Advancements in photonuclear J/ ψ production in ultra-peripheral Pb–Pb collisions from Run 2 and early results from Run 3 in ALICE

Diana Krupová for the ALICE Collaboration Czech Technical University in Prague & Université Paris-Saclay

- goals:
 - search for gluon saturation at low x
 - study of nuclear effects (shadowing, gluon PDFs)
 - nuclear shadowing effects on gluon PDFs

•
$$R_g^A(x, Q^2) = \frac{g_A(x, Q^2)}{Ag_p(x, Q^2)} < 1$$

- saturation may contribute to nuclear shadowing
- tools:
 - measurement of energy dependence
 - measurement of *t*-dependence

Diana Krupová

Triggering Discoveries in High Energy Physics III, High Tatras

Eskola, K. J., Paakkinen, P., Paukkunen, H., and Salgado, C.A., "EPPS21: a global QCD analysis of nuclear PDFs," Eur. Phys. J. C 82 (2022) 413

- UPCs: collisions at b > 2R
 - hadronic interaction suppressed
- at the LHC, photon-induced reactions probe gluon densities in a wide range of x
- J/ψ production in UPC:
 - clear experimental signature
 - $J/\psi \rightarrow l^+l^-$: two lepton tracks in an otherwise empty detector
 - large lepton branching ratios
 - small decay width
 - energy evolution can be observed through the rapidity of the vector meson

- UPCs: collisions at b > 2R
 - hadronic interaction suppressed
- at the LHC, photon-induced reactions probe gluon densities in a large range of *x*
- J/ ψ production in UPC:
 - clear experimental signature
 - $J/\psi \rightarrow l^+l^-$: two lepton tracks in an otherwise empty detector
 - large lepton branching ratios
 - small decay width
 - energy evolution can be observed through the rapidity of the vector meson

Diana Krupová

- photoproduction p_T signatures
- in Pb-Pb collisions
 - <u>coherent</u>: target ion stays intact, $< p_T > \sim 60 \text{ MeV} \sim 1/R_{\text{Ph}}$
 - <u>incoherent</u>, two components:
 - <u>elastic</u>: target ion breaks, nucleon stays intact $< p_T > \sim 300 \text{ MeV/c} \sim 1/R_N$
 - <u>dissociative</u>: both ion and the target nucleon break $< p_T > \sim 1 \text{ GeV/c}$

ALICE detector in Run 2

Diana Krupová

Triggering Discoveries in High Energy Physics III, High Tatras

Key components of ALICE for UPC measurements

Run 2 results: Energy dependence

Energy dependence of coherent photonuclear production of J/ ψ mesons in ultra-peripheral Pb-Pb collisions at $\sqrt{s_{\rm NN}}$ =5.02 TeV JHEP 10 (2023) 119

7

- difference between the impulse approximation and data
 - nucleus is not just a collection of nucleons
 - the difference depends on the rapidity
- no model describes data
 - some models describe data well at low rapidities, some at midrapidities
- GKZ models are shadowing based
- GM, LM, LS, CCK and BCCM are saturation based
 - predictions from saturation-based models span from 3.5 mb to 5.5 mb at midrapidity

 \Rightarrow data can constrain the different approaches

(-y)

photon flux

$$\frac{d\sigma_{\rm PbPb}(y)}{dy} = N_{\gamma}(y)\sigma_{\gamma\rm Pb}(y) + N_{\gamma}(-y)\sigma_{\gamma\rm Pb}$$

photon-target cross section

- both contributions equal at midrapidity
- at forward rapidity, the contributions are different
- using neutron tagging (ZDC information), we are able to solve the equation above
 - photon exchange may lead to electromagnetic dissociation (EMD) of a nucleus

nucleons at beam rapidities **OnOn:** no neutrons on either side \rightarrow large impact parameters **OnXn, XnOn:** neutrons on one side **XnXn:** neutrons on both sides

Diana Krupová

Triggering Discoveries in High Energy Physics III, High Tatras

e to solve the equation above sociation (EMD) of a nucleus

midrapidity and forward rapidity analysis

• 0n0n (left column), XnXn (right column)

• 0n0n (left column), XnXn (right column)

<u>JHEP 10 (2023) 119</u>

measured cross sections:

the main discrepancy between data and saturation/shadowing models comes from 0n0n (large impact parameters)

Diana Krupová

Triggering Discoveries in High Energy Physics III, High Tatras

11

- agreement with Run I results
- LTA (shadowing), GG-HS and b-BK-a (saturation) describe high energy data
- impulse approximation and STARlight describe low energy data

<u>JHEP 10 (2023) 119</u>

- nuclear suppression factor:
 - approximate measure of nuclear shadowing

- flattening trend observed at high energies:
 - 0.94 at low energies,
 - ~0.64 at intermediate energies,
 - 0.47 at the highest measured energies.

