
Advanced verification
methodology in particle
physics
M. Krivda for ALICE CTP

Triggering discoveries in HEP

12.12.2024

clock

CTP
LTU

CRU

FEE
Common Readout Unit

Local Trigger Unit
Central Trigger Processor

2

Content

 Alice trigger system overview

 Alice trigger firmware

 The latest firmware upgrades

 Advanced verification methodology

– Vunit

– OSVVM

 Summary

3

ALICE system block diagram

LTU

CTP

↑TTS-FTL & ↓busy
(CPV, FIT, ITS, MCH, MID, MFT,

TOF, TPC, TRD, ZDC)

FIT

TPC

ITS

MCH

MID

MFT

TOF

TPC

ACO

CPV

EMCAL

HMPID

TRD

ZDC

20180903

PHOS

front-end
links (GBT)

→data &
←trigger &
←configuration

PCIe bus in FLP
→data &

←configuration

O2

&

DCS

CRU

LTULTU

FIT ACO TOF EMCAL PHOS

↑TTS & ↓busy
TTC (ACO,EMCAL,HMPID,PHOS)

↑TTS (CPV, ITS, MFT
unidirectional)

↑TTC & ↓busy (TRD)

CRU.. Common Read-out Unit
CTP.. Central Trigger Processor

DCS.. Detector Control System
FLP.. First level processor
FTL .. Fast Trigger Links

GBT.. Gigabit Transceiver
LTU.. Local Trigger Unit

O2.. Online and Offline Computing System
TTS.. Trigger and Timing Distribution

System

front-end links
→data &

←configuration

DDL

DDL1 or 2
→data &

←configuration O2

&

DCS

←trigger/busy

←trigger
(CPV/ITS/
MFT/TRD)

Continuous & triggered read-out

Triggered read-out

Central trigger system

4

The trigger-system overview

Trigger PC in UX25-CRx

(IP bus sw)

PON/GBT/TTC optical links

LTU + TTCex boards (TTC drivers)

TTC TTCTTC TTC TTC

LM/L0 trigger

over copper cable

LTU boards (GBT/PON drivers)

…………………

…………………

Electrical connection

IP bus

(Optical Ethernet)

1
G

 E
th

e
rn

e
t

o
p
ti

c
a
l
sw

it
c
h

CavernALI-CRx

CTP

4

10G PON

TTCPON

splitter

TTCPON

splitter

TTCPON

splitter

TTCPON

splitter

5

CTP firmware structure

TDO
MUX

1

OLT
1

TDO
MUX

3

TDO
MUX

2

TDO
MUX

4

TDO
MUX

5

TDO
MUX

6

OLT
2

OLT
3

OLT
4

OLT
5

OLT
6

LTG_DET 1 (PP,CAL,RST, …)
LTG_DET 2 (PP,CAL,RST, …)
LTG_DET 3 (PP,CAL,RST, …)

LTG_DET 4 (PP,CAL,RST, …)
LTG_DET 5 (PP,CAL,RST, …)
LTG_DET 6 (PP,CAL,RST, …)

LTG_DET 7 (PP,CAL,RST, …)
LTG_DET 8 (PP,CAL,RST, …)

LTG_DET 9 (PP,CAL,RST, …)

LTG_DET 10 (PP,CAL,RST, …)
LTG_DET 11 (PP,CAL,RST, …)
LTG_DET 12 (PP,CAL,RST, …)

LTG_DET 13 (PP,CAL,RST, …)
LTG_DET 14 (PP,CAL,RST, …)
LTG_DET 15 (PP,CAL,RST, …)

LTG_DET 16 (PP,CAL,RST, …)
LTG_DET 17 (PP,CAL,RST, …)
LTG_DET 18 (PP,CAL,RST, …)

TIN

48 trigger
inputs

BUSY logic
Cluster
BUSY

16 LM clusters

HBr request/BUSY
(HBM builder)

18 x HBr request/BUSYIPbus slave
det2clst

(detector to
cluster

assignment)

IR State

machine

IR
Packer

CRU

Orbit (32 bits)
BC (12 bits)

18 x BUSY

18 x HBr

IR FIFO

ORB + BC
(to all

modules)

GTG
LLM

GTG
LL0

GTG
LL1

LM
class/cluster

logic

L1
class/cluster

logic

TTC-PON

24x BC
MASKS

D
EL

GTG =
2x BC
2x RND

LM det2clst 1

18 x 512 bits HB/BS , 18 x BUSY

DEL LM CLASS

DEL L0 CLASS

L0
class/cluster

logic

LM det2clst 2
LM det2clst 3

L0 det2clst 1
L0 det2clst 2
L0 det2clst 3

L1 det2clst 1
L1 det2clst 2
L1 det2clst 3

LM,L0,L1LM

L0

L1

LM,L0,L1
LM,L0,L1

MUX
HBr

6

List of firmware types
Production firmware:

 CTP logic

 LTU logic

 LTU_ITSMFT logic

 TICG logic

 TTCit logic

– Common logic -> shared features linked to the main

firmwares

Test firmware:

 Test_logic_kaya

 Test_logic_fmcctp

 Test_logic_fmcctpinv

 Test_logic_fmcs18

 Test_logic_fmcs18_and_IBERT

7

The latest firmware upgrades

 Added IPbus slaves IPROG and ICAP

Recompiled with VIVADO 2023.2

 Replacement of RARP with DHCP

 Enabled GBT test pattern generator

 IPbus fw 1.13

 Extended clusters from 6 to 8

 Added 3-rd GBT link in place of OLT9

8

Advanced verification
methodology for FPGA design

In order to improve a verification of FPGA design we can use Vunit and

OSVVM (both open source tools)

 Vunit is a testing framework for VHDL/SystemVerilog

 OSVVM is an advanced verification methodology that defines a VHDL

verification framework, verification utility library, verification component

library, scripting API, and co-simulation capability that simplifies FPGA

verification project

9

Vunit
 Reduces the overhead of testing by supporting automatic discovery of

test benches and compilation order as well as including libraries for

common verification tasks

 Improves the speed of development by supporting incremental

compilation and by enabling large test benches to be split up into

smaller independent tests

 Supporting Continues Integration (CI)

Main features:

 automatic scanning of files for tests, file dependencies, and file

changes enable automatic (incremental) (re)compilation and execution

of test suites

 Python test suite runner that enables powerful test administration

 Built-in HDL utility libraries (Run library, Assertion checker library,

Logging framework, Convenient Data Types, Communication library,

Verification Components library and third-party submodules: OSVVM

and JSON-for-VHDL

10

Vunit

 Vunit commands are available from a simulation tool (in example

QuestaSim)

 In example “vunit_restart” is very useful command to restart whole

simulation with changes in a source code

11

Vunit – test case

 https://vhdlwhiz.com/getting-started-with-vunit/

12

OSVVM

 A structured transaction-based framework using verification components that is

suitable for all verification tasks

 A Model Independent Transaction (MIT) library that defines a transaction API

(procedures such as read, write, send, get, …) and transaction interface (a

record) that simplifies writing verification components and test cases.

 Test cases and verification components written in VHDL

 Test cases that are readable and reviewable by the whole team including

software and system engineers.

 Test reporting with HTML based test suite reports, test case reports, and logs

that facilitate debug and test artifact collection.

 Support for continuous integration (CI/CD) with JUnit XML test suite reporting.

 Powerful and concise verification capabilities including Constrained Random,

Functional Coverage, Scoreboards, FIFOs, Memory Models, error logging and

reporting, and message filtering that are simple to use and work like built-in

language features.

 A common scripting API to run all simulators – including GHDL, NVC, Aldec

Riviera-PRO and ActiveHDL, Siemens Questa and ModelSim, Synopsys VCS,

and Cadence Xcelium.

13

OSVVM Testbench Framework

 Connections between the verification components and TestCtrl use
VHDL records as an interface

 Connections between the verification components and the DUT are the
DUT interfaces (such as UART, AxiStream, AXI4, SPI, and I2C)

 Custom VC written by user

Verification components (VC)

from OSVVM library
Test sequencer

Test 1

Test 2

…

Test N

14

Test

 The TestCtrl architecture
consists of a control process

+

one process per

independent interface

Each test is a separate architecture of TestCtrl

Synchronization of

the processes

(all processes wait

for TestDone signal

or

Timeout = 5ms)

15

Test initialization and finalization

 Each verification component calls GetAlertLogID to allocate an ID

that allows it to accumulate errors separately within the AlertLog
data structure

 The ControlProc both initializes a test and finalizes a test

16

A Simple Directed Test

 The AffirmIfEqual checks its two parameters. It produces a log "PASSED"
message if they are equal and alert "ERROR" message otherwise

 The Check transaction checks received value against the supplied
expected value. It produces a log "PASSED" message if they are equal and
alert "ERROR" message otherwise

17

Model Independent Transactions
 OSVVM improves reusage of interfaces and simplify readability by

introducing Model Independent Transactions (MIT)

