Key new results of the Higgs/top/EW and GLOBal interpretation groups

Summary of HTE and GLOB sessions at the ECFA workshop in Paris

OBO: Karsten Köneke (Goettingen), Chris Hayes (Oxford), Fabio Maltoni (Louvain/Bologna), Jorge de Blas (U. Granada), Alexander Grohsjean (DESY), Sven Heinemeyer (IFT Madrid), Junping Tian (U. Tokyo), <u>Marcel Vos (IFIC- CSIC/UV, Valencia)</u>

ECFA Plenary, CERN, 14/11/2024

ECFA Higgs/top/EW factory studies '24

1

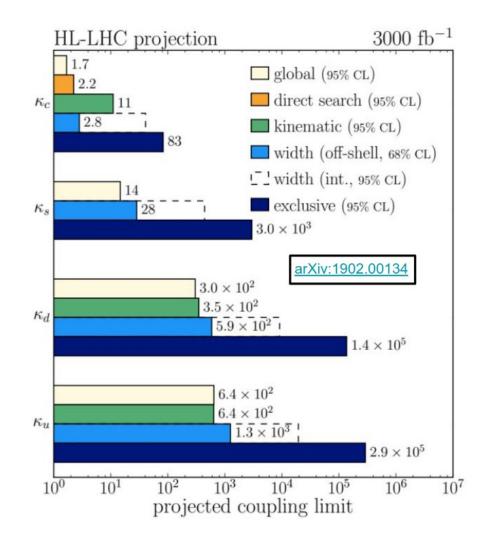
Dedicated to the victims of the Valencia flash flood

Image: EFE/Biel Aliño

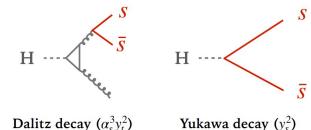
ECFA Higgs/top/EW factory studies '24

Addressing questions beyond previous work (1)

Improving underlying projections: any fit is as good as its inputs


Higgs to strange coupling

The Higgs-to-strange coupling is hard to measure


 $BR(H \rightarrow ss) = 0.024\%$

strange tagging requires PID (not ATLAS & CMS forte)

Too hard for the HL-LHC

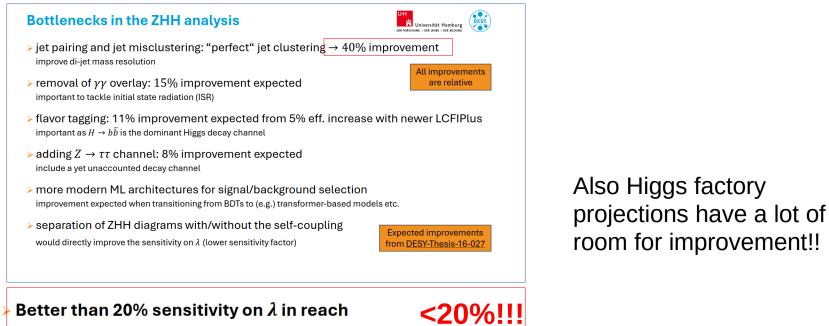
Higgs to strange coupling

Can we:

define a Higgs to strange coupling theoretically? yes, https://indico.cern.ch/event/1409233/#2-strange-higgs-decays-strong
control fragmentation systematics? yes, Z-pole run is ideal to settle this once and for all
design a detector with excellent Particle ID? yes, but PID comes at a prize (→ specialized flavour experiment?)
tag strange quarks? yes, ML-based taggers are getting better fast!
measure the strange quark Yukawa?

