ECFA HET Factory study: WG2 Physics Analysis Tools

ECFA Plenary, CERN, November 14-15, 2024

P. Azzi (INFN-PD), F. Piccinini (INFN-PV), D. Zerwas (DMLab)

Reminder: Physics Analysis Tools (WG2)

GENERATORS

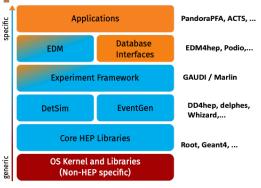
SIMULATION

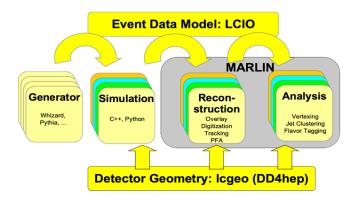
RECONSTRUCTION

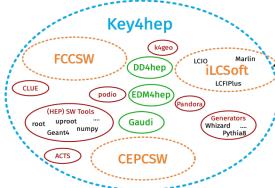
ALGORITHMS & TOOLS

SOFTWARE ECOSYSTEM

- Monte Carlo generators for e+e- precision
 EW, Flavour, Higgs, and top physics,
- Luminosity measurements
- Software framework
- Fast simulation and its pro/con
- Full Simulation
- Track and vertex reconstruction
- Jet algorithms / jet reconstruction
- Particle-flow reconstruction and global event description
- Particle identification strategies
- Flavour tagging algorithms
- Importance of timing information
- Constrained fits
- etc. etc. etc.

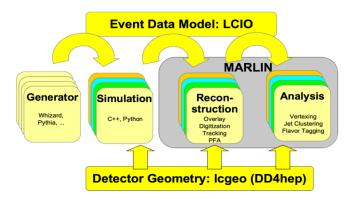

Several specific meetings with experts...

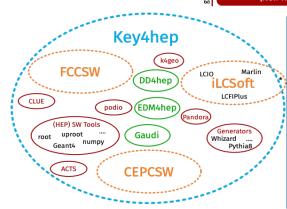

In addition to the general annual ECFA Workshops

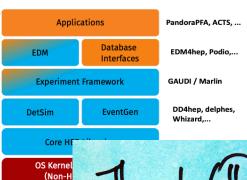

- 1st Topical Meeting on Generators (9-10 November 2021, CERN, hybrid format)
 (jointly with WG1) https://indico.cern.ch/event/1078675/
- Focus Meeting on Beamstrahlung (12 January 2022) https://indico.cern.ch/event/1100734/
- 1st Topical Meeting on Simulation (1-2 February 2022) https://indico.cern.ch/event/
 1097819/
- 1st Topical Meeting on Reconstruction (4-5 May 2022, Desy) https://indico.cern.ch/event/
 1124095/
- 2nd Topical Meeting on Generators https://indico.cern.ch/event/1266492/ 21-22 June 2023 (Brussels and ZOOM)
- 2nd Topical Meeting on Reconstruction https://indico.cern.ch/event/1283129/ 11-12 July 2023 (CERN and ZOOM)
- Focus Meeting on Technical Benchmarks :https://indico.cern.ch/event/1324117/ 18
 September 2023

Software Ecosystem - Key4hep

- HEP community decided 5 years ago to develop a common turnkey software stack – for future collider studies
- create a software ecosystem integrating in an optimal way the best software components to provide a ready-to-use full-fledged solution for data processing of (future collider) HEP experiments
- involved communities/contributors: CEPC, CLIC, EIC, FCCee, FCChh, ILC, LUXE, Muon Collider ...




Software experts heavily involved in WG2 organization:


- Frank Gaede
- Gerardo Ganis
- Andrè Sailer

Software Ecosystem - Key4hep

- HEP community decided 5 years ago to develop a common turnkey software stack – for future collider studies
- create a software ecosystem integrating in an optimal way the best software components to provide a ready-to-use full-fledged solution for data processing of (future collider) HEP experiments
- involved communities/contributors: CEPC, CLIC, EIC, FCCee, FCChh, ILC, LUXE, Muon Collider ...

