General DIS process

$$x = \frac{Q^2}{2Pq}$$

Parton momentum fraction x:

 $Q^2 = -(p - p')^2$

Resolution (virtuality) Q^2 :

Unprecedented coverage in x and Q^2

Jaroslav Adam (CTU Prague)

Electron Ion Collider

The ePIC experiment (Electron-Proton/Ion Collider Experiment)

Hermetic coverage for tracking, particle identification and calorimetry in asymmetric collisions

ePIC collaboration

- 850+ participants
- 177 institutions
- 9 26 countries
- 650+ members active in ePIC

Jaroslav Adam (CTU Prague)

Electron Ion Collider

Detector requirements for ePIC experiment

- Vertex detector: precise spatial resolution, low material budget
- Central and endcap trackers: particle momenta (with help of solenoid magnet)
- Particle identification: $\pi/K/p$ separation for each track
- Calorimeters: eletromagnetic and hadron
- DAQ: streaming readout

 Far-forward and backward detectors: scattered particles at very small angles, luminosity measurement, nuclear breakup

Coordinate convention for ePIC:

- Forward proton/ion beam direction, z > 0
- Backward electron beam direction, z < 0

Central ePIC detectors

Vertex + tracking

- Si and gaseous sensors
- 1.7 T solenoid field

Particle identification

- AC-LGAD for time-of-flight
- Cherenkov hpDIRC and RICH

Calorimeters

- Electromagnetic and hadron parts
- Full enclosure around tracking and identification detectors
- Homogeneous and sampling calorimeters

Meeting the requirements within space constraints

Central tracking detectors, $|\eta| < 3.5$

Barrel tracking

Backward/Forward tracking discs (5 layers)

- 6 Si layers (MAPS) + forward/backward disks
- Gaseous $\mu RWell$ and $\mu Megas$

planar uRWell MPGD

cylindrical µMega layer

(behind hpDIRC)

• TOF identification with AC-LGAD

AC-LGAD TOP

Collision vertex (resolution 3 mm), charged particle momentum (resolution 1%), time-of-flight identification

Jaroslav Adam (CTU Prague)

Layout for central tracking

- MAPS (Monolithic Active Pixel Sensor)
 - Based on 65 nm CMOS, developed with ALICE ITS3
- MPGD (Micro Pattern Gaseous Detector)
 - Connection between tracking and particle identification

Particle identification

• Time-of-flight (AC-LGAD) and Cherenkov detectors

Expected momentum (p) and pseudorapidity (η) distribution

Complete coverage in particle momenta and pseudorapidity

Particle identification by time-of-flight

- AC-LGAD structure of Low Gain Avalanche Diodes with capacitive (AC) coupling
- 100% fill factor, timing resolution ${\sim}30~\text{ps}$

AC-LGAD structure

Forward disk

Barrel layer

Particle identification by Cherenkov detectors

- Identification by combination of Cherenkov angle and momentum for each track
- Cherenkov radiators, readout by HRPPD (backward), MCP-PMT (barrel) and SiPM (forward)

Calorimeters in ePIC detector

- Complete EM and hadron calorimeters in central region and forward (hadron) endcap
- Tail-catcher for hadron calorimeter in backward endcap

Electron / hadron separation, jet reconstruction

Barrel electromagnetic calorimeter

- Scintillating fibers (SciFi) in Pb absorber
- Imaging layers based on AstroPix sensors

Forward and backward electromagnetic calorimeters

• Forward ECAL:

- WScFi structure
- Tungsten powder and scintillating fibers
- SiPM readout

• Backward ECAL:

- PWO crystals
- SiPM readout

Electron/pion and $2\gamma/\pi^0$ separation

Backward ECAL

Electron Ion Collider

Hadron calorimeters

• Absorber layers and scintillator tiles + SiPM

Jet kinematics reconstruction

Backward HCal

Barrel HCal

Far-forward / backward detectors

- Particles scattered at small angles, outside central detector
- Detectors are placed along beam magnets

Far-forward ($z \gg 0$)

- Hadron beam direction
- Tracking and calorimeters

Far-backward ($z \ll 0$)

- Electron beam direction
- Luminosity measurement, electrons at low-*Q*²

Interaction region layout, note different range in horizontal (x) and longitudinal (z) directions

Far-forward layout

- Roman Pots (RP) for very forward hadrons
- Off-Momentum Detectors (OMD) for nuclear breakup and Λ decays
- ZDC for neutrons and low-energy photons
- B0: tracker and calorimeter inside beam magnet

Diffractive processes, spectators in e+A collisions, nuclear excitation and breakup

The drawing is illustrative, not to scale

Far-forward detectors

B0 detector

- 4 Layers of AC-LGAD (charged tracking)
- PWO/LYSO crystals for calorimeter (γ and π^0)