 Model Independent Transactions observe that many interfaces can be
classified as either an address bus interface (AXI, Wishbone, Avalon,
X86) or a stream interface (AxiStream, UART, …). For interfaces that fall
into one of these categories, OSVVM has defined a set of transactions
the interface can support

 The basic set of transactions supported by the different interfaces is
shown in a table

18

Randomization
 The OSVVM package, RandomPkg, provides a library of randomization

utilities

 Example of UART test with normal transactions 70% of the time, parity
errors 10% of the time, stop errors 10% of the time, parity and stop
errors 5% of the time, and break errors 5% of the time

19

OSVVM's Scoreboards

 A scoreboard facilitates checking data when there is latency in the system. A
scoreboard receives the expected value from the stimulus generation process and
checks the value when it is received by the check process

Pushed to the scoreboard

Transmitted

Received

Checked in the scoreboard

20

Functional Coverage

 If a test uses constrained random, functional coverage is needed to
determine if the test did something useful

 A functional coverage is recommended to assure that a directed test
actually did everything that was intended

 There are two categories of functional coverage: coverage and cross coverage

– coverage tracks relationships within a single object. For a UART, were

transfers with no errors, parity errors, stop bit errors, parity and stop bit

errors, and break errors seen?

– cross coverage tracks relationships between multiple objects. For a simple

ALU, has each set of registers for input 1 been used with each set of

registers for input 2 ?

 Functional coverage in OSVVM is implemented as a data structure within
a protected type (data protection, encapsulation and abstraction)

21

Functional Coverage

 “AddBins” is called to construct the functional coverage model

 “Get” is used to retrieve stimulus

 “Icover” is called to record the coverage

 “WriteBin” prints the coverage results.

22

Code coverage and Functional coverage

 A code coverage (feature available directly in simulation tools) only
tracks a code execution. The code coverage cannot track all OSVVM
features since the information is not in the code.

 On the other hand, if a design's code coverage does not reach 100%
then there are untested items and testing is not done.

 Both, code coverage and functional coverage are needed to determine
when testing is done.

23

OSVVM alerts

 OSVVM alerts are used to check for invalid conditions on an interface or library
subprogram

 Alerts report and count errors

 Alerts have the levels FAILURE, ERROR and WARNING.

– FAILURE level alerts cause a simulation to stop

– ERROR and WARNING do not cause a simulation to stop

 When a test completes, all errors reported by Alert (and AffirmIf) can be reported
using ReportAlerts

 Alerts can be enabled or disabled via SetAlertEnable

 The stopping behaviour of Alert levels can be changed with SetAlertStopCount

Check if iCE is

together with

iWE and iOE

24

Test Reporting

 ReportAlerts to generate a test completion report with PASSED/FAILED

 WriteAlertSummaryYaml to add an alert summary to the build report

 WriteAlertYaml to generate a detailed tests alert report

 WriteCovYaml to generate a detailed coverage report

Alert Reports (text based) when using ID based reporting example:

25

Test Reporting

Alert Reports - YAML and HTML example:

26

Test Reporting

Coverage Reports –

YAML and HTML example:

27

Summary

• Vunit + OSVVM is very effective tool for a firmware verification

• OSVVM ver. 2024.09 has many advanced features for AXI4 bus

• CI should be added to continuously verify future firmware changes

• An effort to convert Alice trigger firmware to Vunit+OSVVM has

started

28

Back-up slides

29

ALICE Trigger system

 14 detectors (9 with TTC-PON system, 4 with TTC system, TRD

(TTC+PON))

 4 Triggering detectors (FIT, EMC, PHO, TOF; 34 trigger inputs)

 Trigger Input latencies (time from interaction to signal input at

CTP)

– 425 ns (contributing detector – FIT) → Interaction (Minimum

Bias) trigger

– 1.2 µs (contributing det. – EMC, PHO, TOF)

– 6.1 µs (EMC)

 Each detector sees only ONE trigger (LM, L0 or L1)

– Except special cases (PHOS and HMPID)

 Electronics must survive in magnetic field of ~11 mT (rack location

near/below the dipole magnet)