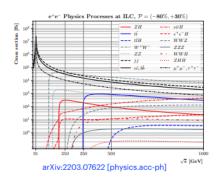
- Frank Gaede
- Gerardo Ganis
- Andrè Sailer

Generators

- Automated calculations are the standard for LHC
- Interface through standard event formats is mandatory to interact with detector simulation and analysis software
- The theoretical accuracy of LEP results needs to be pushed down for future e+e- machines. This demands systematic improvements in the control of radiative corrections in the SM.
- Benchmarking and tuned comparisons essential to establish technical precision and estimate theoretical accuracy

Generators: update and extend

LEP era generators:

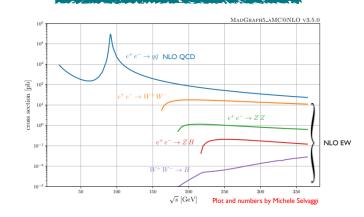

- Pythia
- Herwig
- KKMC
- Babayaga, BHLUMI (specialized)

LHC era generators:

- Madgraph
- Sherpa

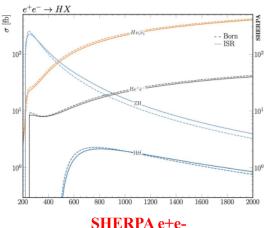
Modern e+e- era generators:

- Whizard
- CIRCE (specialized)



Whizard e+e-

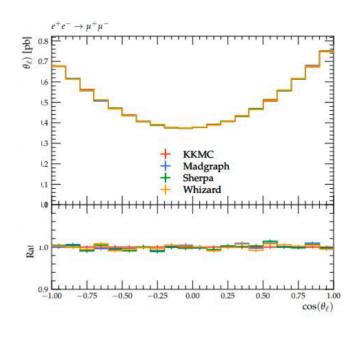
Beamstrahlung:


- machine dependent (Guinea Pig)
- Input to Generators (MADGRAPH, Whizard)
- Provide a consistent set for all machines

Editors: Thorsten Ohl, Daniel Schulte

QED:

 ePDF, QED Parton Shower and Yennie-Frautchi-Suura resummation

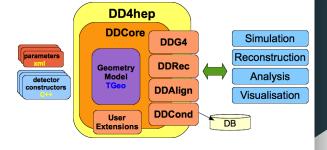

Generators: new Benchmarking tool

Editor: Alan Price

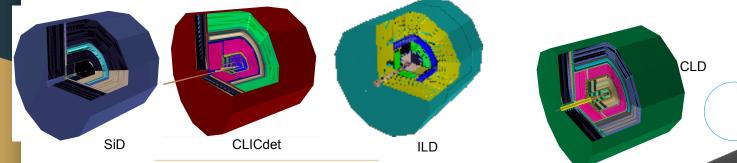
many generators claim the same precision (w/ differing approaches)

- Attobarn data with N^nLO under control needs high precision in generation
- Technical Benchmarks
 - o first order: cross section
 - second order: differential distributions
- k4GeneratorsConfig in KEY4HEP for steering

```
- Whizard
  - Madgraph
  - Pythia
OutputFormat: hepmc3
OutDir: Run-Cards
EventMode: unweighted
SartS: 91.2
Model: SM
ISRMode: 0
Processes:
    Final: [13, -13]
    Order: [2.0]
  Tau:
    Final: [15, -15]
    Order: [2,0]
Sherpa:
 Run:
   EW SCHEME: 3
ParticleData:
   mass: 91.1876
   width: 2.4952
```

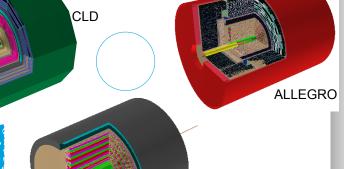


Generator Section in the Report

Editors: Carlo Carloni Calame, Jurgen Reuter, Marco Zaro


- Preliminary outline:
 - (1) Hard processes: NLO QCD + NLO EW in the SM, NNLO
 - (2) Initial state radiation: LL/NLL ePDFs / YFS (coll. vs. soft resummation)
 - (3) Beam spectra: parameterized, simulated, Gaussian
 - (4) Parton showers and hadronization, incl. matching
 - (5) BSM simulations
 - (6) Dedicated processes with dedicated tools/implementations: Bhabha, rad. Bhabha, $e^+e^- \rightarrow \gamma\gamma$, $WW \& t\bar{t}$ thresholds
 - (7) Connection to software frameworks, event formats, and all that

Physics Analysis Tools:Geometry

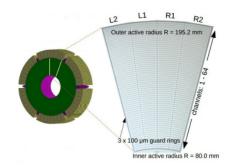
- DD4HEP can support the full life cycle of the experiment
- single source of information for full simulation, reconstruction, conditions, alignment, visualisation and analysis
 - o used by CEPC, CLIC, CMS, EIC, FCC, ILC, LHCb, ...