yes, sort of, at O(100%) precision

Expected sensitivity (%) of σ (ZH).BR(H \rightarrow jj) at 68% CL


L = 10.8ab-1

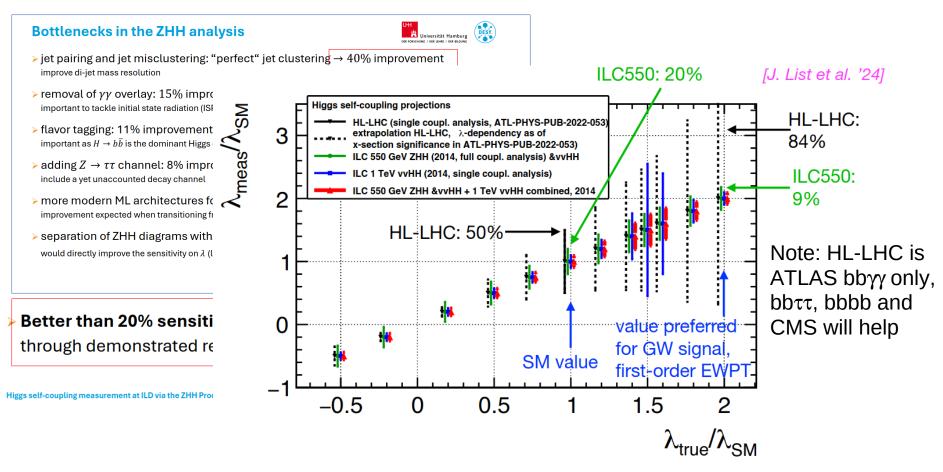
240 GeV	H→bb	Н→сс	H→gg	H→ss	H→ZZ	H→WW	Η→ττ
Combined (BNL)	0.21	1.66	0.8	104.99	10.07	1.16	3.97
Combined (APC)	0.22	1.65	0.93	121	9.56	1.11	3.79

ECFA Higgs/top/EW factory studies '24

The Higgs self-coupling from di-Higgs production

LHC experiments are deploying a huge effort to observe pair production; more aggressive HL-LHC projections are appearing (ESPPU '19: 50% precision)

through demonstrated reconstruction improvements


Higgs self-coupling measurement at ILD via the ZHH Process at multiple COM energies | 3rd ECFA Workshop on e+e-Higgs/EW/Top Factories | 2024/10/10 | Paris | Bryan Bliewert

Talk by Bryan Bliewert on the ZHH analysis at 500/550 GeV

ECFA Higgs/top/EW factory studies '24

The Higgs self-coupling from di-Higgs production

LHC experiments are deploying a huge effort to observe pair production; more aggressive HL-LHC projections are appearing (ESPPU '19: 50% precision)

Note: FCChh claims to eventually measure the self-coupling to O(5%) precision

Top quark mass from threshold scan

Fast-simulation study in FCCee environment, using state-of-the-art tools

Profile likehood fit, in-situ control of btagging efficiency and background

Statistical uncertainty: < 10 MeV with 410/fb over 10 scan points

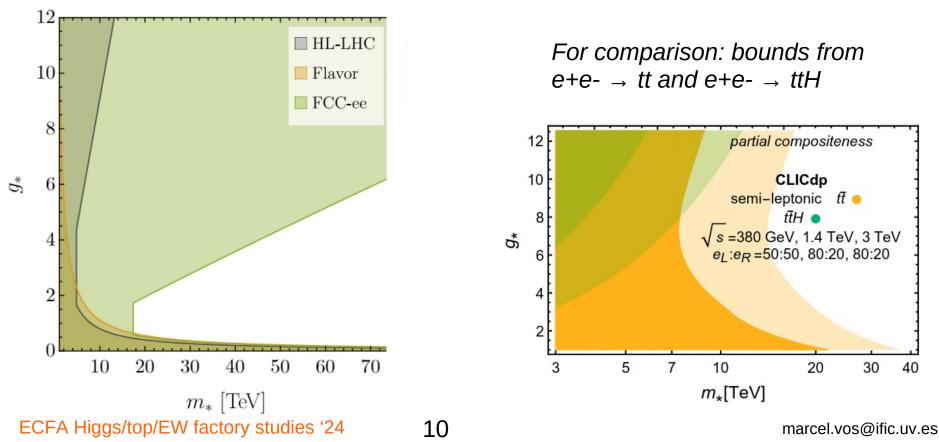
Theory uncertainty ~40 MeV Fit of PS "threshold" mass