Diana Krupová

Run 2 results: t-dependence

First measurement of the |t|-dependence of coherent J/ ψ photonuclear production <u>Phys.Lett.B 817 (2021) 136280</u>

First measurement of the |t|-dependence of incoherent J/ ψ photonuclear production <u>Phys.Rev.Lett. I 32 (2024) 162302</u>

• $J/\psi \rightarrow \mu^+ \mu^-$ at midrapidity

unfolding performed to account for p_T migrations

•
$$p_T^2 \rightarrow |t|$$
 unfolding

Diana Krupová

Triggering Discoveries in High Energy Physics III, High Tatras

Coherent $/\psi$ - *t*-dependence

Phys.Lett.B 817 (2021) 136280

- sensitive to average transverse spatial distribution of the nucleus
- comparison with models: \bullet
 - nuclear shadowing (LTA) and gluon saturation (b-BK) match within uncertainties
 - STARlight overpredicts data
- agreement of data with saturation and shadowing models, disagreement with STARlight that does not include such QCD-dynamic ingredients

 \implies highlights the importance of these QCD effects for this measurement

Coherent $/\psi$ - t-dependence

Triggering Discoveries in High Energy Physics III, High Tatras

Incoherent $/\psi$ - *t*-dependence

Combined t-dependence results

• results span three orders of magnitude in t with high precision

Diana Krupová

Run 3

Upgrades to ALICE in Run 3

- key upgrades for Run 3:
 - continuous readout for higher data acquisition efficiency
 - to handle increased interaction rate, up to 50 kHz for Pb-Pb and 1 MHz for pp collisions
 - increased luminosity
 - improved tracking and PID
 - new capabilities for exclusive event tagging
- possibility to study pp, pPb, Pb-Pb, O-O, pO collisions

Inner Tracking System ITS based on MAPS, new ALPIDE sensors improved space resolution

Diana Krupová

UPC performance in Run 3

- continuous readout
 - efficient data taking without inefficiencies related to trigger
- higher luminosity (0.75 nb⁻¹ in Run 2 to 13 nb⁻¹ in Runs 3+4)
- first Pb-Pb data taking in September 2023
 - interaction rate up to 45 kHz
 - integrated luminosity $\sim 1.5 \text{ nb}^{-1}$
- Pb-Pb data taking in 2024
 - interaction rate regularly at 50 kHz
 - total delivered luminosity $\sim 1.98 \text{ nb}^{-1}$

Diana Krupová

Triggering Discoveries in High Energy Physics III, High Tatras

• improved tracking allows more detailed studies of coherent and incoherent processes

Run 3: Performance plots

Diana Krupová

- Run 2 advancements:
 - energy dependence of coherent J/ ψ production, dependence of coherent and incoherent J/ψ production on |t|
 - insights into high-energy QCD:
 - probing gluon saturation and nuclear shadowing
 - studying fluctuations at sub-nucleon scales
 - models with shadowing or saturation describe the coherent |t| dependence
 - sub-nucleon structure models favored for the incoherent |t| dependence
- Run 3: increased precision, more differential measurements and new measurements

Backup

- STARlight: <u>Comput.Phys.Commun. 212 (2017) 258-268</u>
- GKZ: <u>Phys.Rev.C 93 (2016) 5, 055206</u>
- IIM BG (GM): <u>Phys.Rev.C 84 (2011) 011902</u>
- IPsat (LM): <u>Phys.Rev.C 87 (2013) 3, 032201</u>
- BGK-I (LS): <u>Phys.Rev.C 99 (2019) 4, 044905</u>
- GG-HS (CCK): <u>Phys.Rev.C 97 (2018) 2, 024901</u>
- b-BK (BCCM): <u>Phys.Rev.D 100 (2019) 5,054015</u>

Diana Krupová

Triggering Discoveries in High Energy Physics III, High Tatras

Models - Energy dependence References

Eur. Phys. J. C 81 (2021) 712