DD4hep: de facto industry standard

all future Higgs factory (sub) detector simulation models in **one package** https://github.com/key4hep/k4geo

=> allows to re-use reconstruction code (for similar sub detectors) across detector concepts and plug&play

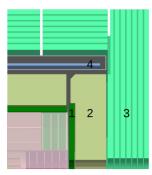

IDEA

Physics Analysis Tools: Simulation

Key4Hep helps new full simulation:

- tremendous effort by all groups
- necessary for detailed understanding of performance
- enabled by exchangeability of subdetectors (devil is in the details)

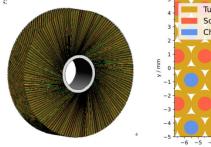
SiW Luminometer for ILC, FCC and CEPC:

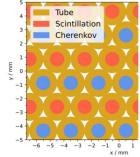


Lumimeter geometry

MachineDetectorInterface (MDI):

- FCC
- ILD@FCC





Muon chambers RPC ParticleID ARCH (before Calo) Editors: Andrè Sailer, Brieuc Francois, Daniel Jeans

Tracking:

- Si+Gaseous (TPC or Drift Chamber IDEA)
- Si+Si

Calo:

- Calo Type 1: SiW with concurrent simulation of two HCALs
- Calo Type 2: Noble Liquid+TileCal
- Calo Type 3: Dual readout (scintillation+cerenk@v)

Physics Analysis Tools: Reconstruction

development of a ML-based

PID Toolkit that can take

inputs (dEdx, TOF,dNdx

etc...) from any detector

SWEcosystem simplifies re-optimization for diffferent detectors. Huge spike in ML-assisted algorithm development with improved performance compared to the past

Track reconstruction:

- Cellular automatons+kalman extrapolation
- Conformal
- ACTS (in progress)
- GNN(in progress)

Calo Clustering:

• CLUE alg (energy density based from HGCAL)

Particle Flow:

- ARBOR (LLR and CEPC)
- Pandora
- ML/AI (on simplified events)

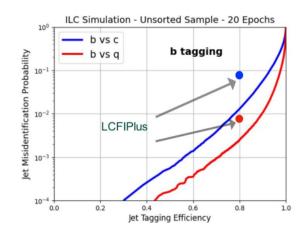
High Level:

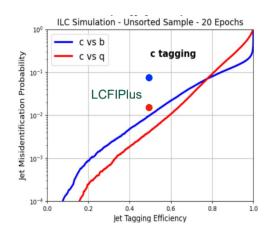
- Particle ID
- Vertexing
- jet reconstruction (Fastjet)
- Flavour tagging

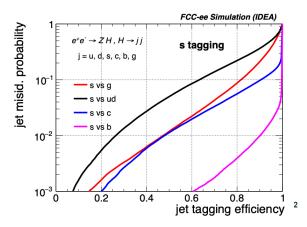
Taikan Suehara, Ulrich Einhaus □ K $\Delta TOF = (pred. TOF - ref. TOF) [ps$ weight files (a) Cylinder algorithm TrainingModels TrainingModels: slcio file processor parameters slcio file 0.71 Example: original 0.70

Editors: Loukas Gouskos,

0.85


kaons Protons


MC truth PDG


trons

Reconstruction: Jet Tagging

- Jet flavor tagging, a nice example of cross project collaboration:
- Originally developed for FCC (circular) as ParticleNetIDEA (from ParticleNet-CMS)
- Implemented for ILD to newer ParticleTransformer: clear improvement on the old standard (DNN etc) LCFIPlus
- Strange tagging becoming a serious opportunity for physics measurements

How did we make it happen?

- Obviously most of the technical work concerning analysis tools and performance studies happened inside the different projects (FCC-PED, IDT,C3 etc...)
- The WG2 served as a forum to:
 - o efficiently share technical knowledge, not only concerning lepton colliders, but also coming from the LHC experience and B-factories
 - o optimize the solution of common issues
 - highlight the new needs and provide solutions within a common software ecosystem
- Through these activities, we have built new connections and expertise to be able to have a united community that would operate successfully a lepton collider and extract physics measurement with the precision the world needs.

The last stretch

- A big big **thank you** to all our editors and authors, and all the participants to the WG2 effort during these years.
- The draft of the report is due very soon: it's the last stretch
- From us conveners: it has been our pleasure to be able to create a forum that has brought to the development of such a large number of new ideas and common tools and connections across projects.
- We'll see you all soon at the European Strategy Symposium in Venice Lido June 2025!