Machine-related uncertainties OK

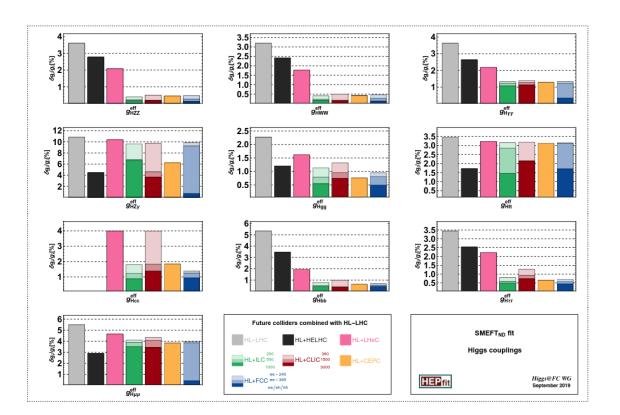
- synchrotron radiation (circular)
- luminosity spectrum (linear)

Talks by Matteo Defranchis and Ankita Mehta

Addressing questions beyond previous work (2)


Advancing SMEFT: Global Higgs/EW/top fits at NLO and including RGE evolution

Indirect bounds on New Physics: TeraZ vs. top


Composite Higgs scenarios where 3rd generation is special: t_R = composite

EW precision at the Z-pole offers stringent bounds [Allwicher, Cornella, Isidori, Ben Stefanek, 2311.00020]

The 4-top operator, tested in tttt production, also has two-loop impact on EWPO [Stefanek, 2407.09593]

Global analysis - Higgs sector

Global analysis is a moving target;

this fit incluces Higgs/EW projections (and some top).

State-of-the-art has advanced:

- Higgs/EW/top, Ellis et al.
- NLO predictions, SMEFiT
- RGE evolution and mixing

Explore the intricate connections among Higgs/EW/top sectors

Physics briefing book of previous streategy update: https://arxiv.org/pdf/1910.11775

ECFA Higgs/top/EW factory studies '24

11

SMEFT fits

[Of determining the Higgs couplings]

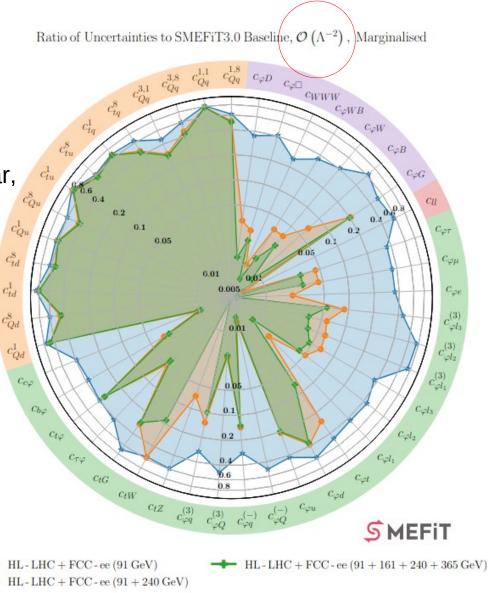
The traditional κ parametrization is not up to the task. We suggest that a method based on SMEFT is more physical, complete, and model-independent. Michael Peskin's talk

Previous strategy update: Higgs coupling projections in the kappa and EFT framework. The next strategy update: EFT only, using fits with linear D6 dependence as baseline. (my proposal; it led to significant discussion)

SMEFiT results (Jaco ter Hoeve)

Higgs/EW/top fits on projections

Results beyond JHEP 09 (2024) 091

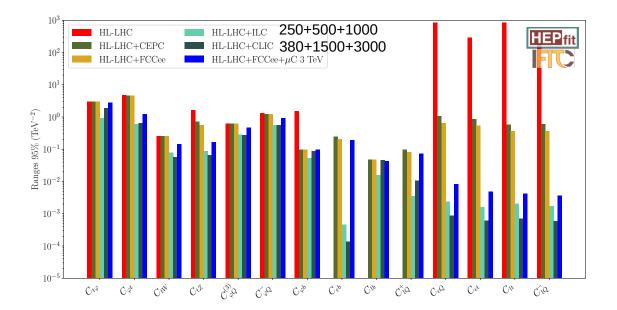

Linear-only bounds: quadratic is similar, except for qqtt operators

RGE evolution: small changes, except tttt operators

Todo: eett operators, different collider projects

[1804.05033] Aebischer, Kumar, Straub

ECFA Higgs/top/EW factory studies '24


13

Fit to the top sector (M.V.)