 Random jitter on the clock ~10 ps at FEE

30

CTP core logic

– Trigger class combines physics interest and readout

 64 classes

 Important only to triggered detectors

– Trigger Condition defines a region of physics interest

 Any logical function of the trigger inputs

 Bunch crossing (BC) mask

– usually corresponds to LHC filling scheme

which BC are considered for interaction

– Trigger Cluster

 Group of detectors to be read out - up to 18 different

clusters

 Defined by the HB function

– Trigger Vetoes

 Cluster busy = detectors in cluster either in HBr state or in

Busy state for triggered detectors

– Allows a correlation between triggered and

continuous detectors

» i.e no triggers in HBr frames

𝐓𝐫𝐢𝐠𝐠𝐞𝐫 𝐜𝐥𝐚𝐬𝐬 = 𝐓𝐫𝐢𝐠𝐠𝐞𝐫 𝐂𝐨𝐧𝐝𝐢𝐭𝐢𝐨𝐧 + 𝐓𝐫𝐢𝐠𝐠𝐞𝐫 𝐂𝐥𝐮𝐬𝐭𝐞𝐫 + 𝐓𝐫𝐢𝐠𝐠𝐞𝐫 𝐕𝐞𝐭𝐨𝐞𝐬

31

Overall clocking scheme
Beam 1 clock

or

Local clock

PLL Si5345

Free running

PLL

Si5345
PLL Si5345

Free running

PLL

Si5345

OLT ONU OLT

ONUFPGA

(or internal PLL)

PLL

GBT

chip

Mini

POD

CRU

CTP

LTU in global or standalone

(fixed clock phase or hitless switching

for detectors that don’t need fixed

clock phase)

CDR

GBT

GBT

chip

CDC
ONU

core

OLT

core

GBT

core

RF2TTC

FPGA
FPGA

OLT

core

GBT

core
IPbusIPbus

32

CTP readout

❑ Trigger Class Record (TCR)

– Trigger Class Mask every BC – 64 bits

• records what type of event was readout

• with CTP Configuration => relation between Trigger Inputs,

Trigger Class and Cluster => which triggered detectors are

readout in given BC

❑ Interaction record (IR)

– Trigger Input Mask every BC – 48 bits

• Luminosity global and bunch by bunch

• With CTP Configuration => cross check of consistency between

TCR and IR

CTP
CTP

CRU

FLPR1

R2

R3

3 GBT links:

• R1 – Interaction record

• R2 – Trigger Class Mask

• R3 – Counters,

HB Decision Record,

HBs/BS maps

33

Continuous vs. triggered readout

Continuous readout

Triggered readout

First Level Processor (FLP)

Event Processing Node (EPN)

| HeartBeat Triggers
| Physics Triggers

FLPs see only 3 CRU

EPNs see all CRU

• ALICE data is divided into HeartBeat frames (HBf)
• Each HBf is 88.92 μs - Time to fully read out TPC

(length of LHC orbit)
• 128 (programable) HBf compose a Time-Frame (TF)

• Continuous readout is the main mode of operation
• Detectors push continuous stream of data which are

delimited by CTP HeartBeat (HB) triggers
• They must be capable of running in triggered mode as

well

34

Transceivers
 TTC-PON

– Off-the-shelf Passive Optical Network (PON) technology

 Optical Line Terminal (OLT) and Optical Network Unit (ONU)

– Bidirectional, up to 9.6 Gbps downstream

 200 user bits per bunch crossing

– Communication between CTP-LTU and LTU-CRU

 GBT

– Gigabit Transceiver

– Radiation harnessed links

– Bidirectional, up to 4.8 Gbps

 80 user bits per bunch crossing

– Communication between LTU-FEE and FEE-CRU

 TTC

– Trigger-Timing-Control developed by RD12

collaboration used till end of Run 2

– Kept for backward compatibility for non-CRU detectors

– 80 Mbps total downstream split in 2 channels (A and B)

 synchronous trigger bit (in A) and asynchronous payload (in B)

– Communication between LTU-FEE (legacy)

35

Trigger protocol

 Trigger message contains a time identification and a control/state

(trigger type)

– Event Identification – 44 bits

 32 bits LHC Orbit

 12 bits Bunch Crossing in a given Orbit

– Trigger Type – 32 bits

 Specify what happened in a given ID

 Physics Trigger, Calibration, LHC Orbit, HeartBeat,

HeartBeat reject, Start of Run, End of Run etc.

 TTC-PON + GBT

– These 76 bits are sent each BC over PON and GBT

– In addition PON also contains HB decision record

 List of HB decisions in a given Time Frame

 RD12 TTC

– 76 bits are asynchronously send over B channel by chopping into 7

TTC words (full transmission takes 308 BC)

 Due to limited bandwidth only relevant control/states for

particular detector are transmitted

– Physics Trigger, Calibration, Start of Run, End of Run

– Orbit and Calibration request require channel B

resynchronisation with LHC and are broadcasted as

short message of 16 bits