Roman Pots + OMD

- AC-LGAD sensor
- Part of outgoing hadron beampipe

OMD2

ZDC

- Electromagnetic and hadron parts
- Forward neutrons and π^0/γ separation

Far-backward region, luminosity measurement

- γ photons from Bethe-Heitler bremsstrahlung, *ep*(A) → *e*γ*p*(A)
- Cross section is well known from QED
- Two methods to count the γ photons:
- Direct γ calorimeter (γ cal)
 - Approximate γ counts
 - Online collider performance
- Onversion pair spectrometer (PS)
 - Precise counts for physics
 - γ conversions to e^+e^- pairs
 - Dipole magnet, trackers and calorimeters

Key part to all cross section measurements (most of EIC physics program), target precision of 1%

Far-backward region, low- Q^2 electron tagging

- Two tagger stations (-20 m) and (-35 m) from interaction point (IP)
- Timepix4 tracker and EM calorimeter

Detail at one of tagger stations

Photoproduction physics at low- Q^2 and luminosity precision (coincident e^- and γ detection)

Streaming DAQ

Continuous digitization for all detector data, no external hardware trigger

- All signals passing zero-suppression threshold, timestamp for unique identification
- Detector specific front end boards, commercial high-performance (EBDC) servers

Jaroslav Adam (CTU Prague)

Electron Ion Collider

Streaming DAQ workflow

- Specific ASICs in Front End Boards (FEBs)
- Individual detector hits by Readout boards (RDO)
- Optical bidirectional connection to Data Aggregation and Manipulation (DAM) boards
- Clock distribution by Global Timing Unit (GTU)
- The GTU provides accelerator bunch crossing system clock to all front-end systems
- Bunch crossing every 10.15 ns (98.5 MHz)
- Top interaction rate of 500 kHz (exception of luminosity/low-Q² having signals every bunch xing)

Data from different detectors are synchronized into packets corresponding to a selected time frame, then sorted into events / bunch crossings

Measurement categories at the EIC

Jaroslav Adam (CTU Prague)

Electron Ion Collider

Triggering Discoveries in HEP, Dec 9 - 13, 2024 24/33

Proton spin puzzle

 Proton (and all hadrons) spin is carried by valence and sea quarks, gluons and their angular momentum

All parts add to 1/2 for a proton at all times, large uncertainties for individual contributions

Proton spin at EIC by longitudinal double-spin asymmetry

 Relative difference in semi-inclusive DIS cross sections between parallel and anti-parallel orientations

• The asymmetry is related to polarized structure function *g*₁:

$$rac{\mathrm{d}\sigma^{++}-\mathrm{d}\sigma^{+-}}{\mathrm{d}\sigma^{++}+\mathrm{d}\sigma^{+-}}\propto g_1(x,Q^2)$$

Considerable reduction of uncertainties for gluon and sea quark parts of the spin is expected

Phys.Rev.D 102 (2020) 9, 094018

Jaroslav Adam (CTU Prague)

Nuclear structure

- Quarks and gluons behave different in nuclei
- Quantified by nuclear ratio R^A as ratio of cross section on nucleus to A× scaled result on proton:

$$R^A_{F_2}=rac{F^A_2(x,Q^2)}{AF^{
m nucleon}_2(x,Q^2)}$$

• $R^A \neq 1$ indicates presence of nuclear effects

Current estimates at low $x \lesssim 10^{-2}$ (shadowing region) at low scale Q^2 have large uncertainties; new accurate data are needed

Nuclear structure functions at EIC

 $O^2(GeV^2)$

 Gluon structure is sensitive to non-linear effects

Kinematic coverage and high precision is promising for strong experimental constraints

Phys.Rev.D 96 (2017) 11, 114005

Jaroslav Adam (CTU Prague)

functions

 $O^2(GeV^2)$

Gluon saturation

QCD expects an onset of non-linear effects to prevent further growth in density (saturation)

pos.sissa.it/284/001

Jaroslav Adam (CTU Prague)

Probing the gluon saturation at EIC

• Relative differences between linear and nonlinear approach to *F*₂ and *F*_L structure functions:

• Black dots show initial matching of both approaches at $x-Q^2$ before expected saturation

Nuclear longitudinal structure function F_L is well sensitive to saturation at low Q^2

Phys.Rev.D 105 (2022) 11, 114017

Jaroslav Adam (CTU Prague)

Triggering Discoveries in HEP, Dec 9 - 13, 2024 30 / 33

Jet interactions in cold nuclear matter

Nucleus

Je

0ס

31/33

·π

Jet is initiated inside the nucleus; propagates through varying amount of nuclear matter

- Nuclear structure and evolution of parton showers is probed by jet modification
- Final jet is formed by hadronization in nucleus
- EIC will provide data on jets in e-A

Phys.Lett.B 848 (2024) 138354 Jaroslav Adam (CTU Prague)

Jets in cold nuclear matter

- Nuclear effects to jets are quantified by ratio $R_{\rm eA}$
- The *R*_{eA} is a ratio of jet cross sections in η and *p*_T in e-A to ep

It is possible to distinguish initial parton distribution and final-state interactions contributing to final $R_{\rm eA}$

Summary

On schedule to explore the unknown and to go where no one has gone before

Jaroslav Adam (CTU Prague)

Electron Ion Collider