IFIT/C collaboration fits top and bottom operators

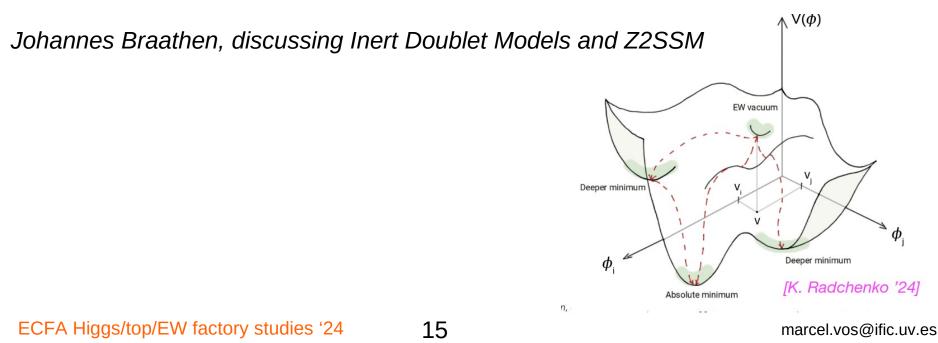
Excellent bounds on operators that affect EW interactions of the top quark

TO DO: finalize fits, compare to SMEFiT, write paper

HL-LHC on eett operators	e+e- colliders on eett operators:
Quadratic global: O(1)	Linear fit, circular machine: O(1 TeV ⁻²)
Linear individual: O(1-10 T	
Linear global: O(100 Te	

All e+e- top data is good, high energy data are excellent

ECFA Higgs/top/EW factory studies '24

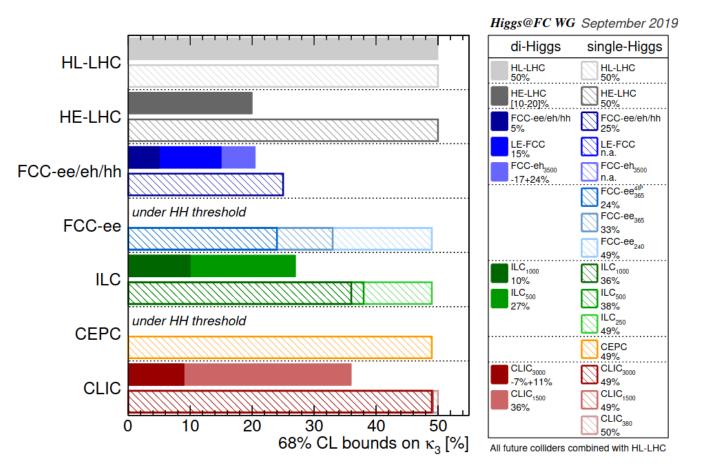

Addressing issues beyond previous work (3)

A global analysis of the Higgs self coupling (see focus topic report by Junping Tian)

The Higgs self-coupling is he holy grail of HEP*

*Georg Weiglein

 λ_{hhh} can deviate significantly from SM prediction (by up to a factor ~10), for otherwise theoretically and experimentally allowed points, due to mass-splitting effects in radiative corrections involving BSM scalars



Higgs self-coupling

ZH production offers sensitivity to:

- Higgs self-coupling at NLO (McCullough, arXiv:1312.3322)
- other operators at LO (di Via et al., arXiv:1711.03978)
- many other operators at NLO (arXiv:2406.03557,

arXiv:2409.11466)

Physics briefing book of previous streategy update: https://arxiv.org/pdf/1910.11775

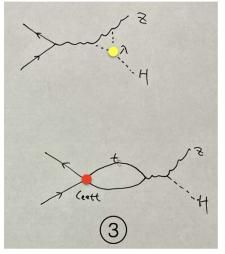
A truly global analysis of Higgs self-coupling from ZH

Indirect model-dependent probe of the Higgs self-coupling

Matthew McCullough Phys. Rev. D 90, 015001 – Published 1 July 2014; Erratum Phys. Rev. D 92, 039903 (2015)

Pier Paolo Giardino: calculation of loop effects of top operators on ZH cross section, arXiv:2406.03557, arXiv:2409.11466

$\sigma_{\rm EFT,LO}^{(\sqrt{s}=240 \text{ GeV})}(\text{fb}) = \sigma_{\rm SM,LO}^{(\sqrt{s}=240 \text{ GeV})}$				
$+ 25.3 C_{\phi B} + 4.83 C_{\phi D} + 29.0 C_{\phi \Box} + 133 C_{\phi W}$				
$+ 64.5C_{\phi WB} - 177 C_{\phi e}[1,1] + 220 C_{\phi l}^{+}[1,1],$		$\sqrt{s} = 240 \text{ GeV}$		
		Δ_i/Λ^2	$\bar{\Delta}_i/\Lambda^2$	
$\sigma_{\rm NLO} = C_i(\mu) \left(- \mu^2 \right)$	C_{ϕ}	$-7.22 \cdot 10^{-3}$	0	
$\frac{\sigma_{\rm NLO}}{\sigma_{\rm SM,NLO}} = 1 + \sum_{i} \frac{C_i(\mu)}{\Lambda^2} \left\{ \Delta_i + \bar{\Delta}_i \log \frac{\mu^2}{s} \right\}$	$C_{uW}[3,3]$	$-1.63 \cdot 10^{-3}$	$4.01\cdot 10^{\text{-}3}$	
$\sigma_{\rm SM,NLO}$ $\sum_{i} \Lambda^2$ (s)	$C_{uB}[3,3]$	$0.15 \cdot 10^{-3}$	$-2.22 \cdot 10^{-3}$	
	$C_u\phi[3,3]$	$0.32 \cdot 10^{-3}$	0	
	$C_{\phi q}^{(1)}[3,3]$	$-1.34 \cdot 10^{-3}$	$-4.10 \cdot 10^{-3}$	
Impact of self-coupling $C\phi \sim 0.01$	$C_{\phi q}^{(\hat{3})}[3,3]$	$0.51\cdot 10^{\text{-}3}$	$4.12\cdot10^{\text{-}3}$	
	$C_{\phi u}[3,3]$	$-0.54 \cdot 10^{-3}$	$3.49 \cdot 10^{-3}$	
Impact of top operators is similar; need to be	$C_{eu}[1, 1, 3, 3]$	$0.01\cdot 10^{\text{-}3}$	$-1.39 \cdot 10^{-2}$	
constrained with auxiliary data	$C_{lu}[1, 1, 3, 3]$	$-0.02 \cdot 10^{-3}$	$1.73\cdot10^{\text{-}2}$	
	$C_{lq}^{(1)}[1, 1, 3, 3]$	$-0.37 \cdot 10^{-2}$	$-1.80 \cdot 10^{-2}$	
	$C_{lq}^{(3)}[1,1,3,3]$	$-0.37 \cdot 10^{-2}$	$1.29 \cdot 10^{-2}$	


 $C_{qe}[3,3,1,1] = 0.30 \cdot 10^{-2} = 1.45 \cdot 10^{-2}$

A preliminary answer

Junping Tian, this WORKshop: slight degradation, after FCCee top data are added

(iv) first look at the global fit with NLO eett for $\Delta\lambda_{HHH}$

[ongoing work by: Yong Du, Jiayin Gu, JT]

- based on a fitting program for last ESU: 23 (Higgs + WW + EWPO) + 5 (eett) operators
- take directly covariance matrix as eett bounds (from Victor Miralles)
- reproduced (almost) the NLO calculation about eett in ZH

extra uncertainty induced by eett on σ_{ZH}

 $\delta\sigma_{ZH}\sim0.3\%$ (1.5%) for 240 (365) GeV

a test fit for 5000 fb⁻¹ (240) + 1500 fb⁻¹ (365)

 $\delta\lambda_{HHH}$ mildly degraded from 57% to 77%

[warning: this is very preliminary, many things to be done, e.g. include NLO eett in other observables as well.] 16

If this is confirmed, the 365 GeV run is required for Higgs self-coupling determination

Summary of the summary

ECFA Higgs/top/EW factory study yields:

- more solid foundations for e+e- prospects:

Higgs self-coupling, ZH, $H \rightarrow \tau \tau$, top mass, ...

- new ambitions:

Higgs-to-strange coupling, differential analysis of ZH angular observables

- a more global view:

full SMEFT analysis including NLO and RGE evolution

Progress beyond 2019 physics briefing book in all these areas

Check out the original talks here!

Conclusion

People are suprisingly passionate about top loops!

Thanks to all speakers and attendants very lively sessions

